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Abstract 

Modern medical approaches to cancer treatment face significant obstacles, including limited therapeutic options, narrow drug 
applicability, and rapid development of drug resistance. Consequently, re-evaluating traditional medicinal plants and natural 
compounds has emerged as a promising strategy to address this public health issue, particularly amid challenges in developing novel 
pharmaceuticals. Artemisiae Annuae Herba, a versatile natural drug renowned for its established efficacy against malaria and for 
other diverse pharmacological activities, is gaining recognition for its anti-cancer potential due to the unique structures and 
biological effects of its constituents. This review comprehensively outlines the major components of Artemisiae Annuae Herba and 
their reported anti-cancer activities, beginning with an examination of the molecular structures of the foundational components 
and an exploration of derivatives of these compounds. Furthermore, through an analysis of observed pharmacological effects, we 
systematically elucidate the multifaceted influence of Artemisiae Annuae Herba on cancerous tissues, including cell cycle arrest, 
apoptosis induction, non-apoptotic cell death induction, angiogenesis inhibition, tumor microenvironment remodeling, and 
immune modulation. Finally, we discuss the feasibility of Artemisiae Annuae Herba in cancer therapy as well as the challenges and 
unresolved issues that require further investigation. We also consider ways that new drug formulations and routes of 
administration might overcome these translational hurdles. By synthesizing existing research on applications of Artemisiae Annuae 
Herba to cancer therapy, this review underscores potentially innovative clinical approaches, ultimately paving the way for the 
discovery of effective anti-cancer drugs with far-reaching benefits. 
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Introduction 
The biological complexity of tumors has 

presented significant challenges to the treatment of 
cancer. In addition, increasing levels of drug 
resistance have made some existing cancer therapies 
inadequate. Despite the development and clinical 
application of novel drugs, many patients still 
experience disease progression and unfavorable 
outcomes despite exhausting all relevant anti-cancer 
medications and participating in cutting-edge clinical 
trials. The processes of investigating the mechanisms 
of tumorigenesis and developing novel drugs require 
highly innovative thinking and are often hindered by 
the element of chance. Moreover, the protracted drug 
development timeline, from initial research to clinical 

application, stands in stark contrast to the urgent 
demand for effective cancer therapies. Consequently, 
re-evaluating and extending the anti-cancer potential 
of existing drugs, particularly those derived from 
traditional herbal medicines, has gained considerable 
scientific and medical significance. This approach 
offers a potentially more rapid and accessible avenue 
for addressing the pressing need for improved cancer 
treatments. 

The integration of Traditional Chinese Medicine 
(TCM), including TCM-related natural products, with 
Western medicine [1,2], has recently become an 
important aspect of comprehensive cancer treatments 
[3-5]. Modern medical science researchers have noted 
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that the anti-cancer effects of natural TCM products 
involve a complex array of mechanisms [6]. 
Previously, the absence of advanced micro-analysis 
techniques hindered the ability of researchers to 
analyze underlying mechanisms and effects. 
However, advances in technical methods have now 
enabled molecular isolation, purification, and 
structural analyses to uncover novel insights [7-9]. 
Given the existence of drugs or herbs with recognized 
anti-cancer properties, a comprehensive investigation 
is essential and promises to yield novel opportunities 
for cancer therapy. 

Artemisiae Annuae Herba, a TCM herb derived 
from the plant Artemisia annua L. has a rich history 
[10] and has been demonstrated to hold a multifaceted 
therapeutic potential [11,12]. It is effective against 
multiple conditions, such as malaria and rheumatism, 
and it exhibits emerging promise in cancer therapy 
[13]. However, current research has predominantly 
focused on artemisinin and its derivatives [14-16], a 
component within the herb that gained attention for 
its anti-malarial properties, while neglecting the 
broader pharmacological actions of Artemisiae 
Annuae Herba’s formulations and decoctions. It is 
worth noting that many researchers have recognized 
the potential of the herb’s other constituents in cancer 
research and are actively investigating their effects. 
Despite challenges like purification complexity and 
interactions among the compounds, elucidating the 
mechanisms that underlie the anti-cancer activities of 
Artemisiae Annuae Herba and its components is a 
research avenue that promises to advance cancer 
treatment. 

This review offers an in-depth analysis of 
Artemisiae Annuae Herba and its components or 
derivatives in cancer therapy, detailing their 
mechanisms, clinical applications, and usage 
considerations. In this review, we also identify critical 
research gaps and priorities to advance this field. 

The Basics of Artemisiae Annuae Herba 
Renaissance of ancient medicine: Artemisiae 
Annuae Herba 

The medicinal application of Artemisiae Annuae 
Herba has a long and rich history (Figure 1), 
originating in ancient China. The Silk manuscript 
Prescription for Fifty-two Diseases, unearthed in the 
Mawangdui tomb (Changsha, Hunan Province, 168 
BCE), documents one of its earliest medicinal uses, as 
part of a hemorrhoid treatment. Several other classical 
Chinese herbal medicine texts also provided detailed 
descriptions of the plant’s therapeutic properties. For 
instance, Shennong's Herbal Classic (ca. 100 CE) 
characterizes Artemisiae Annuae Herba as “bitter and 

cold in taste,” with applications for treating scabies, 
itching, sores, lice infestations, and heat retention in 
the bones and for vision improvement. Similarly, New 
Repair of Materia Medica (ca. 659 CE) emphasizes its 
external use for “applying to sores, promoting 
hemostasis, regenerating tissue, and relieving pain.” 
These early records indicate that Artemisiae Annuae 
Herba was primarily employed for both internal and 
external treatments of skin infections, such as pruritus 
and scabies, with a secondary mention of its potential 
to kill lice and prevent insect-borne diseases. 

In Western civilizations, a thorough definition of 
Artemisiae Annuae Herba emerged later, with the 
plant’s original scientific name, Artemisia annua L., 
being established in 1753 by Carl Linnaeus. The name 
Artemisia refers to the genus within the Asteraceae 
(chrysanthemum) family, and annua denotes its 
annual growth cycle. Despite the relatively recent 
adoption of its scientific nomenclature, the plant’s 
reputation had already spread widely across various 
cultures. In the Arab world, Artemisia annua L. was 
valued for its ability to treat ulcers, skin ailments, and 
hair loss, and it even served as a talisman against evil. 
Among Slavic communities, it was termed the 
“church herb,” while in Poland, it was affectionately 
referred to as “God's little tree.” These diverse 
cultural associations underscore the plant’s 
longstanding significance in traditional medicine and 
its symbolic importance globally [17]. 

