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Abstract 

Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by early liver metastasis and high 
mortality. The tumor microenvironment plays a pivotal role in tumor progression; however, the immune microenvironment's 
involvement in PDAC liver metastasis remains poorly understood. 
Methods: This study investigates cellular heterogeneity in primary tumor (PT) and liver metastasis (LM) tissues of PDAC using 
single-nucleus RNA sequencing and spatial transcriptomics. Intra-tumor heterogeneity and cell interactions were elucidated through 
deconvolution, intercellular signalling, pseudotime analysis, and immune infiltration profiling. The spatial distribution of immune cells was 
assessed by multiplexed immunofluorescence staining, and prognostic models were developed and validated through 
immunohistochemistry (IHC). Analyzing the regulatory role of CITED4 in the invasion and metastasis of pancreatic cancer cells through 
transwell assay and scratch wound healing assay. 
Results: A total of 62,326 cells were sequenced, with metastatic dissemination cells showing significant upregulation of 
epithelial-mesenchymal transition (EMT)-related genes during liver metastasis. Spatial transcriptomics revealed the enrichment of 
metastatic dissemination cells and FOXP3-related Treg cells at the tumor front in PT tissues. In comparison to LM tissues, the tumor front 
in PT tissues fosters an immunosuppressive microenvironment through the accumulation of Treg cells. Interaction analysis identified the 
SPP1 pathway as a key promoter of this immunosuppressive environment. Furthermore, prognostic models highlighted CITED4 as critical 
biomarkers in PDAC. Elevated CITED4 expression is correlated with liver metastasis and poor prognosis in patients with PDAC. 
siRNA-mediated knockdown of CITED4 suppresses the invasion and metastasis of pancreatic cancer cells. 
Conclusions: In summary, this study revealed that Treg cell alterations, mediated by metastatic dissemination cells within the immune 
microenvironment, significantly contribute to PDAC liver metastasis, and that CITED4 enhances the metastatic potential of metastatic 
dissemination cells. 
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Introduction 
Pancreatic ductal adenocarcinoma (PDAC) is the 

most prevalent pancreatic malignancy, with rising 
incidence and mortality rates, and a dismal five-year 
survival rate of under 10% [1, 2]. PDAC is clinically 
characterized by early distant metastasis, with over 

80% of patients exhibiting metastatic spread at 
diagnosis. Given the nonspecific or asymptomatic 
nature of pancreatic cancer symptoms, many patients 
present with regional or distant metastasis, rendering 
radical surgery unfeasible for the majority [3]. The 
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liver is the predominant site of distant metastasis in 
PDAC. However, PDAC with liver metastasis shows 
marked resistance to conventional treatment 
regimens, and therapeutic options remain severely 
limited [4, 5]. The complexity of the PDAC 
microenvironment, including intercellular 
interactions and spatial heterogeneity, plays a critical 
role in tumor progression and metastasis [6, 7]. These 
factors contribute to tumor evolution and promote 
metastatic spread. Identifying the key heterogeneous 
elements and intercellular pathways driving PDAC 
liver metastasis is essential for risk assessment and 
prognostic evaluation. 

Single-cell RNA sequencing (scRNA-seq) is a 
high-resolution genomics technique that provides 
insight into intratumoral heterogeneity and the 
intricate tumor microenvironment (TME) at the 
single-cell level, offering advantages over traditional 
large-scale sequencing methods [8, 9]. However, 
pancreatic tissues, rich in enzymes, pose a challenge 
for scRNA-seq, as these enzymes are released during 
tissue homogenization and damage cells, leading to 
cellular destruction and lysis [10]. Single-nucleus 
RNA sequencing (snRNA-seq), which isolates nuclei 
from formalin-fixed, paraffin-embedded (FFPE) 
tissues rather than whole cells, offers a viable 
alternative to scRNA-seq [11]. As transcriptional 
activity in FFPE tissues is preserved, snRNA-seq 
maintains transcriptional states without introducing 
dissociation biases, allowing for accurate 
identification of distinct cell subpopulations [12]. 
Nevertheless, snRNA-seq does not retain spatial 
information or in situ intercellular communication 
networks. Spatial transcriptomics (ST) technology 
overcomes this limitation by combining gene 
expression with tissue localization, enabling the 
identification of transcriptomic changes within 
specific tissue regions [13]. The integration of 
single-cell and spatial transcriptomics data enables 
comprehensive studies of PDAC at the single-cell 
level, facilitating a more detailed understanding of its 
spatially organized biology [14]. 

PDAC is characterized by a complex immune 
microenvironment characterized by intricate immune 
cell interactions [15]. Single-cell RNA sequencing of 
tumor and adjacent normal pancreatic tissues has 
revealed significant heterogeneity in immune cell 
infiltration, with a notable increase in CD8 T cells 
exhibiting an exhausted phenotype in the advanced 
stages of the disease [16]. Immune cells, including T 
cells, are often confined to specific regions within the 
tumor. Multiplex immunohistochemistry-based 
analysis of immune cell heterogeneity and spatial 
distribution among patients with PDAC has 
demonstrated considerable variations in the total 

leukocyte count and the density of leukocyte 
subpopulations across different histopathological 
regions and between patients [17]. Various leukocyte 
subpopulations play pivotal roles in PDAC 
progression. For instance, radiotherapy in patients 
with PDAC promotes the infiltration of regulatory T 
cells (Tregs) while decreasing NK cell recruitment. 
Targeted inhibition of STAT3 in Tregs enhances 
NK-mediated immune surveillance [18]. The 
basal-like ductal subtype correlates negatively with 
CD8 T cell proportions but positively with Treg and 
immunosuppressive macrophage (Mp-TGFBI) levels 
[19]. Furthermore, IL-10 secreted by CD38+ B cells 
suppresses NK cell cytotoxicity [20], and IL-1β fosters 
tumor cell proliferation via immune-suppressive B 
cells [21]. Thus, understanding the heterogeneity of 
leukocyte populations and their interactions within 
the PDAC immune microenvironment is essential for 
developing strategies that modulate immune 
responses. 

This study conducted a comprehensive analysis 
of the tumor microenvironment differences between 
primary PDAC tumors and their matched liver 
metastatic counterparts using single-cell RNA 
sequencing. By reconstructing the evolutionary 
trajectories of cancer cells, a subpopulation of 
disseminating PDAC cells was identified. ST analysis 
revealed that this disseminating cell cluster localizes 
at the tumor boundary, and further analysis described 
the interactions between this subpopulation and 
immune cell subpopulations. Additionally, this study 
explored biomarkers associated with disseminating 
tumor cells and successfully developed a prognostic 
model for patients with PDAC, examining its 
relationship with immune infiltration. Understanding 
the key components and interactions within the 
metastasis-specific microenvironment during PDAC 
liver metastasis provides a theoretical framework for 
advancing early detection and treatment strategies for 
metastatic PDAC. 

Results 
Revealing cellular heterogeneity in PDAC 
primary tumors (PT) and liver metastatic 
lesions (LM) by single-nucleus RNA sequencing 

To elucidate the tumor microenvironment (TME) 
in primary pancreatic tumors (PT) and liver 
metastases (LM) in patients with PDAC, the 10x 
Genomics 5' mRNA sequencing method was 
employed for single-nucleus RNA sequencing of 
FFPE tissues from five patients with PDAC, including 
three PTs and their corresponding paired LMs. 
Additionally, FFPE tissues from four other patients 
were collected for spatial transcriptomics sequencing, 



Theranostics 2025, Vol. 15, Issue 11 
 

 
https://www.thno.org 

5339 

which was integrated with single-cell sequencing 
data. This approach was further complemented by 
fluorescence staining and clinical prognostic models 
to validate the findings (Figure 1A). Normalization 
and dimensionality reduction were performed using 
Seurat, followed by unsupervised clustering analysis 
and rigorous quality filtering, resulting in the 
identification of 62,326 cells for further analysis. Based 
on marker genes within cell clusters and known 
cell-specific markers [22-29], the cells were classified 
into 13 distinct types: ductal cells (EPCAM6, MUC1), 
acinar cells (PRSS1), fibroblasts (LUM), endothelial 
cells (CDH5), endocrine cells (INS), hepatocytes 
(APOA2), T cells (CD2), B cells (MS4A1), plasma cells 
(IGKC), macrophages (C1QB), mast cells (CPA3), 
cholangiocytes (KRT7), and intestinal epithelial cells 
(SLC15A1) (Figure 1B-E). To investigate differences in 
cell type composition between patients with PDAC, 
the proportion of each cell type in the tissues was 
calculated. The results indicated that PT tumors were 
predominantly composed of ductal cells, T cells, B 
cells, mast cells, and macrophages, while LM lesions 
showed a higher prevalence of hepatocytes, consistent 
with the liver's characteristic cellular composition 
(Figure 1F). Notably, the proportions of different cell 
types varied across patients. Additionally, a dotplot 
was generated to illustrate the expression levels of 
differentially expressed genes (DEGs) across the cell 
types (Figure 1G). Ductal cells primarily expressed 
PDAC-related genes such as S100A6 (Calcyclin) and 
CEACAM6 (Carcinoembryonic antigen-related cell 
adhesion molecule 6) [22, 30]. Consequently, the 
ductal cell type was examined to further explore its 
heterogeneity during PDAC liver metastasis and its 
regulatory interactions within the TME. 