As scholars’ knowledge has progressed and 
technology has advanced, our understanding of 
Artemisiae Annuae Herba has deepened significantly. 
In Asia, particularly within the context of TCM, the 
efficacy of this herb has been continuously verified 
and extended. Ge Hong (283-343 CE), a philosopher 
and pharmacist of China's Eastern Jin Dynasty, 
played a crucial role in identifying and validating the 
use of Artemisiae Annuae Herba for malaria 
treatment. In Handbook of Prescriptions for Emergency 
Treatment (ca. 326-341 CE), he detailed its 
anti-malarial applications, with instructions to extract 
its juice by soaking in water. This foundational 
understanding was further developed by subsequent 
TCM practitioners. Song Dynasty scholar Zhou Qufei 
(1134-1189 CE), documented the use of Artemisiae 
Annuae Herba as a key treatment for malaria and 
other ailments in his book Questions and Answers from 
Beyond Mountain (ca. 1178 CE); the use of Artemisiae 
Annuae Herba was often combined with acupuncture 
and bloodletting to improve effectiveness. 
Meanwhile, in Western Europe, research into herbal 
medicine also explored the potential of other Artemisia 
species. The herb A. abrotanum (southernwood), a 
congener species, held a significant place in European 
traditional medicine [18]. It was predominantly 
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recommended for liver and biliary diseases and 
increasingly utilized as an efficient deworming and 
antipyretic agent for both adults and children. These 
parallel traditions in different regions underscore the 
global historical appreciation of Artemisia’s 
therapeutic value. 

The resurgence of interest in Artemisiae Annuae 
Herba in modern China aligns with the revitalization 
of TCM practices [19]. Since 1967, many researchers in 
China have systematically investigated TCM through 
modern scientific methodologies. Among these 
pioneers [20-23], Tu Youyou stands out as a 

particularly notable figure. She achieved a significant 
breakthrough by isolating and extracting 
sesquiterpene lactones artemisinin from Artemisiae 
Annuae Herba. Her innovative approach involved 
using cold brewing and ingredient analysis [24,25], 
rather than the traditional hot decoction methods 
described in ancient texts. This advancement marked 
a pivotal moment in the treatment of malaria [26,27] 
and redefined the therapeutic use of Artemisiae 
Annuae Herba [28,29]. Tu was awarded the 2015 
Nobel Prize in Physiology or Medicine for this 
groundbreaking discovery [30]. 

 

 
Figure 1: Historical Timeline of Artemisiae Annuae Herba: Development of Artemisiae Annuae Herba as medicine can be summarized into three periods: ancient age 
of ignorance, enlightened age of wisdom, and evidence-based age of science. Current research on Artemisiae Annuae Herba is rooted in the enlightenment era of scientific 
exploration and is moving forward steadily. In the 1960s, the drug was investigated intensely due to the need for anti-malaria treatments, and results were achieved in the 1970s 
and early 1980s. Other effects of the drug were considered after further promotion of it in the 1990s. Research of Artemisiae Annuae Herba entered the 21st century, with the 
Nobel Prize serving as a sign of progress. 
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Beyond its established anti-malarial properties, 
Artemisiae Annuae Herba has garnered considerable 
scientific interest for its varied therapeutic effects [31] 
and biochemical properties [32,33], especially 
concerning artemisinin [34-37]. The anti-cancer 
potential of various components of Artemisiae 
Annuae Herba or their derivatives [38] has become a 
significant research focus. Since the 1990s, both 
Eastern and Western scientific communities have 
investigated the cytotoxicity of artemisinin and its 
derivatives [39,40], such as dihydroartemisinin (DHA) 
[41-43], artesunate (ART) [44-46], artemether (ARM) 
[47-50], and arteether (ARE) [51,52], across diverse 
cancer cell lines [53]. The early studies initially 
confirmed the anti-cancer potential of Artemisiae 
Annuae Herba components in-vitro [54-56]. In 
addition, an increasing number of in-vivo studies 
using mouse models of human xenograft tumors 
[57-59], along with clinical trials combining 
chemotherapy with Artemisiae Annuae 
Herba-derived drugs [60], are further substantiating 
the tumor-inhibitory effects of these compounds 
[61,62]. 

Accurate identification of Artemisiae Annuae 
Herba 

A retrospective of the historical research on 
Artemisiae Annuae Herba reveals a diversity of 
appellations and naming conventions [63]. The plant 
from which authentic Artemisiae Annuae Herba is 
derived, most commonly known as A. annua L., is 
primarily identified by the morphologies of its 
rhizomes and leaves. The cylindrical rhizomes, 
branching in the upper section, exhibit yellowish 
green to brownish-yellow surfaces with longitudinal 
ridges. They are slightly hard, easily fractured, and 
possess a pith in the center of the fracture surface. The 
dark green to brownish-green leaves are fragile and 
often curled. Intact leaves display a tripinnately 
dissected morphology, with rectangular to oblong 
segments and lobules covered in short hairs. The herb 
possesses a distinct, aromatic odor and a slightly 
bitter taste.  

Despite these distinctive features, other plants’ 
products have been mistakenly identified or referred 
to as Artemisiae Annuae Herba, leading to some 
confusion. By synthesizing information from both 
ancient texts and modern scientific literature, it 
becomes evident that the medicinal herb commonly 
referred to as Qinghao in traditional and 
contemporary contexts is indeed Artemisiae Annuae 
Herba. Specifically, this formulation refers to the 
dried above-ground parts of A. annua L. [64,65], rather 
than other related species within the Asteraceae 
family, such as A. flavescens. The clarification is 

essential for the precise identification and 
applications of Artemisiae Annuae Herba in 
medicinal and scientific research.  

Beyond identifying A. annua L. as the definitive 
source of Artemisiae Annuae Herba, its 
transformation from a simple plant to a medicinal 
herb warrants attention. Unlike other herbs requiring 
complex processing, traditional Artemisiae Annuae 
Herba preparation involved air-drying A. annua L. 
after removing aged stems in autumn. Modern 
methods, however, utilize continuous solvent 
extraction and product recovery. This purification 
reduces interactions between the various components, 
and it also allows for in-depth exploration of single 
compounds, enabling researchers to thoroughly 
analyze pharmacological effects and applications, 
offering unparalleled advantages. Decades of 
comprehensive chemical and biological analyses have 
isolated various bioactive compounds from 
Artemisiae Annuae Herba [66-68], including 
sesquiterpenoids [69,70], flavonoids [70,71], 
coumarins [72], steroids [24], phenolics [73], purines 
[74], and lipids [75]. To date, over 600 components 
have been characterized, with novel compounds still 
continuing to be discovered [69,76]. Based on the 
chemical structures of these components, their active 
structures, mechanisms of action, and anti-cancer 
potential deserve further analysis and investigation. 

Biological characteristics of Artemisiae 
Annuae Herba 

Artemisinin is the most famous of the many 
bioactive components in Artemisiae Annuae Herba. 
Extensive research on artemisinin continues to 
uncover novel applications and research directions. In 
addition, the growing diversity of research 
approaches has led to the production and application 
of a broad range of derivatives [77]. Derivative 
compounds such as artesunate, artemether, DHA, and 
others have already become first-line treatments for 
malaria [78-81]. The versatility of artemisinin 
derivatives in the treatment of cancer, viral infection, 
immunity, and parasitic infections, as compared to the 
parent component, underscores the importance of 
further research on Artemisiae Annuae Herba. 

Advancing research on Artemisiae Annuae 
Herba depends on the comprehensive elucidation of 
its biochemical effects as a pharmaceutical agent 
(Figure 2). These effects can be categorized into several 
key activities: anti-parasitic, anti-viral, anti-bacterial 
and -fungal, anti-inflammatory, anti-obesity, anti- 
osteoporotic, and anti-cancer. The diverse therapeutic 
potential, especially the anti-cancer capability [13] of 
Artemisiae Annuae Herba has garnered increasing 
attention in the scientific community. 
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Figure 2: “World Tree” of Artemisiae Annuae Herba: Artemisiae Annuae Herba has a variety of components as its “roots,” and numerous biological activities and 
medicinal effects have been developed as its “branches and fruits.” Among the extracts of Artemisiae Annuae Herba, the main compounds are sesquiterpenoids, including 
artemisinin, artemisinic acid, and artemisitene, along with flavonoids, coumarins, steroids, phenolics, purines, and lipids. It has been developed for A) anti-parasitic, B) anti-viral, 
C) anti-bacterial and fungal, D) anti-inflammatory, E) anti-obesity, F) anti-osteoporotic, and G) anti-cancer applications. 

 
Anti-parasitic: Artemisiae Annuae Herba has 

been widely available and recommended for malaria 
prevention and treatment [82]. Artemisinin, in 
particular, is most renowned for its anti-parasitic 
properties [83-85], particularly its efficacy against the 
causative agents of malaria, parasites of the genus 
Plasmodium [86-88]. Malaria remains a leading cause 
of morbidity and mortality [89] in numerous countries 
[90,91], with infections varying from asymptomatic or 
mild to severe and potentially fatal. The World Health 

Organization has recommended Artemisinin-based 
Combination Therapies (ACTs) as the first-line 
treatment of uncomplicated Plasmodium falciparum 
malaria [92]. Apart from malaria, artemisinin 
derivatives have also been shown to be effective 
against a number of other parasites, including 
Toxoplasma gondii [85], Leishmania [93,94], 
Acanthamoeba [84,95], and Schistosoma [96]. Research 
has demonstrated the potent anti-parasitic effects of 
Artemisiae Annuae Herba components and 
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derivatives, underscoring their therapeutic potential 
for various parasitic infections. 

Anti-viral: Recent decades have brough 
substantial anti-viral research on artemisinin and 
derivatives, rather than the entirety of Artemisiae 
Annuae Herba. These compounds have exhibited 
efficacy against multiple viruses, including human 
herpesvirus 6, herpes simplex viruses 1 and 2, 
hepatitis B virus, and bovine viral diarrhea virus 
[10,97]. Less anti-viral research has explored the 
activities of other Artemisiae Annuae Herba 
components, such as artemisinic acid, scopoletin, and 
arteannuin B, but as the understanding of Artemisiae 
Annuae Herba has deepened, and new challenging 
viruses like coronaviruses have arisen, other extracts 
from Artemisiae Annuae Herba have been found to 
demonstrate notable virucidal and anti-viral 
properties. Baggieri et al. [98] demonstrated that 
natural components extracted from Artemisiae 
Annuae Herba interact with 3-chymotrypsin-like 
protease and the spike protein from SARS-CoV-2. 
These natural components exert anti-SARS-CoV-2 
activity by disrupting viral pathways during insertion 
and replication [99,100]. The multiple anti-viral 
applications of Artemisiae Annuae Herba suggest that 
this herb is an important part of the clinical fight 
against viral infections. 

Anti-bacterial and fungal: Recent studies have 
increasingly concentrated on the anti-bacterial and 
anti-fungal properties [101,102] of Artemisiae Annuae 
Herba, particularly its essential oils [103]. These oils 
have demonstrated activities against diverse bacterial 
species [104-106], including both Gram-positive and 
Gram-negative bacteria, as well as fungi [101,107]. 
The anti-microbial properties of Artemisiae Annuae 
Herba essential oils vary based on their geographical 
origin [102,108,109]; variations in the chemical 
composition of oils between studies may account for 
the observed discrepancies. The essential oils of 
Artemisiae Annuae Herba exhibit significant 
variability in chemical composition, with camphor, 
artemisia ketone, and 1,8-cineole being the main 
anti-fungal and anti-bacterial agents [105]. Elevated 
levels of these terpenoids correlate with enhanced 
anti-microbial activity [106,107]. Overall, Artemisiae 
Annuae Herba holds promising potential as a source 
of novel anti-microbial agents. Systematic studies are 
required to comprehensively characterize the 
anti-microbial properties of Artemisiae Annuae Herba 
and to evaluate its advantages and limitations. 

Anti-inflammatory: As the core, most intensely 
studied component, Artemisinin has been widely 
applied in various inflammatory disease contexts 
[110], such as autoimmune diseases, allergic 
inflammation, and sepsis. The anti-inflammatory 

effects of Artemisiae Annuae Herba have been 
attributed primarily to inhibition of MAPK and 
PI3K/AKT signaling pathways, activation of NF-κB, 
and modulation of the expression of the toll-like 
receptors TLR4 and TLR9 [106]. Beyond artemisinin, 
several other components of Artemisiae Annuae 
Herba have also exhibited anti-inflammatory 
properties [112,113], underscoring the significant 
therapeutic potential of Artemisiae Annuae Herba 
component-based interventions in inflammation 
management. 

Anti-obesity: It is not appropriate to discuss the 
relationship between fat metabolism and components 
derived from Artemisiae Annuae Herba without 
reference to artemisinic acid, which has been shown 
to have highly anti-adipogenic activity in-vitro [114]. 
Artemisinic acid has been shown to hinder adipogenic 
differentiation in adipose-derived mesenchymal stem 
cells by downregulating CCAAT/enhancer-binding 
protein δ expression through the inhibition of JNK 
[115]. Other extracts of Artemisiae Annuae Herba 
have been shown to inhibit the expression of a target 
of PPARγ, the gene encoding fatty acid-binding 
protein 4, in adipocytes [116]. In a study using a 
high-fat diet-induced rat model of obesity, Artemisiae 
Annuae Herba extracts notably reduced body weight, 
fat accumulation, adipocyte size, and serum levels of 
total cholesterol and triglycerides [114,117]. These 
findings suggest that Artemisiae Annuae Herba 
components could be effective in preventing and 
treating obesity and associated metabolic disorders. 