Activation of inflammatory pathways during 
metastatic dissemination of malignant ductal 
cells 

As PDAC originates from ductal cells, gene 
expression analysis and subpopulation clustering 
were performed on ductal cells from PT and LM, 
identifying 12 distinct ductal cell subpopulations 
(Figure 2A & Table S1). Analysis of cell type 
proportions in PT and LM revealed that ductal cells in 
LM were predominantly distributed in ductal cell 
subpopulations 10 and 11 (Figure 2B). We used 
CytoTRACE [31] to analyze the cell differentiation 
level between ductal cell subpopulations (Figure 2C 
& Figure S1A). Since subpopulation 1 has a high level 
of cell differentiation, it suggests that subpopulation 1 
is a group of normal ductal cells, and therefore is a 
clear starting point of the ductal cell evolutionary 
trajectories. To explore the evolutionary dynamics of 
ductal cell trajectories during PDAC metastasis, 

pseudotime analysis of tumor cell subpopulations 
was conducted using the Monocle method [32], 
revealing two distinct differentiation trajectories 
originating from ductal cells in PT, with ductal cells 
from LM positioned at the terminus of these 
trajectories (Figure 2D). Genes such as LUM, FSTL1, 
MMP2, and TAGLN were initially upregulated along 
these trajectories, followed by downregulation 
(Figure 2E). EMT scores analysis revealed significant 
upregulation of EMT-related genes in subpopulations 
6, 9, and 11 compared to subpopulation 1 (p < 0.0001) 
(Figure 2F), which were present in both primary and 
liver metastatic tissues (Figure S1B & S1C). These 
subpopulations were thus identified as metastatic 
dissemination cell clusters. Further gene expression 
changes in metastatic dissemination cells were 
investigated via enrichment analysis of their signature 
gene sets using the Hallmark database, revealing 
strong enrichment in EMT, coagulation, and 
angiogenesis pathways (Figure 2G). We further 
performed differential analysis on the subpopulation 
6, 9, 11 of metastatic dissemination cells. In the 
metastasis-related genes analysis (Figure S1D), we 
found that subpopulation 6 specifically expressed 
ACTA2, VIM, MMP1, and MMP2, subpopulation 9 
specifically expressed CD4, IL32, and VEGFA, 
subpopulation 11 specifically expressed ANPEP and 
CDH2. In the Hallmark-related pathway analysis 
(Figure S1E), subpopulation 6 was highly enriched in 
EMT, reactive oxygen species pathway and 
PI3K-AKT-mTOR signaling, subpopulation 9 was 
highly enriched in apical surface, KRAS signaling dn, 
subpopulation 11 was highly enriched in coagulation, 
notch signaling. Subpopulation 6 demonstrated 
strong metastatic potential, and gene enrichment 
analysis using the Gene Ontology (GO) database 
revealed significant enrichment in pathways related 
to collagen-containing extracellular matrix and 
extracellular matrix organization (Figure S1F). To 
elucidate the crosstalk between metastatic 
dissemination cells and other tumor micro- 
environment components, the CellChat method was 
employed to visualize cell-cell interactions [33]. The 
heatmap in Figure 2H illustrates the overall signalling 
flow between cells, highlighting specifically activated 
interactions within metastatic dissemination cells, 
including VEGF and VISFATIN pathways, which are 
implicated in vascular endothelial cell proliferation 
(Figure 2H). This suggests that communication 
between metastatic dissemination cells and 
endothelial cells through these pathways may drive 
tumor angiogenesis. Metastatic dissemination cells 
also have strong migration inhibitory factor (MIF) 
signal communication, we performed immuno- 
histochemistry (IHC) for MIF using independent 
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pancreatic cancer tissue microarray (TMA) cohorts 
comprising primary tumors of PDAC and liver 
metastatic lesions., the analysis revealed strong MIF 

expression in primary tumor tissues, highlighting 
its critical role in promoting metastasis (Figure S1G & 
S1H). 

 
 

 
Figure 1. Landscape of single cell atlas in PDAC. (A) Workflow of sample acquisition, processing, and analyses from primary and liver metastatic lesions of patients with 
PDAC. (B) UMAP plots of 62,326 high-quality cells from primary tumor (PT) and liver metastatic tumors (LM), showing cell types, colour-coded by inferred cell types. (C, D) 
UMAP plots of the cell atlas showing their sample origins, colour-coded according to their patients (C) or tissues (D). (E) UMAP plots showing the expression levels of selected 
marker genes in the cell atlas. (F) Bar plots showing the proportions and numbers of each cell type, with each cell type shown in a different colour. (G) Dotplot showing the 
expression levels of major differentially expressed genes in the 13 cell types. 



Theranostics 2025, Vol. 15, Issue 11 
 

 
https://www.thno.org 

5341 

 
Figure 2. Transcriptional signatures of metastatic dissemination cells identified by snRNA-seq. (A) UMAP plot of the ductal cells landscape. Cells were coloured 
according to their tissues (left) or clusters (right). (B) Bar plots showing the cell proportion of each ductal cell subcluster from each sample. (C) CytoTRACE predicts the 
stemness and differentiation potential of each ductal cell subcluster. (D) Monocle pseudotime trajectory analysis of ductal cells during the progression process. (E) Dot plots of 
LUM, FSTL1, MMP2, and TAGLN along two cell fates. (F) Box plots showing EMT scores for each ductal cell subcluster, statistical testing performed using the t-test (****, p < 
0.0001). (G) Hallmark pathway enrichment analysis of differentially expressed genes between metastatic dissemination cells and other ductal cell subclusters. (H) Heatmap 
showing the relative strength of the outgoing and incoming signalling pathways in each cell type. (I) Hierarchical heatmap and KEGG analysis showing pathways of gene expression 
patterns of two cell fates across pseudotime.  

 
Furthermore, cell fate 2 within the differentiation 

trajectories was notably enriched with metastatic 
dissemination cells from both PT and LM tumors, 
indicating a strong association with liver metastasis 
(Figure 2D). To examine gene expression patterns 
during cancer cell state transitions, a heatmap was 
used to depict changes in gene expression across five 

transition states, followed by KEGG enrichment 
analysis. Notable upregulation followed by 
downregulation of TNFA signalling via NFKB, 
IL2-STAT5 signalling, and IL6-JAK-STAT3 signalling 
pathways in cell fate 2 revealed dynamic shifts in 
inflammation-related pathways during metastasis 
(Figure 2I). Both cell fate 1 and cell fate 2 trajectories 
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demonstrated enrichment in the oxidative 
phosphorylation pathway, suggesting that these cell 
fates, particularly tumor cells that have metastasized 
to the liver, may primarily rely on oxidative 
phosphorylation for proliferation (Figure 2I). In 
summary, these results indicate that metastatic 
dissemination cells are enriched in cell fate 2, which is 
associated with liver metastasis, and exhibit distinct 
gene expression profiles when compared to 
non-metastasized and liver-metastasized tumor cells. 
Additionally, metastatic dissemination cells may exert 
pro-inflammatory functions, underscoring their 
potential regulatory role in liver metastasis. 

Subsequently, we utilized a published 
scRNA-seq dataset of pancreatic ductal 
adenocarcinoma (PDAC) to validate the gene 
expression patterns of metastatic dissemination cells 
[23]. This dataset comprised primary tumors and liver 
metastatic lesions. Cells were classified into 9 distinct 
types: ductal cells, fibroblast cells, endothelial cells, 
stellate cells, T cells, NK cells, B cells, macrophages, 
and mast cells (Figure S2A-C). Subcluster analysis of 
ductal cells identified 13 distinct subpopulations 
(Figure S2D). EMT scores analysis revealed 
significant upregulation of EMT-related genes in 
subpopulation 11 (Figure S2E). Pseudotemporal 
analysis demonstrated that subpopulation 11 
occupied an intermediate position along the trajectory 
(Figure S2F), with genes such as LUM, FSTL1, and 
CITED4 initially upregulated followed by 
downregulation along these trajectories (Figure S2H). 
Enrichment analysis of subpopulation 11-specific 
gene sets using the Hallmark database showed 
significant enrichment in TNFA signaling via NFKB, 
EMT and coagulation pathways (Figure S2I). 
Consistent with our findings, re-analysis 
demonstrates that metastatic dissemination cells 
possess both metastatic potential and 
immunoregulatory capacity. 