Anti-osteoporotic: Several pieces of 
experimental evidence have suggested that additional 
exploration of roles for Artemisiae Annuae Herba in 
treatment of osteoporosis is warranted. For example, 
osteoporosis was prevented by an Artemisiae Annuae 
Herba extract in a study in ovariectomized mice, in 
which estrogen deficiency typically causes 
osteoporosis [118]. Additional research has indicated 
that Artemisiae Annuae Herba and its associated 
components [114], artemisinin and artemisinin B, 
exhibit anti-osteoporotic activity by downregulating 
the activity of the transcription factors c-Fos and 
nuclear factor of activated T cells 1 (NFATC1), which 
in turn inhibit osteoclast differentiation as induced by 
receptor activator of nuclear factor-κB ligand 
(RANKL) [120,121].  

Beyond these diverse clinical activities, 
Artemisiae Annuae Herba components exhibit 
complex yet promising anti-cancer activities [122]. A 
deeper understanding how these agents benefit 
human health in multiple contexts promises to 
provide intriguing insights at the micro and macro 
levels into their potential use in cancer therapy. 
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Figure 3: From molecular structures to mechanisms: Possible anti-cancer mechanisms have been found upon structural analyses of various molecular components of 
Artemisiae Annuae Herba, and three possible exploration directions have emerged: specific anti-cancer structures, non-specific anti-proliferative structures, and complex 
regulatory structures. A) Specific anti-cancer structures rely on their unique peroxide bridge, which generates reactive oxygen species under certain conditions to kill tumor 
cells. B) Non-specific anti-proliferative structures are associated with the cyclic structures and certain functional groups of sesquiterpenoids, influencing cell proliferation through 
various mechanisms. C) Complex regulatory structures primarily involve diverse polysaccharides and polyphenols, which modulate immune responses and improve the body’s 
anti-cancer capabilities. 

 

From Molecular Structure to 
Mechanisms: A Forward Reasoning 
Approach 

Traditional Artemisiae Annuae Herba-based 
medications contain a multitude of components [123], 
including a series of sesquiterpenes, coumarins, 
lignans, phloroglucinol derivatives, and numerous 
polysaccharides and polypeptides, all of which can be 
isolated and purified [124]. Among these, certain 
unique constituents of Artemisiae Annuae Herba 
exhibit distinct biological properties and medicinal 
value. In addition, each component seems to work 
through distinct anti-cancer mechanisms. To further 
elucidate the possible associations and interactions 
between these components and tumor tissues, a 
micro-level analysis of Artemisiae Annuae Herba 
components and their foundational mechanisms 
serves as an insightful focus and exploratory direction 

(Figure 3). This approach could catalyze a substantial 
paradigm shift in Artemisiae Annuae Herba research. 

Extensive structural analyses of Artemisiae 
Annuae Herba components have facilitated 
comparisons of the biological characteristics and 
bioactive mechanisms of its various components. 
Furthermore, inter-group comparisons and analyses 
have been conducted to identify similarities and 
differences between Artemisiae Annuae Herba 
components and anti-cancer drugs derived from other 
traditional herbal medicine and natural plants [120]. 
Overall, the potential anti-cancer capabilities of 
Artemisiae Annuae Herba, in terms of molecular 
structure and micro-foundational aspects, can be 
broadly categorized into the following three areas: 
specific anti-cancer structures, non-specific 
anti-proliferative structures, and structures that 
interact with complex regulatory components. 
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Chemical structures that specifically target 
cancer  

Considering its potent anti-malarial properties 
and minimal side effects [126], a central question that 
has intrigued scholars is whether artemisinin and its 
derivatives can exhibit similar specificity against 
various proliferative tumors while minimizing harm 
to the body [127]. The exceptional anti-malarial 
effectiveness of artemisinin and its derivatives is 
primarily due to their unique “endoperoxide bridge” 
structure, a specific chemical bond between oxygen 
atoms in the ring, distinguishing them from other 
natural plant components and sesquiterpene 
compounds [128]. During the red blood cell stage of 
the Plasmodium lifecycle, the malaria parasite ingests 
and digests hemoglobin, releasing a substantial 
amount of reductive heme and ferrous ions. These 
reductive components serve as the basis for 
artemisinin’s specific parasiticidal action. Catalyzed 
by divalent iron, the endoperoxide bridge opens, 
generating free radicals that target and disrupt 
proteins, lipids, and DNA [124,125]. This suggests 
that if artemisinin-related compounds possess a 
strong anti-cancer effect, the molecular mechanism is 
likely rooted in this distinctive endoperoxide bridge 
[38,126,127].  

It is important to note, however, that the 
potential for this molecular structure to confer specific 
anti-cancer activity remains a topic of considerable 
debate [128,129]. The endoperoxide bridge and its 
related Fenton reaction, known for producing alkyl 
radicals and ROS, are well-documented [130], though 
their role in anti-cancer processes remains 
controversial [131-134]. Nan et al. demonstrated a 
direct link between the endoperoxide bridge of 
artemisinin and its derivatives and its anti-cancer 
action in the MCF-7 breast cancer cell line [135]. They 
observed that artemisinin, which contains the 
endoperoxide bridge, exhibited significantly stronger 
cytotoxicity compared to deoxyartemisinin, which 
lacks this structure. Nevertheless, many researchers 
and mainstream opinions remain skeptical of such 
specific anti-cancer effects [141,142]. Given the 
complex pathology and diverse microenvironments 
of various tumors, even though tumors are often rich 
in hemoglobin and transferrin due to extensive 
angiogenesis, they do not universally provide the 
ferrous ions and hemes necessary to support a Fenton 
reaction akin to malaria infection. Therefore, the 
potential anti-cancer mechanism established by the 
endoperoxide bridge structure may only be effective 
in patients with tumors rich in ferrous ions. 

Chemical structures with non-specific 
anti-proliferative effects 

In addition to artemisinin, structural analyses of 
other Artemisiae Annuae Herba components have 
also prompted new considerations. Artemisinic acid, 
a precursor to artemisinin, lacks the peroxide bridge, 
yet some studies have demonstrated its anti-cancer 
properties [138,139]. This finding suggests that the 
unique peroxide bridge of artemisinin is not the only 
aspect of Artemisiae Annuae Herba components that 
is endowed with anti-cancer potential. The most 
abundant components of Artemisiae Annuae Herba, 
terpenoids, are also noteworthy in existing 
pharmaceutical research [140]. In general, terpenoids 
are prevalent plant-derived natural products and 
include well-known chemotherapeutic agents such as 
paclitaxel, as well as several anti-cancer drugs have 
been refined from TCM components, such as elemene. 
The sesquiterpenoids in Artemisiae Annuae Herba 
share similarities with these recognized plant-based 
anti-cancer agents, presenting an intriguing avenue 
for exploration. 

It is noteworthy that while the molecular 
foundations for the anti-cancer activities of paclitaxel, 
elemene, and other terpenoids differ, their 
mechanisms of action exhibit some similarities [141]. 
Specifically, multiple studies have suggested that the 
anti-cancer mechanisms of plant terpenoids are linked 
to varying degrees with interruption of the cell cycle 
and of tubulin microtubule polymerization [142-145]. 
For example, paclitaxel’s anti-cancer efficacy 
primarily relies on its tricyclic structure, which 
facilitates binding to tubulin [146]; the two benzene 
rings in its tricyclic structure closely interact with the 
hydrophobic regions of microtubule proteins, leading 
to the formation of stable complexes [152,153]. 
Additionally, the acetyl group on carbon-10 of 
paclitaxel forms hydrogen bonds with tubulin, 
collectively inhibiting microtubule polymerization 
and cell cycle proliferation [149]. The mechanism 
underlying elemene's anti-cancer effect is more 
complex, with numerous studies indicating its 
association with cell cycle arrest [155,156]. The 
predominant theory suggests that elemene inhibits 
tubulin polymerization by inhibiting the MAPK 
pathway [152,153].  

Research on several components of Artemisiae 
Annuae Herba has also suggested the existence of 
such mechanisms. For example, Wu et al. showed that 
DHA altered activity of the p38/MAPK signaling 
pathway [154], and in colitis-associated colorectal 
cancer, DHA has been shown to suppress 
phosphorylation associated with the p38/MAPK 
pathway, leading to cell cycle arrest [155,156]. While 
no direct evidence has shown that Artemisiae Annuae 
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Herba components share structural similarities with 
plant-based anti-cancer agents that target tubulin 
directly, the influence of Artemisiae Annuae Herba 
components on intracellular signaling pathways 
[157-159], including MAPK/PI3K/Akt, highlights 
their role in cytoskeleton dynamics and cell cycle 
arrest [160-162]. These structures that exert 
nonspecific anti-proliferative actions may 
significantly contribute to the efficacy of Artemisiae 
Annuae Herba components against rapidly 
proliferating tumor cells. 

Certainly, regulating signaling pathways, 
influencing intermolecular interactions of tubulin, 
inhibiting microtubule polymerization, and arresting 
the cell cycle would not have effects that are specific 
to tumor cells. More accurately, they mirror the 
nonspecific anti-proliferative effects of alkylating 
agents in traditional chemotherapy, targeting all 
rapidly proliferating tissues [168], with cancerous 
tissues being the most affected. Accordingly, if the 
biochemical basis of the anti-cancer activity of 
Artemisiae Annuae Herba components leans more 
towards this anti-proliferative capability, the dosage 
of these drugs becomes a critical concern, and 
associated side effects can no longer be overlooked 
[137,157,164,165]. Future research should aim to 
determine which Artemisiae Annuae Herba 
components exhibit optimal anti-proliferative effects 
with enhanced drug efficacy and minimized side 
effects. 

Chemical structures with complex effects on 
regulatory mechanisms 

In broadening the scope of components related 
to Artemisiae Annuae Herba, it is crucial to consider 
not only the structurally similar sesquiterpene 
compounds with relatively high molecular weights 
but also the diverse array of other components that 
play significant roles in the foundational conditions 
for anti-cancer activity [166]. Among these varied 
components, certain polysaccharides can enhance 
anti-cancer effects through their unique 
immune-related properties [11,167], which are rooted 
in their structural characteristics. For instance, Chen et 
al. demonstrated that Artemisia polysaccharides 
inhibit the growth of liver cancer tumors in mice [172]. 
This effect was primarily attributed to the distinctive 
molecular structure of these polysaccharides, which 
stimulates and enhances the antigen recognition 
capabilities of lymphocytes in the mouse model, 
thereby promoting the destruction of liver cancer cells 
through both cellular and humoral immune 
mechanisms [168]. 

The complex composition and lack of specific 
pharmacological properties in some secondary 

components, such as polysaccharides and 
polypeptides, prevent them from becoming the 
primary foundation of Artemisiae Annuae Herba’s 
anti-cancer capabilities. Nevertheless, their presence 
underscores the significance of Artemisiae Annuae 
Herba as a TCM with indispensable auxiliary 
components. Research into the relationship between 
these components and anti-cancer activity holds 
promising potential for developing adjunctive 
anti-cancer regulatory mechanisms [169]. 

Overall, components related to Artemisiae 
Annuae Herba indeed possess micro-molecular 
structural foundations that strongly influence their 
anti-cancer mechanisms. These foundations include 
the specific endoperoxide bridge structures of 
artemisinin and its derivatives, non-specific cell 
cycle-related anti-proliferative structures, and various 
regulatory synergistic effects. The existence of these 
differential foundations further establishes the 
comprehensiveness of the anti-cancer activities of 
Artemisiae Annuae Herba components, highlighting 
the potential application value of this herb in the 
advancement of cancer treatment. 

From Efficacy to Mechanisms: A Reverse 
Reflection on Anti-Cancer Actions 

A structural analysis of the molecules that make 
up Artemisiae Annuae Herba preparations suggests 
that the herb exhibits a comprehensive and 
multidirectional anti-cancer potential. This potential 
can be attributed to the complex composition of the 
formulations and to its varied interactions with 
biological components. Complementing this 
approach, a reverse efficacy analysis further supports 
the herb’s potential as an anti-cancer agent. This 
potential has been rigorously validated through 
ongoing research and repeated experimental studies. 
Artemisinin and its derivatives, including artesunate 
and DHA, have been studied for their anti-cancer 
activities since the late 1990s [43,143,175,176]. These 
compounds have been shown to promote apoptosis of 
cancer cells [172-174], inhibit tumor angiogenesis 
[15,56,180], and block tumor invasion and metastasis 
[158,176].  

Extracts of Artemisiae Annuae Herba, in 
addition to purified artemisinin, also exhibit 
significant anti-cancer activity and tumor-killing 
effects via multiple regulatory mechanisms, as 
supported by extensive in vitro, in vivo, and clinical 
research [127,182]. For instance, Michaelsen et al. 
reported a clinical study involving patients with 
advanced prostate cancer, where the long-term 
addition of Artemisiae Annuae Herba following 
short-term treatment with bicalutamide led to tumor 
regression and treatment remission, as confirmed by 



Theranostics 2025, Vol. 15, Issue 15 
 

 
https://www.thno.org 

7355 

prostate-specific antigen (PSA), magnetic resonance 
imaging, and SPECT/CT indicators [122]. 
Furthermore, a wide range of natural components 
that have been isolated from Artemisiae Annuae 
Herba, including polysaccharides and polyphenols, 
have garnered significant attention for their potential 
as anti-cancer drugs [178-181]. 