Immune suppressive landscape of lymphocytes 
in PDAC primary tumors and liver metastatic 
lesions 

To investigate the immune environment of 
primary PDAC tumors and liver metastatic lesions, 
high-resolution re-clustering of T cells and NK cells 
was performed to identify distinct subtypes (Figure 
3A). Based on the transcriptional profiles of key 
marker genes, including CD4 (TCF7), CD4 (S100A4), 
CD4 (MKI67), Treg (FOXP3), CD4 (GZMK), Tex 
(CXCL13), CD4 (NR4A2), CD8 (HSPA1A), CD8 
(SERPINA1), CD8 (CCL5), and NK (GNLY), 11 
distinct subpopulations were identified (Figure 3B, 
C). Tex cells (Exhausted T cells), characterized by 
CXCL13 expression, exhibited elevated levels of 

immune checkpoint proteins such as PDCD1 (PD-1) 
and CTLA4, while Treg cells positive for FOXP3 
showed high expression of IL2RA and TIGIT. 
Compared to other lymphocyte subsets, Treg and Tex 
cells displayed higher expression of "co-stimulatory" 
and "exhaustion" gene signatures (Figure 3C). To 
trace the differentiation trajectories of CD8 T and CD4 
T cells, Monocle analysis was used to visualize the 
cellular differentiation process (Figure 3D, E). CD8 
(HSPA1A) cells marked the initial stage of CD8 T cell 
differentiation, branching into CD8 (SERPINA1) and 
CD8 (CCL5) cells, which expressed cytotoxic markers 
(Figure 3D & Figure S3A). Similarly, CD4 (TCF7) 
cells represented the starting point of CD4 T cell 
differentiation, subsequently differentiating into CD4 
(S100A4) or CD4 (MKI67) cells. Treg (FOXP3) and Tex 
(CXCL13) cells, characterized by exhaustion markers, 
were identified as terminal differentiation states 
(Figure 3E & Figure S3B). Immunofluorescence 
staining revealed a higher abundance of CD4 FOXP3 
cells in PT tissues compared to LM tissues (Figure 3F, 
G, K). Additionally, Treg cells in PT tissues exhibited 
high expression of immune checkpoint genes such as 
CD27, ICOS, CTLA4, TNFRSF4, TNFRSF18, and 
TIGIT (Figure 3H). CXCL13+ Tex cells in LM tissues 
showed elevated levels of immune checkpoint 
proteins, including PDCD1 (PD-1) (Figure 3H). These 
results suggest that multiple immune checkpoints 
regulate Treg and Tex cell populations. Differential 
gene analysis of CD4 FOXP3 cells from PT and LM 
tissues revealed dysregulation of transcription factors, 
including FoxO, in CD4 FOXP3 cells from PT tissues 
(Figure 3I). Furthermore, lymphocytes enriched in PT 
tissues exhibited more pronounced "Tumor 
Infiltrating Lymphocyte (TIL)" and "Treg" signatures, 
alongside lower cytotoxicity scores (Figure 3J). 
Collectively, these results suggest that Treg cells in PT 
tissues play a critical role in the metastatic 
progression of PDAC. 

Overall landscapes of spatial transcriptomics 
and intercellular communications of 
metastatic dissemination cells in the 
immunological microenvironment 

To assess the spatial correlation between 
metastatic dissemination cells and the immune 
microenvironment, spatial transcriptomics 
sequencing was performed on FFPE sections from 
four patients with PT tissues. Using the SpaCET 
method [34], PT tissues were categorized into three 
distinct regions: tumor, interface, and stroma (Figure 
4A). To further investigate the spatial characteristics 
of metastatic dissemination cells, UMAP analysis of 
the ST data revealed clear clustering patterns 
corresponding to the tumor, interface, and stroma 
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(Figure 4C). Pancreatic metastatic dissemination 
signature (PMDS) scores were developed based on the 
gene expression profiles of metastatic dissemination 

cells, and both EMT and PMDS scores were calculated 
across different tumor regions.  

 

 
Figure 3. Transcriptional signatures of lymphoid cells identified by snRNA-seq. (A) UMAP plot of the lymphoid cell landscape, coloured by subcluster. (B) Feature 
plots showing the normalized expression of specific marker genes in lymphoid cells. (C) Heatmap showing the average expression levels of selected genes across 11 lymphoid 
subclusters. (D) Monocle pseudotime trajectory analysis of CD8 cells during the progression process. (E) Monocle pseudotime trajectory analysis of CD4 cells during the 
progression process. (F) Immunofluorescence assay for PanCK, CD4, FOXP3, and DAPI in PT and LM samples. Scale bars, 50 µm. (G) Statistical analysis of the number of CD4 
FOXP3 T cells in PT and LM, statistical testing was performed using the t-test (**, p < 0.01). (H) Heatmap of immune checkpoint genes in lymphoid cells, with annotations of 
receptor or ligand, inhibitory or stimulatory roles. The bars at the top indicate receptor or ligand type, while the left bars indicate sample source and lymphoid cell type 
annotations. (I) KEGG pathway enrichment analysis of differentially expressed genes between CD4 FOXP3 T cells from PT and LM, with a significance threshold of p < 0.05 and 
log2(fold change) ≥ 0.5. (J) Box plots showing TIL (tumor-infiltrating lymphocytes), cytotoxic, and Treg scores for lymphoid cells in PT and LM, statistical testing performed using 
the t-test (****, p < 0.0001). (K) Bar plots showing the proportions of 11 lymphoid subclusters in PT and LM.  
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Figure 4. Spatial features and intercellular ligand-receptor prediction between metastatic dissemination cells and lymphoid cells. (A) ST spots showing the 
distribution of tumor, interface, and stroma regions in PDAC primary tumors. (B) Spatial feature plots of PMDS in PDAC spatial transcriptomic samples. (C) UMAP of unbiased 
clustering grouped according to tumor, interface, and stroma regions. (D) Box plots showing EMT scores and PMDS scores in three regions. Statistical testing was performed 
using the t-test (****, p < 0.0001). (E) Bubble plots showing the expression levels of selected differentially expressed genes across the three regions. (F) Bubble plot showing 
significant KEGG pathways enriched for differentially expressed genes between the interface region and other regions. (G) MIA map of overlap between snRNA-seq-defined 
metastatic dissemination cells, lymphoid cells, and ST-defined tumor, interface, and stroma regions. (H) Circle plot showing the strength of intercellular interactions between 
metastatic dissemination cells and lymphoid cells. (I) Scatter plot showing the relative strength of the outgoing and incoming signalling pathways in metastatic dissemination cells 
and lymphoid cells. (J) Bubble plots showing the specific ligand-receptor pairs of outgoing and incoming signalling pathways in metastatic dissemination cells and lymphoid cells. 
(K) Contribution of each ligand-receptor pair in metastatic dissemination cells and lymphoid cells. (L) Hierarchical plot showing the strength of the SPP1 signalling pathway 
between metastatic dissemination cells and lymphoid cells. (M) Kaplan-Meier curve showing the overall survival of patients with pancreatic adenocarcinoma according to SPP1 
expression. 

 
The results indicated that EMT and PMDS scores 

were significantly higher in the tumor interface 
compared to the intratumoral region (Figure 4B, D). 
which was consistent with SPOTLight [35] results 
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(Figure S3C) and reanalyzed data from a previous 
study (Figure S2J). Differential gene expression 
analysis across the three regions (Figure 4E & Table 
S2) identified genes such as LUM, FSTL1, MMP2, and 
TAGLN, which are associated with metastatic 
dissemination cells, as highly expressed in the 
interface region. In the tumor region, DEGs included 
ECM-related genes such as MMP7, LCN2, chemokine 
CXCL5, and tumor markers CLDN4 and MUC4. Gene 
enrichment analysis revealed that pathways enriched 
in the interface region included ECM-receptor 
interaction, focal adhesion, and complement and 
coagulation cascades (Figure 4F), aligning with the 
characteristics of metastatic dissemination cells. These 
results suggest that metastatic dissemination cells are 
predominantly located at the tumor front. To further 
investigate the spatial distribution of metastatic 
dissemination cells in relation to lymphoid cells, data 
from snRNA-seq and ST were integrated using the 
MIA method [36]. The MIA analysis showed that 
metastatic dissemination cells, Treg, and Tex cells were 
enriched in both the tumor and interface regions of PT 
tissues, while cytotoxic CD8 (CCL5) and CD4 (GZMK) 
cells were absent from these regions (Figure 4G), 
suggesting an immune-suppressive micro-
environment at the tumor interface. 