After reviewing and synthesizing numerous 
studies on Artemisiae Annuae Herba components, we 
found that the primary anti-cancer mechanisms can 
be categorized into six key functions (Figure 4): (1) 
induction of cell cycle arrest; (2) induction of 
apoptosis; (3) induction of non-apoptotic cell death 
processes, including autophagy, ferroptosis, 
pyroptosis, and macrophage death; (4) inhibition of 
angiogenesis; (5) regulation of epithelial- 
mesenchymal transition (EMT); and 6) modulation of 
immune system functions. This analysis revealed 

unique primary effects and synergistic interactions of 
Artemisiae Annuae Herba components, collectively 
enhancing the plant’s notable anti-cancer properties 
(Table 1). 

Induction of cell cycle arrest 
Uncontrolled and exceptionally rapid cell 

division is a fundamental characteristic of tumor cells, 
driving their proliferation and contributing to disease 
progression [182]. The process of cell division, known 
as the cell cycle, consists of four major phases: G1, S, 
G2, and M phases. This cycle is tightly regulated by 
cyclins and cyclin-dependent kinases (CDKs), which 
play critical roles in ensuring orderly progression 
through each phase [188]. Recent studies have 
identified artemisinin and its derivatives as potential 
modulators of cyclins and CDKs, highlighting their 
promise in the development of cancer therapies 

 

 
Figure 4: From efficacy to mechanisms: Experiments investigating the anti-cancer activities of existing Artemisiae Annuae Herba components were analyzed and 
summarized, and possible anti-cancer mechanisms were deduced. Improvements to experimental strategies were proposed. At present, the mechanisms can be summarized into 
six aspects: cell cycle arrest, induction of apoptosis, induction of non-apoptotic cell death, inhibition of angiogenesis, regulation of EMT and inhibition of metastasis, and regulation 
of immune functions. 
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[184,185]. For example, research on prostate cancer 
cells has demonstrated that artemisinin inhibits the 
action of the cell cycle-regulatory protein pRb by 
disrupting a complex formed among pRb, E2F 
transcription factors, and CDKs [122]. This activity 
halts the transition of cells from the G1 to the S phase, 
thereby inhibiting cell cycle progression and 
suppressing cancer cell proliferation [191]. Similarly, 
in a study on non-small cell lung cancer, Rassias et al. 

found that an extract of dried leaves from Artemisia 
annua induced G2/M phase and mitotic arrest in PC9 
and H1299 cell lines, while also causing G1 phase 
arrest in A549 cells [53]. Collectively, these findings 
underscore the anti-cancer potential of Artemisiae 
Annuae Herba components, particularly through 
their ability to regulate the cell cycle and impede 
cancer progression [187,188]. 

 

Table 1: Anti-cancer components in Artemisiae Annuae Herba and related mechanisms 

Component Molecular structure Tumor types Mechanisms Ref. 
Artemisinin 

 

Hematologic Cell cycle arrest 
Induced autophagy 

[336,337] 

 Esophageal Cell cycle arrest 
Regulate EMT 
Suppress metastasis 

[338,339] 

 Gastric Cell cycle arrest 
Induce ferroptosis 

[340,341] 

 Colorectal Cell cycle arrest 
Induce apoptosis 

[54,205,342] 

 Lung Cell cycle arrest 
Induce apoptosis 
Inhibit angiogenesis 

[232,343-345] 

 Liver Induce ferroptosis 
Modulate immune function 

[346-348] 

 Pancreas Induce apoptosis [349] 
 Breast Induce apoptosis 

Induce autophagy 
Inhibit angiogenesis 
Modulate immune function 

[179,192,350-352] 

 Prostate Cell cycle arrest 
Induce apoptosis 

[127,191,353] 

     
Dihydroartemisinin 

 

Hematologic Induce apoptosis 
Induce ferroptosis 

[354,355] 

 Lymphatic Induce apoptosis 
Induce autophagy 
Induce ferroptosis 

[159,356-358] 

 Gastric Cell cycle arrest 
Induce apoptosis 
Induce ferroptosis 
Inhibit angiogenesis 
Regulate EMT 
Suppress metastasis 

[167,359-363] 

 Colorectal Induce apoptosis 
Inhibit angiogenesis 
Suppress metastasis 
Modulate immune function 

[15,364-367] 

 Lung Induce apoptosis 
Induce ferroptosis 
Inhibit angiogenesis 
Modulate immune function 

[245,283,368-370] 

 Liver Cell cycle arrest 
Induce ferroptosis 
Regulate EMT 
Modulate immune function 

[371-374] 

 Pancreas Induce apoptosis 
Induce ferroptosis 
Modulate immune function 

[375-381] 

 Breast Cell cycle arrest 
Inhibit angiogenesis 
Suppress metastasis 

[243,382,383] 

 Ovarian Induce apoptosis 
Suppress metastasis 

[384-387] 

 Prostate Induce apoptosis [388-390] 
Artesunate  Hematologic Induce apoptosis 

Induce autophagy 
Induce ferroptosis 

[286,391,392] 

 Lymphatic Induce apoptosis [393-397] 
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Component Molecular structure Tumor types Mechanisms Ref. 

 

Induce autophagy 
Induce ferroptosis 

 Gastric Cell cycle arrest 
Induce apoptosis 
Inhibit angiogenesis 

[398-400] 

 Colorectal Cell cycle arrest 
Induce apoptosis 
Induce ferroptosis 
Inhibit angiogenesis 
Suppress metastasis 
Modulate immune function 

[165,249,401-403] 

 Lung Cell cycle arrest 
Induce apoptosis 
Induce ferroptosis 
Regulate EMT 
Suppress metastasis 

[245,318,404-406] 

 Liver Induce apoptosis 
Induce autophagy 
Induce ferroptosis 

[16,320,407-409] 

 Pancreas Cell cycle arrest 
Induce ferroptosis 

[410-413] 

 Breast Cell cycle arrest 
Induce apoptosis 
Regulate EMT 
Suppress metastasis 

[414-418] 

 Ovarian Cell cycle arrest 
Induce apoptosis 
Induce ferroptosis 
Inhibit angiogenesis 

[233,419-423] 

 Prostate Cell cycle arrest 
Induce apoptosis 

[127,424-426] 

     
Artemether 

 

Lymphatic Cell cycle arrest 
Induce apoptosis 
Modulate immune function 

[427,428] 

 Lung Cell cycle arrest 
Induce apoptosis 

[429] 

 Breast Inhibit angiogenesis [48] 

     
Artemisitene 

 

Breast Induce apoptosis 
Regulate EMT 
Suppress metastasis 

[430,431] 

Artemisinic acid 

 

Lung Induce apoptosis 
Modulate immune function 

[72,143] 

     
Artemisinin B 

 

Lung Induce apoptosis [432] 
 Liver Induce apoptosis [143] 
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Component Molecular structure Tumor types Mechanisms Ref. 
Casticin 

 

Osteosarcoma Induce ferroptosis [433] 
 Melanoma Suppress metastasis [434] 
 Glioblastoma Induce apoptosis 

Induce autophagy 
[435,436] 

     
Chrysosplenol D 

 

Lung Induce apoptosis [185] 
 Breast Cell cycle arrest 

Induce apoptosis 
[57,437] 

 Prostate Induce autophagy [438] 

     
Polysaccharides / Liver Induce apoptosis 

Suppress metastasis 
Modulate immune function 

[171,173] 

     
Polyphenols / Colorectal Cell cycle arrest 

Induce apoptosis 
[282,439,440] 

  Breast Regulate EMT 
Suppress metastasis 

[186] 

  Prostate Cell cycle arrest [440] 

 
Induction of apoptosis 

Apoptosis, a form of programmed cell death, is 
regulated by a complex interplay of various 
apoptosis-related proteins [189]. This process involves 
two main pathways: the exogenous (death receptor) 
pathway and the endogenous (mitochondrial) 
pathway [190]. The Bcl-2 family proteins play a 
central role in both of these mechanisms, 
encompassing pro-apoptotic members such as 
Bcl-2-associated X protein (Bax), Bcl-2 homologous 
antagonist killer protein, and Bcl-2-associated death 
promoter, as well as anti-apoptotic proteins like Bcl-2 
itself [191,192]. These proteins are tightly regulated by 
the tumor suppressor protein p53, which is critical in 
mediating programmed cell death, particularly in 
cancer cells under the influence of therapeutic agents 
[193,194]. Interactions with the apoptotic cell death 
machinery underlie one of the most important 
anti-cancer mechanisms of Artemisiae Annuae Herba 
components (Figure 5). 

In colorectal cancer cell lines, artemisinin and its 

derivatives, the components of Artemisiae Annuae 
Herba, have been shown to induce apoptosis by 
activating Bax [195]. This activation leads to the 
release of cytochrome C, a key event in the intrinsic 
apoptotic pathway, ultimately resulting in cell death 
and an anti-cancer effect [196,197]. Additionally, the 
caspase-dependent pathway, another important 
mechanism of endogenous apoptosis, has garnered 
attention in anti-cancer research involving artemisinin 
and its derivatives [198-200]. For instance, in human 
gastric cancer cell lines, artesunate has been found to 
promote apoptosis through the activation of 
caspases-3 and -9, leading to tumor cell death [206]. 
Similarly, Lu et al. demonstrated that DHA activates 
caspase-3 in human lung adenocarcinoma cells 
(ASTC-a-1), thereby inducing apoptosis and 
exhibiting significant anti-cancer effects [207,208]. 

Beyond artemisinin and its derivatives, 
chrysosplenol D, a flavonol isolated from Artemisiae 
Annuae Herba, has also shown notable anti-cancer 
activity, particularly in oral squamous cell carcinoma 
[204]. The results of in vitro studies have indicated that 
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PI3K/AKT, extracellular signal-regulated kinase, 
c-Jun N-terminal kinase, and p38 mitogen-activated 
protein kinase are downregulated by chrysosplenol D. 
This inhibition synergizes with the induction of 
poly(ADP-ribose) polymerase by chrysosplenol D. 
Additionally, chrysosplenol D further upregulates 
heme oxygenase-1, leading to apoptosis. Both casticin 
and chrysosplenol D from Artemisiae Annuae Herba 
have been shown to induce apoptosis in another way 
by inhibiting topoisomerase IIα in human 
non-small-cell lung cancer cells [180]. Taken together, 
these findings underscore the idea that the induction 
and regulation of apoptosis constitute a pivotal 
mechanism underlying the anti-cancer effects of 
Artemisiae Annuae Herba components. 

Induction of non-apoptotic cell death 
In addition to the programmed cell death 

mechanism apoptosis, various forms of non-apoptotic 
cell death [205,206], such as autophagy [212] and 
ferroptosis [208], have emerged as critical targets in 
contemporary cancer therapies [209]. Consequently, 
whether Artemisiae Annuae Herba components 

induce tumor cell death through these non-apoptotic 
pathways has garnered significant attention (Figure 5). 

Evidence suggests a connection between 
Artemisiae Annuae Herba components and the 
induction of autophagy in tumor cells [165]. For 
example, Hsieh et al. demonstrated that chrysosplenol 
D enhances autophagy in oral squamous cell 
carcinoma cells [204]. Specifically, cells treated with 
chrysosplenol D exhibited an increased accumulation 
of microtubule-associated protein 1A/1B-light chain 3 
within autophagosomes and autophagolysosomes, 
alongside enhanced autophagosome formation. 
Similarly, Son et al. reported the effects of MC-4, a 
partially purified artemisinin-based material, in a 
clinical trial involving patients with metastatic renal 
cell carcinoma [210]. MC-4 was shown to enhance the 
expression of phosphatase and tensin homolog 
(PTEN), subsequently downregulating the 
downstream effector Akt/pyruvate kinase muscle 
isozyme M2 (PKM2). This reduction in PKM2 activity 
decreased glucose transporter 1 expression, 
effectively disrupting cancer cell metabolism. 
Ultimately, these effects promoted autophagy-related 

 

 
Figure 5: Seeking anti-cancer effects among interactions with cell death mechanisms: Artemisiae Annuae Herba components and derivatives can often exert their 
anti-cancer effects through multiple mechanisms that induce tumor cell death. These mechanisms include A) apoptosis, potentially through activation of caspase pathways 
(through caspase-3 and -9) or modulation of Bcl-2 family proteins, specifically Bcl-2, BAX and BAK; B) autophagy, influenced by IL-3 and the PI3K/AKT/mTOR pathway; and C) 
ferroptosis, which is associated with labile iron and the Fenton reaction. 
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cell death through the regulation of the 
PI3K/Akt/PKM2 and mTORC1 pathways. 
Meanwhile, in breast cancer research, ART has been 
found to upregulate the expression of beclin 1, an 
autophagy initiator, ultimately exerting anti-cancer 
effects through downstream cascade reactions [211]. 