The CellChat method was further employed to 
visualize the interactions between metastatic 
dissemination cells and lymphoid cells. Figure 4H 
illustrates the interaction strength of signalling 
pathways between cells, showing that metastatic 
dissemination cells exhibit robust outgoing 
interaction strength, whereas Treg and Tex cells display 
strong incoming interaction strength (Figure 4I). 
Specific ligand-receptor interactions between 
metastatic dissemination cells and lymphoid cells 
were investigated, identifying key pairs such as 
SPP1-CD44 and MIF-(CD74+CXCR4) (Figure 4J, K). 
These results suggest that SPP1 and MIF signaling 
pathways play a critical role in the metastasis of 
metastatic dissemination cells. CCL and IL16 
signaling pathways also play crucial regulatory roles 
between immune cells (Figure S3D). A detailed 
analysis of the SPP1 signalling pathway revealed that 
SPP1 is secreted by metastatic dissemination cells and 
interacts with all lymphoid cells as target (recipient) 
cells (Figure 4L). Kaplan-Meier survival analysis 
using TCGA data demonstrated that high SPP1 
expression in patients with PDAC correlates with 
poorer overall survival (OS) (Figure 4M). 
Additionally, we also analyzed the interactions 
between non-metastatic dissemination cells within 
ductal cells and lymphocytes. Non-metastatic 
dissemination cells exhibited strong outgoing 
interaction strengths (Figure S3E), and the specific 

ligand-receptor interactions between non-metastatic 
dissemination cells and lymphocytes were primarily 
mediated by GALECTIN and GDF signaling 
pathways (Figure S3F-H). In summary, an immune 
atlas at the spatial level was successfully constructed, 
and the immune networks in different tumor regions 
were characterized. Moreover, CellChat analysis 
revealed that metastatic dissemination cells primarily 
regulate the transformation of lymphoid cells via the 
SPP1 signalling pathway. 

tumor-associated macrophages (TAMs) play 
an important role in metastatic dissemination 
microenvironment 

Next, we identified 10 distinct subsets of 
myeloid-derived cells through high-resolution 
reclustering analysis based on the expression of key 
marker genes [37], including conventional dendritic 
cells type 1 (cDC1s), conventional dendritic cells type 
2 (cDC2s), myeloid dendritic cells (mDCs), 
monocytes, lipid-associated TAMs (LA-TAMs), 
resident-tissue TAMs (RTM-TAMs), pro-angiogenic 
TAMs (Angio-TAMs), immune regulatory TAMs 
(Reg-TAMs), neutrophils, and mast cells (Figure S4A 
& S4B). Angio-TAMs may activate anti-tumor 
immune responses, and they express high levels of 
co-stimulatory factors (SPP1), proinflammatory 
cytokines (IL4I1), and lymphocyte migration-related 
molecules (ITGB7), LA-TAMs represent an 
immunosuppressive subset of TAMs, characterized 
by elevated expression of several negative 
immunoregulatory factors, including FKBP5 and 
GPNMB (Figure S4C). Further MIA analysis revealed 
that metastatic dissemination cells, monocytes, and 
TAMs were primarily enriched in tumor and interface 
regions (Figure S4D). KEGG analysis was performed 
to explore the potential biological functions and 
associated signaling pathways of each cell type 
(Figure S4E). Angio-TAMs were enriched in 
pathways related to natural killer cell-mediated 
cytotoxicity. Monocle differentiation trajectory 
analysis showed that monocytes occupied the initial 
stage of cellular differentiation, further branching into 
LA-TAMs and RTM-TAMs (Figure S4F). According to 
CellChat analysis, metastatic dissemination cells 
interact with TAMs in the tumor microenvironment 
via signaling pathways such as MIF (Figure S4G). We 
next examined the anti-inflammatory and 
pro-inflammatory features of TAM subsets (Figure 
S4H) and found that Angio-TAMs exhibited M1-like 
pro-inflammatory characteristics, while LA-TAMs 
and Reg-TAMs displayed M2-like anti-inflammatory 
phenotypes (Figure S4I). Myeloid cells have been 
reported as critical sources of immune checkpoints in 
tumors [38]; thus, we analyzed the immune 
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checkpoint-related gene scores in TAMs (Figure S4J 
& Table S3). Angio-TAMs showed higher immune 
activity, whereas LA-TAMs and RTM-TAMs 
exhibited lower immune activity. Collectively, these 
data highlight the pivotal role of TAMs in the 
metastatic dissemination microenvironment. 

Reticular-like cancer-associated fibroblasts 
(rCAFs) exert immunomodulatory effects in 
metastatic dissemination microenvironment 

Fibroblasts, as the primary component of the 
tumor stroma, include cancer-associated fibroblasts 
(CAFs) that play critical roles in the tumor 
microenvironment (TME) by promoting tumor 
progression, inflammation, and remodeling the 
extracellular matrix [39]. Based on previously 
reported phenotypic features of fibroblasts [40], we 
identified 8 distinct subpopulations: matrix CAFs 
(mCAFs), inflammatory CAFs (iCAFs), interferon 
response CAFs (ifnCAFs), reticular-like CAFs 
(rCAFs), tumor-like CAFs (tCAFs), PI16+ CAFs, 
SMCs, and Pericytes (Figure S5A & S5B). iCAFs 
exhibit potent pro-inflammatory capabilities and 
express high levels of pro-inflammatory cytokines 
CCL2 and IL6 (Figure S5B). rCAFs were previously 
reported in tertiary lymphoid structures (TLS) and 
surround aggregated immune cells [40], expressing 
elevated levels of NR2F2 (a transcription factor 
regulating NF-κB pathways) and TIMP1 (modulating 
immune cell activity) (Figure S5C). Monocle 
trajectory analysis revealed that mCAFs occupy an 
early stage in cellular differentiation, further 
differentiating into iCAFs (Figure S5D). KEGG 
pathway enrichment analysis highlighted distinct 
signaling pathways in each subpopulation, with 
rCAFs showing enrichment in antigen processing and 
presentation (Figure S5E). MIA analysis further 
demonstrated that metastatic dissemination cells, 
monocytes, and CAFs were primarily enriched in 
tumor and interface regions (Figure S5F). CellChat 
analysis indicated that metastatic dissemination cells 
interact with CAFs in the TME via pathways 
including MIF and SPP1 (Figure S5G-I). Collectively, 
these data suggest that rCAFs exert 
immunomodulatory functions in the metastatic 
dissemination microenvironment. 

The MIF signaling pathway plays a crucial 
regulatory role in liver metastasis of 
metastatic dissemination cells 

B cells, as a critical component of adaptive 
immunity, play multifaceted roles in human cancers [41]. 
We performed re-clustering analysis of B cells in the 
tumor microenvironment and identified four distinct 
subsets based on the expression of key marker genes: 

naive B cells, memory B cells, IGA+ plasma cells, and 
IGG+ plasma cells (Figure S6A & S6B). MIA analysis 
revealed that metastatic dissemination cells and B cell 
subsets were enriched in both tumor and interface 
regions (Figure S6C). Monocle differentiation trajectory 
analysis showed that naive B cells occupy the initial 
stage of cellular differentiation, further diverging into 
IGA+ plasma cells and IGG+ plasma cells (Figure S6D). 
Immune-activating genes, such as IL4R, CXCR5, CD74, 
and CD40, were significantly downregulated along the 
progression trajectory (Figure S6E). TLS play a crucial 
role in the tumor immune response, characterized by 
B cell structures surrounded by T cells [42]. 
Multifluorescent staining of pancreatic cancer tissues 
was conducted using antibodies against CD4 (white), 
CD8 (light blue), CD20 (pink), FOXP3 (red), VIM 
(green), and panCK (yellow), along with 
4',6-diamidino-2-phenylindole, dihydrochloride 
(DAPI) (Figure S6F). We observed that CD4 T cells, 
CD8 T cells, and fibroblast cells surround CD20 B 
cells, with a significant presence of FOXP3-Tregs cells 
around TLS. According to the analysis by CellChat, 
we found that APRIL secreted by Reg-TAMs has a 
regulatory effect on B cells, the MIF signaling 
pathway is crucial for the regulation of macrophages, 
B cells, and T cells by metastatic dissemination cells 
(Figure S6G). By integrating these data, we provide 
insights into the regulatory mechanisms of the tumor 
microenvironment during the metastasis of metastatic 
dissemination cells from the perspective of cellular 
interactions. 

Construction and validation of a metastatic 
dissemination-related prognostic model for 
pancreatic adenocarcinoma 

The potential association between genes 
expressed by metastatic dissemination cells and 
patient prognosis was further assessed. A univariate 
Cox regression analysis was first conducted using 
TCGA data of pancreatic adenocarcinoma, identifying 
metastatic dissemination-related genes (MDRGs) 
associated with OS and disease specific survival (DSS) 
in patients with pancreatic adenocarcinoma (Figure 
5A & Figure S7B). Subsequently, a prognostic model 
was constructed using the LASSO algorithm based on 
these MDRGs, ultimately selecting seven key MDRGs 
(MT-CO3, CIRBP, PDGFC, MT2A, CITED4, MT-CO2, 
and CLDN1) for OS-based model development 
(Figure 5B, C & Figure S7A), and seven key MDRGs 
(CLDN1, CITED4, MT2A, PDGFC, CIRBP, MT-CO3, 
and CCN1) for DSS-based model development 
(Figure S7C & S7D). Among the seven key MDRGs, 
CIRBP was downregulated in tumor tissues, while the 
other six genes were upregulated in tumor tissues 
(Figure 5D).  
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Figure 5. Identification of a metastatic dissemination-related signatures to predict prognosis and immune landscape in pancreatic adenocarcinoma. (A) 
Univariate Cox regression analysis for 13 MDRGs significantly associated with OS. (B, C) LASSO regression analysis identified OS-related candidate prognostic genes. (D) The 
heatmap revealed differential expression patterns of seven key MDRGs between normal and tumor tissues. (E) Risk score, survival status, and heatmap of the expression levels 
of the 7 candidate prognostic MDRGs in patients with pancreatic adenocarcinoma. (F) Kaplan-Meier survival analysis for OS between the high- and low-risk groups. (G) ROC 
curves of the prognostic model for predicting 1-, 3-, and 5-year survival rates. (H) Calibration curve of the prognostic model. (I) Decision curve analysis (DCA) for the evaluation 
of the prognostic model. (J) Clinical prognostic nomogram model for pancreatic adenocarcinoma. (K) ROC curves of the nomogram. (L) Boxplot showing the ssGSEA scores 
of 24 immune cell subsets in high- and low-risk groups.  
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Figure 5E & Figure S7E show the risk score for 
each patient with pancreatic adenocarcinoma, 
patients classified into high-risk and low-risk groups 
based on their scores. The survival time distribution 
indicated that as the risk score increased, survival 
time decreased, and mortality increased. 
Kaplan-Meier analysis revealed that patients with 
high-risk scores had significantly lower OS and DSS 
than those with low-risk scores, indicating a poorer 
prognosis for the high-risk group (Figure 5F & Figure 
S7F). The model's effectiveness was further evaluated 
through ROC curve analysis, showing AUC values of 
0.687, 0.803, and 0.891 for 1, 3, and 5 years, 
respectively (Figure 5G & Figure S7G). Additionally, 
the calibration curve demonstrated good predictive 
accuracy (Figure 5H & Figure S7H), while the DCA 
curve confirmed the model's strong clinical 
applicability (Figure 5I & Figure S7I). To improve 
clinical utility, a nomogram incorporating clinical 
parameters was constructed for patients with 
pancreatic adenocarcinoma (Figure 5J). The 
nomogram generated AUC values for 1-year, 3-year, 
and 5-year OS of 0.694, 0.787, and 0.861, respectively 
(Figure 5K). To investigate the relationship between 
the prognostic model and the immune 
microenvironment, ssGSEA and xCell was used to 
calculate immune cell infiltration scores in pancreatic 
adenocarcinoma patients. The results indicated 
significantly higher infiltration of Treg cells in the 
high-risk group, while the low-risk group exhibited 
increased levels of CD8 T cells (Figure 5L & Figure 
S8A), suggesting an immunosuppressive 
microenvironment in the high-risk group. Subsequent 
analysis of the correlation between the seven MDRGs 
and immune infiltration revealed that CITED4, 
MT-CO2, and MT-CO3 exhibited a positive 
correlation with Treg infiltration (Figure S7J). 
Immunofluorescence staining revealed that CD4 
FOXP3 cell numbers in PT tissues from patients with 
late-stage pancreatic cancer were significantly higher 
than those in patients with early-stage pancreatic 
cancer (Figure S8B). In summary, the analysis 
demonstrates that this prognostic risk model offers 
excellent predictive performance for OS and DSS in 
patients with pancreatic adenocarcinoma. 

The expression of CITED4 promotes liver 
metastasis of pancreatic adenocarcinoma 

Multivariate Cox regression analysis of the seven 
candidate prognostic MDRGs identified CITED4 and 
CIRBP as independent prognostic factors for both OS 
and disease-specific survival (DSS) in patients with 
pancreatic adenocarcinoma (Figure 6A). 
Kaplan-Meier survival analysis indicated that high 
CITED4 expression (Figure 6B) and low CIRBP 

expression (Figure 6C) were associated with poorer 
overall survival, disease-specific survival (Figure 
S8C), and progress free interval (Figure S8D) 
outcomes. Prognostic assessment of CITED4 and 
CIRBP expression, stratified by clinical stage and age, 
revealed that high CITED4 expression correlated with 
significantly worse survival in the T2&T3 and age >65 
subgroups (Figure 6D, E), while low CIRBP 
expression predicted worse survival in the T2&T3 and 
age ≤65 subgroups (Figure 6F, G). CITED4 expression 
was specifically enriched in both ductal cells (Figure 
S8E) and metastatic dissemination cells (Figure S2G 
& S7A). CITED4, a member of the 
CBP/p300-interacting transactivator with a glutamic 
acid- and aspartic acid-rich tail (CITED) family 
(CITED1, CITED2, CITED4), interacts with CBP/p300 
and the transcription factor TFAP2 to regulate TFAP2 
transcription. Emerging evidence indicates that 
CITED4 plays a pivotal role in cytokine-induced 
cellular proliferation, differentiation, and 
tumorigenesis [43]. Target genes interacting with 
EP300 and TFAP2 were analyzed using the TRRUST 
database [44]. KEGG functional annotation revealed 
that these target genes are predominantly involved in 
key pathways such as the PI3K-AKT signalling 
pathway, p53 signalling pathway, and JAK-STAT 
signalling pathway (Figure 6H), highlighting the 
regulatory role of CITED4 in promoting cancer 
progression. To assess the potential of CITED4 
expression as a prognostic marker, IHC analysis was 
performed on pancreatic cancer tissues. The results 
showed elevated CITED4 expression levels in patients 
with liver metastasis (Figure 6I, J). Patients were 
categorized into two groups based on CITED4 
expression, with those exhibiting high CITED4 
expression having a higher M stage and more 
advanced clinicopathological stage (p < 0.0001, Table 
1). To investigate the relationship between CITED4 
and the immune microenvironment, we utilized 
CIBERSORT to calculate immune cell infiltration 
scores in pancreatic adenocarcinoma patients 
stratified by high versus low CITED4 expression. The 
results revealed a significant increase in Treg cell 
infiltration within the CITED4 high-expression group 
compared to the low-expression cohort (Figure S8F). 
To explore the relationship between CITED4 and 
immunogenic properties, we stratified ductal cells 
into CITED4-positive and CITED4-negative groups 
based on CITED4 expression levels (Figure S8G). 
Immunogenic cell death (ICD), which triggers 
anti-tumor immune responses, was evaluated 
between these groups [45]. The analysis revealed that 
the CITED4-positive group exhibited significantly 
lower immunogenicity compared to the 
CITED4-negative group (Figure S8H & Table S4). 
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The migration and scratch wound healing ability of 
L3.6p1 cells with CITED4 expression suppressed by 
siRNA were significantly decreased (Figure 6K-O). 
Figure 5E stratified pancreatic adenocarcinoma 
patients into high-risk and low-risk groups based on 
CITED4 expression profiles. T-cell immune 
responses-related ICOSLG showed significantly lower 
expression in the high-risk group, while immune 
escape-related VTCN1 exhibited elevated expression 
(Figure S8I). Importantly, CITED4 expression 
negatively correlated with ICOSLG (Figure S8J) but 
positively correlated with VTCN1 (Figure S8K). 
Collectively, these findings suggest that CITED4 
contributes to the formation of immunosuppressive 
microenvironments by suppressing pro-immune 
pathways while enhancing immunosuppressive 
mechanisms. These results suggest that CITED4 
expression serves as a valuable prognostic indicator in 
pancreatic cancer. 

Discussion 
The metastatic spread of tumor cells remains a 

leading cause of patient mortality [46]. Metastatic 
dissemination cells, originating from epithelial 
tissues, possess the ability to detach from the primary 
tumor and spread to distant organs via the 
bloodstream or lymphatic system. These cells exhibit 
marked molecular heterogeneity when compared to 
their primary tumor counterparts [47]. The survival 
and metastatic potential of these cells are significantly 
influenced by the tumor microenvironment, with 
immune evasion or suppression playing a pivotal role 
in their dissemination [48, 49]. Consequently, 
exploring the interactions between metastatic 
dissemination cells and the immune 
microenvironment is essential for understanding the 
mechanisms driving tumor metastasis and for the 
development of novel therapeutic approaches. In this 
study, single-cell RNA sequencing was employed to 
uncover the extensive cellular heterogeneity within 
PDAC primary tumors and liver metastatic lesions. 
Combining CNV analysis with the Monocle method 
enabled the identification of metastatic dissemination 
cells within ductal cell subpopulations, revealing their 
involvement in regulating inflammation-related 
processes. A prognostic model was constructed, 
identifying CITED4 expression in metastatic 
dissemination cells as a potential biomarker for 
predicting clinical outcomes. Furthermore, the 
identification of T cell and NK cell subtypes, coupled 
with CellChat analysis, highlighted key signalling 
pathways between metastatic dissemination cells and 
immune cells, particularly the SPP1 pathway, which 
plays a pivotal role in modulating immune processes. 

The complex tumor microenvironment 
significantly contributes to the resistance of PDAC to 
immunotherapies [50]. In this study, multi-colour 
fluorescent staining revealed a notable increase in 
CD4 T cells exhibiting exhaustion characteristics 
surrounding tumor cells in patients with advanced 
pancreatic cancer (Figure S8B). This observation is 
consistent with recent research utilizing cytometry by 
time-of-flight (CyTOF), multiplex fluorescent 
immunohistochemistry (mIHC), and single-cell RNA 
sequencing, which highlighted the heterogeneity of 
cytotoxic T cells within the PDAC tumor 
microenvironment, where the expression of 
exhaustion markers correlates with tumor malignancy 
[16]. Treg cells are critical for regulating excessive 
immune activation and maintaining immune 
homeostasis [51]; however, the interaction between 
Treg cells and metastatic dissemination cells during 
PDAC progression and metastasis remains poorly 
understood. Studies have shown that Treg cell 
enrichment in the liver metastatic microenvironment 
suppresses anti-tumor immunity [23]. Following the 
construction of a prognostic model for metastatic 
dissemination cells, a significant increase in Treg cell 
infiltration was observed in the high-risk group. 
Patients with high CITED4 levels exhibited significant 
liver metastasis and a more advanced 
clinicopathological stage (Table 1). Additionally, 
higher levels of Treg cells were found in the primary 
tumor tissue, expressing elevated levels of 
costimulatory genes associated with immune 
checkpoints (CD27, ICOS, TNFRSF4, and TNFRSF18) 
and exhaustion markers (CTLA4 and TIGIT). While 
Tex cells were also abundant in the primary tumor 
tissue, the expression of exhaustion genes (PDCD1, 
CTLA4, and TIGIT) was notably higher in liver 
metastasis (LM) tissue, suggesting that T cell 
functional exhaustion in the metastatic 
microenvironment contributes to immune evasion. 
Spatial transcriptome analysis revealed that 
metastatic dissemination cells colocalized with Treg 
and Tex cells at the interface and within tumor regions, 
metastatic dissemination cells were positively 
correlated with Treg cell infiltration (Figure S8F), 
with strong output signals from metastatic 
dissemination cells that were efficiently received by 
Treg and Tex cells. Among these interactions, the 
SPP1-CD44 ligand-receptor pair emerged as a key 
mechanism by which metastatic dissemination cells 
modulate immune cell function. 

TAMs play a dual role in the tumor metastatic 
immune microenvironment: they not only secrete 
pro-angiogenic and chemotactic factors to promote 
metastasis, but also suppress T-cell activity via 
PD-L1/IL-10 and synergize with Tregs to establish 
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immunosuppressive networks [37]. Our findings 
reveal that LA-TAMs exhibit a unique M2-like 
polarization and anti-inflammatory signature, 
distinguished by robust upregulation of 
immunosuppressive effectors FKBP5 and GPNMB 
(Figure S4C). Functional crosstalk between metastatic 

dissemination cells and LA-TAMs within the tumor 
microenvironment was mediated through MIF 
signaling (Figure S4G), underscoring the critical 
involvement of LA-TAMs in shaping the 
pro-metastatic immunosuppressive microenviron-
ment. 

 

 
Figure 6. Prognostic value of CITED4 expression in patients with pancreatic adenocarcinoma. (A) Multivariate Cox regression analysis of 7 candidate prognostic 
MDRGs associated with OS and DSS. (B, C) Kaplan-Meier curves showing OS of patients with pancreatic adenocarcinoma according to CITED4 expression (B) or CIRBP 
expression (C). (D, E) KM survival curves of patients in high- and low CITED4 expression groups stratified by stage (D) and age (E) subgroups. (F, G) KM survival curves of 
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patients in high- and low CIRBP expression groups stratified by stage (F) and age (G) subgroups. (H) KEGG enrichment analysis for target genes of EP300 and TFAP2. (I) 
Immunohistochemistry detection of CITED4 expression in pancreatic adenocarcinoma tissues with or without liver metastasis. Scale bars, 50 µm. (J) Quantified staining scores 
of CITED4 in (I), with statistical testing by t-test (****, p < 0.0001). (K) L3.6p1 cells were transiently transfected with siNC and siCITED4, and the protein expression level of 
CITED4 was detected by western blot. (L) Densitometric quantification of CITED4 protein expression relative to GAPDH, statistical testing was performed using the t-test (*, 
p < 0.05). (M) Transwell assay assessing cell migration in response to siCITED4. Scale bar, 100 µm. (N) Quantification of migrated cells per field, statistical testing was performed 
using the t-test (****, p < 0.0001). (O) Scratch wound healing assay evaluating cell invasion in L3.6p1 cells after siCITED4. Scale bar, 100 µm. (P) Quantification of wound closure 
rate, statistical testing was performed using the t-test (**, p < 0.01). 

 

Table 1. Correlation between CITED4 protein expression and clinical characteristics of patients with pancreatic adenocarcinoma. 

Indicators Low expression of CITED4 High expression of CITED4 P value 
Gender (n)   0.512 
Male 35 8  
Female 27 4  
Age (n)   0.466 
<65 24 6  
≥65 38 6  
Differentiation (n)   0.763 
Low 7 1  
High/middle 55 11  
T stage (n)   0.487 
T1-2 10 1  
T3-4 52 11  
N stage (n)   0.512 
N0 35 8  
N1-3 27 4  
M stage (n)   <0.0001 
M0 59 7  
M1 3 5  
Clinicopathologic stage (n)   <0.0001 
Stage I/II 59 7  
Stage III/IV 3 5  

 
The reticular-like CAFs (rCAFs), a recently 

identified fibroblast subpopulation with established 
roles in organizing tertiary lymphoid structures 
(TLSs), may play a pivotal role in regulating immune 
cell trafficking and activation within the tumor 
microenvironment [40]. Transcriptomic profiling 
reveals their unique immunoregulation ability, 
marked by NR2F2 and TIMP1. Multifluorescent 
immunohistochemistry and functional studies 
demonstrate that rCAFs may exhibit enhanced 
antigen processing/presentation capabilities (Figure 
S5E & S6F), suggesting a previously unrecognized 
role in adaptive immune within metastatic niches. 
Regulatory networks showing that CSF and TGFb 
signaling emerges as a central axis coordinating 
TAMs responses to rCAFs (Figure S6G). These 
findings collectively provide novel insights into the 
immunomodulatory functions of rCAFs within the 
metastatic TME, highlighting their previously 
unrecognized roles in shaping the immune landscape. 
Furthermore, this study elucidates the intricate 
cross-talk between stromal and immune 
compartments in the metastatic TME, underscoring 
their dynamic interactions. These findings provide a 
theoretical foundation for developing 
immunotherapeutic strategies targeting TME. 

Our study still has several limitations. First, the 

cell types identified by snRNA-seq were based on a 
relatively small sample size, and the cell types 
identified in LM did not completely match those in 
PT, limiting the systematic analysis of differences in 
all cell types between PT and LM. Second, although 
we successfully constructed a prognostic model of the 
immunosuppressive microenvironment in pancreatic 
cancer patients, further clarification of the model's 
value using clinical data related to immunotherapy is 
still needed for its clinical application and promotion. 
Furthermore, while our study provided correlation 
analysis between metastatic dissemination cells and 
immune cells, further biological experiments are 
required to validate the molecular mechanisms 
underlying the regulation of immune cell exhaustion 
by metastatic dissemination cells. 

Conclusions 
In conclusion, our data highlight the substantial 

heterogeneity of ductal and immune cells in both 
primary and metastatic PDAC tumors. The prognostic 
model targeting metastatic dissemination cells 
demonstrates promising predictive performance. 
Furthermore, this study identified immune 
microenvironment alterations during liver metastasis 
of PDAC and elucidated the interactions between 
tumor cells and Treg and Tex cells during early 
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dissemination, and the regulatory mechanism by 
which CITED4 promotes liver metastasis of pancreatic 
cancer. These findings lay a solid foundation for the 
development of immunotherapeutic strategies 
targeting liver metastasis in PDAC, offering potential 
prognostic and therapeutic insights. 

Materials and methods 
Samples collection and preparation  

Tissue samples were collected from five patients 
(two primary tumors without liver metastases, three 
primary tumors with liver metastases and three 
paired liver metastatic lesions) diagnosed as having 
PDAC for snRNA-seq and four patients diagnosed as 
having moderately differentiated PDAC for ST 
sequencing at the Department of Hepatobiliary and 
Pancreatic Surgery of the Second Affiliated Hospital 
of Zhejiang University School of Medicine, Zhejiang, 
China. A senior pathologist rinsed the tissue samples 
with phosphate-buffered saline (PBS) and fixed them 
in 10% formalin for 24 h. Following fixation, the 
samples were washed thoroughly with running 
water, dehydrated through a graded alcohol series, 
and cleared with xylene. The tissues were then 
embedded in paraffin, resulting in FFPE tissue blocks. 

Single-nucleus RNA sequencing library 
construction 

First, 25 or 50 µm sections were prepared from 
the FFPE blocks, deparaffinized using Xylene (10 min 
each), and sequentially washed with 100%, 70%, and 
50% ethanol, followed by PBS. The tissue was 
dissociated using the Dissoci Enzyme Mix, employing 
a 1.5 mL pellet pestle. After filtration and 
centrifugation, the resulting cells were resuspended in 
a Tissue Resuspension Buffer. The dissociation 
process was performed using the gentleMACS Octo 
Dissociator in a gentleMACS C Tube. The cell 
suspension was filtered, centrifuged, and barcoded 
using Chromium Fixed Profiling Reagent Kits per the 
manufacturer's instructions. DNA libraries were 
constructed and sequenced on an Illumina 
NovaSeq6000 to generate 150 bp paired-end reads. 

Data processing of single-nucleus RNA 
sequencing 

The 10× libraries were mapped to the GRCh38 
human reference genome using Cell Ranger software 
(v3.1.0) to obtain gene expression matrices. Genes 
with fewer than 200 expressed counts, more than 
7,500 genes, or over 20% mitochondrial content were 
excluded. To integrate cells from different samples, 
the filtered UMI count matrix was normalized and 
subjected to principal component analysis (PCA) 

using SCTransform from the Seurat R package 
(v4.3.0). The top 20 principal components (PCs) were 
used for cell clustering via the FindNeighbors() and 
FindClusters() functions. Dimensionality reduction 
was performed with the RunTSNE and RunUMAP 
functions, and t-distributed stochastic neighbour 
embedding (tSNE) or uniform manifold 
approximation and projection (UMAP) were 
employed for visualization. 

Cluster annotation and cell scoring 
Marker genes for each cluster were identified 

using the FindAllMarkers() function in the Seurat 
package. Cell types for each cluster were annotated by 
comparing the identified markers with known cell 
type-expressed genes and a database of established 
marker genes. A total of 13 cell types were identified, 
including ductal cells, acinar cells, fibroblasts cells, 
endothelial cells, endocrine cells, hepatocytes, T cells, 
B cells, plasma cells, macrophages, mast cells, 
cholangiocytes, and intestinal epithelial cells. Ductal 
cells, T cells, fibroblasts cells, B cells and macrophages 
were subsequently extracted for further clustering, 
dimensionality reduction, and subpopulation 
analysis. Subpopulations were annotated using the 
AddModuleScore() function, based on epithelial- 
mesenchymal transition (EMT), M1, M2, and T cell 
markers, with annotation genes sourced from the 
“HALLMARK_EPITHELIAL_MESENCHYMAL_ 
TRANSITION”, “CLASSICAL_M1_VS_ 
ALTERNATIVE_M2_MACROPHAGE_UP”, 
“CLASSICAL_M1_VS_ALTERNATIVE_M2_MACRO
PHAGE_DN” in the GSEA database (http:// 
www.gsea-msigdb.org/gsea/msigdb/), ICD marker 
genes, and a known T cell marker gene database. 
Gene enrichment analysis of the cluster markers was 
conducted using clusterProfiler (version 4.6.2) [52], 
Metascape [53] and GSVA [54]. 

Inference of cell fate by pseudotime trajectory 
analysis 

Single-cell trajectory analysis of ductal cells was 
performed using the monocle package (version 
2.26.0). Genes were ranked by differential expression 
using the differentialGeneTest() function (q-value < 
0.01). Dimensionality reduction was performed using 
the RTree method in the reduceDimension() function, 
and cells were ordered in pseudotime using the 
orderCells() function. Results were visualized with 
the plot_cell() function. Evaluate the differentiation 
scores of different single-cell subpopulations using 
cytoTRACE and plot them on the pseudotime 
trajectory. Branch expression analysis at the 
branching point was carried out using the BEAM() 
function, and branched heatmaps were generated 
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with the plot_genes_branchedmap() function. Gene 
enrichment analysis was conducted using Metascape 
to uncover significantly altered gene functions over 
pseudotime. 

Ligand-receptor expression and cell-cell 
communication analysis 

Potential cell-cell communications between 
various subpopulations were analyzed using the 
CellChat R package (v1.6.0). A cell object was created 
from normalized counts data with default parameters 
using the createCellChat() function. Communication 
networks were explored by preprocessing data with 
the identifyOverExpressedGenes(), identifyOver 
ExpressedInteractions(), and projectData() functions. 
Ligand-receptor interactions and associated signalling 
pathways were computed using the 
computeCommunProb() and computeProbPathway() 
functions. Visualizations of the communication 
network were generated using netVisual_circle(), 
netVisual_aggregate(), and netAnalysis_ 
signallingRole_heatmap(). 

Data processing of spatial transcriptome 
sequencing 

The 10× libraries were mapped to the GRCh38 
human reference genome using the Space Ranger 
software (v1.20) to obtain the gene expression matrix. 
Normalization was performed using the Normalize 
Data() function in Seurat (version 4.3.0), and 2000 
highly variable genes were identified using the 
FindVariableFeatures() function, which were then 
used as input for batch correction. To remove batch 
effects, the IntegrateData() function was employed to 
integrate spots from different samples via canonical 
correlation analysis (CCA). PCA was conducted using 
the RunPCA() function. The FindNeighbors() and 
FindClusters() functions in Seurat were applied to 
cluster spots based on the first 10 principal 
components, with a resolution of 0.6. Dimensionality 
reduction and visualization were carried out using the 
RunTSNE and RunUMAP functions. 

Identification of malignant regions 
For further analysis of tumor cell distribution 

and the gene expression atlas in the primary tumor, 
deconvolution was performed using the 
SpaCET.deconvolution() function in the SpaCET 
package to identify malignant regions in each tissue. 
Spots were categorized as "stroma", "tumor", and 
"interface". Expression scores were assigned to spots 
based on EMT and metastatic dissemination 
cell-related genes, using the AddModuleScore() 
function in Seurat with annotated genes from the 
GSEA database (http://www.gsea-msigdb.org/ 

gsea/msigdb/), particularly the "HALLMARK_ 
EPITHELIAL_MESENCHYMAL_TRANSITION" 
gene set and metastatic dissemination cell signature 
genes from the snRNA-seq data. Gene enrichment 
analysis of signature genes from the interface spots 
was conducted using clusterProfiler (version 4.6.2). 
SPOTLight R package (version 0.1.7) was applied to 
deconvolute spatial transcriptomics data based on 
snRNA-seq data. 

Cell type enrichment/depletion by multimodal 
intersection analysis (MIA) 

To explore the enrichment of metastatic 
dissemination cells and immune cells, snRNA-seq and 
spatial transcriptomics data were integrated using 
MIA based on the hypergeometric test. Gene sets from 
snRNA-seq data representing metastatic 
dissemination cells and immune cells were compared 
with gene sets from the spatial transcriptomics data 
representing "stroma", "tumor", and "interface" 
regions. The overlap between snRNA-seq cell 
type-specific gene sets and spatial transcriptomics 
region-specific gene sets was calculated. A lower 
p-value indicates higher enrichment or depletion of 
metastatic dissemination cells and immune cells in the 
spatial transcriptomics regions. 

Data preparation 
The clinical features and transcriptomic data for 

patients with pancreatic adenocarcinoma were 
obtained from The Cancer Genome Atlas (TCGA) 
database (https://portal.g.cancer.gov/), which 
includes 4 normal tissue samples and 179 pancreatic 
adenocarcinoma samples. For normalization, the gene 
expression levels in the RNAseq data were 
transformed into TPM (Transcripts Per Million) 
format using STAR [55]. The TPM-formatted RNAseq 
data of TCGA and GTEx normalized by the Toil 
pipeline [56] can be downloaded from UCSC XENA 
(https://xenabrowser.net/datapages/). 

Construction of the prognostic model 
Univariate Cox regression analysis was 

performed on the metastatic dissemination 
cell-related expressed genes, and variables with a 
p-value < 0.05 were included for feature gene 
screening related to OS. The Least Absolute Shrinkage 
and Selection Operator (LASSO) regression model 
was applied to reduce the number of genes in the final 
model. Candidate genes were selected based on 
10-fold cross-validation. The risk factor plot and 
survival curve for patients were generated using the 
ggrisk and survival packages in R software. The 
receiver operating characteristic (ROC) curve was 
plotted using the pROC package to evaluate the risk 
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score's performance in predicting 1-, 3-, and 5-year OS 
of patients with pancreatic adenocarcinoma, and 
visualized using the ggplot2 package. A calibration 
curve for 1, 2, and 3 years was plotted using the rms 
package to assess the predictive accuracy of the 
prognostic model. The decision curve analysis (DCA) 
for the model was calculated using the stdca.R 
package to evaluate its clinical applicability. Clinical 
information, including staging and gene expression, 
was integrated using the rms package to construct a 
nomogram for comprehensive assessment of the 
1-year, 3-year, and 5-year survival probability of 
patients with pancreatic adenocarcinoma. A ROC 
curve was plotted to evaluate the prognostic 
predictive performance of the nomogram. 

Evaluation of the immune microenvironment 

The ssGSEA, xCell, and CIBERSORT algorithm 
was utilized to assess the infiltration status of immune 
cells in each TCGA-PAAD sample. Samples were 
classified into high-risk and low-risk groups based on 
the CITED4 expression or risk scores derived from 
LASSO regression analysis, and the relative content of 
immune cells between these two groups was 
compared. 

Evaluation of subtype clinical characteristics 

To identify independent prognostic factors for 
the prognostic genes, the variables were further 
evaluated using multivariate Cox regression analysis. 
The TCGA-PAAD samples were stratified by 
clinicopathological characteristics such as age (> 65 
and ≤ 65 years) and T stage, and then divided into 
high and low expression groups for CITED4 or 
CIRBP. Kaplan-Meier survival analysis was 
conducted on the high and low expression groups of 
clinical features to further evaluate the independent 
prognostic performance of CITED4 or CIRBP in each 
subgroup. 

Prediction of target genes regulated by 
CITED4 

The target genes regulated by the EP300 and 
TFAP2 transcription factors associated with the 
CITED4 gene were predicted using the Transcription 
Regulatory Relationships Unraveled by 
Sentence-based Text mining (TRRUST) database. 
KEGG functional annotation of the target genes was 
performed using Metascape to explore their biological 
significance. 

Immunohistochemical staining  

FFPE PDAC tissues were used for 
immunohistochemical staining. Tissue sections (4 μm 

thick) were baked onto slides at 65 °C overnight. After 
deparaffinization and hydration with xylene and 
graded ethanol, antigen retrieval was performed by 
boiling in citrate buffer for 15 min, followed by 
endogenous peroxidase blocking using 3% hydrogen 
peroxide. The slides were then blocked with 5% goat 
serum for 1 h to prevent nonspecific antibody 
binding, followed by overnight incubation at 4 ℃ with 
anti-MIF primary antibody (Santa Cruz, D-2, 1:200) or 
anti-CITED4 primary antibody (Novus Biologicals, 
NB110-41572, 1:500). After washing with TBST, the 
slides were incubated with horseradish peroxidase 
(HRP)-conjugated goat anti-rabbit/mouse secondary 
antibodies for 1 h at room temperature. The slides 
were then stained with DAB and hematoxylin, 
counterstained with nuclei, dehydrated, and scanned 
using a 3Dhistech Pannoramic Scan system. The MIF 
or CITED4 expression score in FFPE samples was 
calculated by multiplying the total score of the 
percentage of MIF or CITED4-positive staining (0-5% 
= 0, 6-25% = 1, 26-50% = 2, 51-75% = 3, >75% = 4) and 
the staining intensity, graded into four levels: no 
staining = 0, weak = 1, moderate = 2, strong = 3. 

Multiplexed immunofluorescence staining  

Multiplexed immunofluorescence staining was 
performed using a 7-color immunohistochemistry kit 
(PhenoVision Bio Co., Ltd) according to the 
manufacturer's instructions. PDAC and matched liver 
metastasis tissue sections were deparaffinized with 
xylene, hydrated with graded ethanol, and antigen 
retrieval was performed in citric acid buffer (0.01 M, 
pH 6.0). Endogenous peroxidase was blocked with 
hydrogen peroxide, followed by sealing with blocking 
agents. The sections were incubated with primary 
antibodies (CD4, CD8, FOXP3, CD20, panCK, and 
VIM from ZSbio or CST) for 30 min at room 
temperature, followed by a 10 min incubation with 
PVB tyramide signal amplification fluorophore (PVB 
480, PVB 520, PVB 50, PVB 620, PVB 690, and PVB 
780). The slides were counterstained with 
4′,6-diamidino-2-phenylindole (PhenoVision Bio Co., 
Ltd). Scanning and analysis were performed using the 
PhenoImage system (Akoya Biosciences). 

Cell culture  
The L3.6p1 cell line was obtained from American 

Type Culture Collection (ATCC) and authenticated by 
short tandem repeat (STR) profiling. Cells were 
cultured in Dulbecco’s modified Eagle’s medium 
(DMEM, Gibco, Life Technologies, Waltham, MA, 
USA) supplemented with 10% fetal bovine serum 
(FBS, Gibco, Life Technologies, Waltham, MA, USA) 
and 1% penicillin-streptomycin mixture (P/S, Thermo 
Fisher Scientific, Waltham, MA, USA). Cells were 
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maintained at 37 °C in a humidified atmosphere with 
5% CO₂. 

siRNA knockdown  
Cells were seeded in 6-well plates and grown to 

70% confluence. siRNA duplexes (50 nM) targeting 
CITED4 and negative control siRNA were transfected 
using Lipofectamine RNAiMAX (Invitrogen) 
according to the manufacturer's protocol. Briefly, 
siRNA and transfection reagent were diluted in 
Opti-MEM, incubated for 5 min, and combined before 
adding to cells. After 72 h, transfection efficiency was 
verified by western blot. The target sequences specific 
for CITED4 were used: UGGGCCAGAGCGAGUU 
CGACU. 

Transwell assays 
Transwell assays evaluated cell migration using 

polycarbonate membranes with 8 μm pores. Cells 
were seeded in serum-free medium in the upper 
chamber, with the lower chamber containing 10% FBS 
as chemoattractant. After incubation at 37 °C for 48 h, 
non-migrated cells were removed, and membranes 
were fixed with 4% paraformaldehyde and stained 
with 0.1% crystal violet. Migrated cells were counted 
in five random fields per membrane. 

Scratch wound healing assays 
Cells were grown to 90% confluence, and a 

scratch was made using a sterile pipette tip. The plate 
was washed to remove debris, and fresh medium was 
added. Wound closure was monitored at 24 h. Images 
were captured at predefined locations, and the wound 
area was quantified using ImageJ. The percentage of 
wound closure was calculated relative to the initial 
wound area. 

Statistical analysis  
Bioinformatics and statistical analysis were 

performed using R language (version 4.2.1) 
(https://www.r-project.org/), SPSS (version 23.0), 
and GraphPad Prism (version 8.0) software. Statistical 
tests included the t-test and Chi-square test. Results 
were considered statistically significant as follows: *p 
< 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
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