Ferroptosis, an iron-dependent form of cell death 
driven by the accumulation of lipid peroxides on cell 
membranes, has emerged as a promising therapeutic 
strategy for various diseases, particularly cancer 
[217-219]. Artemisiae Annuae Herba components, 
including artemisinin and its derivatives such as 
DHA, artesunate, and artemether, have demonstrated 
the ability to upregulate free iron levels in cancer cells 
and promote the accumulation of intracellular lipid 
peroxides [174,220]. This dual action induces 
ferroptosis in cancer cells, thereby inhibiting tumor 
progression. Notably, these compounds hold 
potential not only as direct inducers of ferroptosis but 
also as adjuncts that enhance the efficacy of other 
cancer therapies [221]. For example, Chen et al. 
showed that DHA induces lysosomal degradation of 
ferritin, a process distinct from traditional autophagy, 
thereby increasing intracellular free iron and 
sensitizing cells to ferroptosis [142]. Additionally, 
DHA interacts with intracellular free iron to stimulate 
iron regulatory proteins (IRPs), which bind to mRNA 
molecules containing iron-responsive elements (IREs). 
This interaction modulates the IRP/IRE system, 
further disrupting iron homeostasis and elevating free 
iron levels. Furthermore, DHA has been shown to 
amplify ferroptosis in cancer cells with high tolerance 
to this form of cell death, particularly by enhancing 
the effects of glutathione peroxidase 4 inhibition, as 
demonstrated in vitro and in mouse models [14,215]. 
Collectively, these findings suggest that Artemisiae 
Annuae Herba components sensitize tumor cells to 
ferroptosis by intricately regulating cellular iron 
homeostasis. 

Inhibition of tumor angiogenesis 
During tumor growth and proliferation, the 

tumor requires a substantial supply of nutrients and 
energy to sustain its development [217,218]. Solid 
tumors disrupt the balance between pro-angiogenic 
and anti-angiogenic factors [219,220], leading to the 
upregulation of angiogenic stimulators such as matrix 
metalloproteinases (MMPs) and vascular endothelial 
growth factor (VEGF), while simultaneously 
suppressing angiogenesis inhibitors like 
thrombospondin and tissue inhibitors of 
metalloproteinases (TIMP) [226]. This imbalance 
facilitates the enhanced blood supply necessary to 
support the unrestricted growth of tumor cells [227]. 
Furthermore, under hypoxic and nutrient-deficient 

conditions, tumor cells activate transcription factors 
such as hypoxia-inducible factor-1α (HIF-1α) and 
NF-κB, which further drive the expression of VEGF to 
promote angiogenesis [223,224]. 

Building on this understanding of tumor 
vascular regulation, studies have shown that 
Artemisiae Annuae Herba components exhibit 
anti-angiogenic properties [72,230]. For instance, in 
mouse embryonic stem cells, artemisinin was found to 
reduce the levels of HIF-1α and VEGF [226]. Wang et 
al. showed that oral administration of artemisinin 
significantly suppressed tumor angiogenesis in a 
C57BL/6 mouse Lewis lung cancer model by 
downregulating VEGF-C expression [227]. Similarly, 
Chen et al. demonstrated that artesunate inhibited 
tumor angiogenesis in BALB/c nude mice implanted 
with human ovarian cancer cells [228]. This inhibition 
was achieved by reducing the expression of VEGF 
and its receptor KDR/flk-1, ultimately leading to the 
suppression of tumor growth. 

Regulation of EMT and suppression of 
metastasis 

The invasion and metastasis of malignant 
tumors typically begin with the detachment of tumor 
cells and the reorganization and degradation of the 
extracellular matrix (ECM) [234-236]. This process 
enables tumor cells to spread and colonize other parts 
of the body through direct extension, blood 
circulation, lymphatic pathways, and other 
mechanisms [237,238]. Tumor cell detachment is 
strongly associated with the downregulation of 
E-cadherin [239,240] and the degradation of ECM 
components by proteases such as MMPs [241], both of 
which play pivotal roles in tumor migration, invasion, 
and metastasis. Thus, interventions targeting these 
molecular mechanisms have the potential to impede 
tumor progression and enhance the efficacy of cancer 
therapies. 

The impact of Artemisiae Annuae Herba 
components on these targets has garnered significant 
attention [161]. Artemisinin has been shown to 
markedly reduce MMP2 levels, thereby preventing 
tumor cell migration in human melanoma cells [242]. 
DHA inhibits cell migration and metastasis by 
suppressing NF-κB activity and reducing MMP2 
and/or MMP9 expression in human breast cancer 
cells [243] and pancreatic cancer cells [239]. Similarly, 
in non-small cell lung cancer cells, artemisinin was 
found to inhibit metastasis by downregulating MMP 
activity and NF-κB signaling [240,241]. 

Further evidence has highlighted artemisinin’s 
role in modulating E-cadherin expression and ECM 
stability [242,243]. In hepatocellular carcinoma cells, 
artemisinin significantly upregulated E-cadherin 
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expression while downregulating MMP2 and TIMP-2 
levels, contributing to ECM stabilization [158]. 
Similarly, in human colorectal cancer cell lines, 
artemisinin enhanced E-cadherin expression, altered 
β-catenin subcellular localization, and suppressed the 
activity of the Wnt signaling pathway [244]. These 
effects collectively induced apoptosis and inhibited 
tumor migration and metastasis. 

Modulation of the immune system 
Both specific and non-specific immunotherapies 

play important roles in current cancer treatment 
strategies [245,246]. Specific immunotherapies, such 
as immune checkpoint inhibitors, CAR T-cell therapy, 
and tumor vaccines, are advancing rapidly and are 
often hailed as potential solutions to many 
cancer-related challenges [252]. However, 
non-specific immunotherapy also remains an 
indispensable component of cancer treatment 
[248,249]. This approach leverages the innate immune 
system to target and eliminate tumor cells by 
activating non-specific immune cells through 
immunomodulators, thereby promoting the 
proliferation of immune-active substances and 
lymphocytes to exert anti-cancer effects [255]. 

Regarding Artemisiae Annuae Herba, previous 
studies have predominantly highlighted its role as an 
immunosuppressant [251,252]. This is largely 
attributed to the anti-inflammatory properties of 
artemisinin, which enhance its efficacy in treating 
autoimmune and allergic diseases [253-255]. 
Nevertheless, the broad-spectrum anti-parasitic, 
anti-bacterial, and anti-fungal activities of Artemisiae 
Annuae Herba have led researchers to recognize its 
complex and multifaceted immunoregulatory effects 
[261]. Notably, polysaccharides AAP-1, AAP-2, and 
AAP-3 extracted from Artemisiae Annuae Herba have 
demonstrated significant immunomodulatory 
activities in mouse macrophage experiments. These 
studies revealed a positive correlation between the 
levels of interleukin-6 and tumor necrosis factor-α and 
the supplementation of AAP in-vitro, indicating the 
potent immunostimulatory activity of these 
polysaccharides [11,171]. Further investigation into 
the underlying mechanisms revealed that AAPs from 
Artemisiae Annuae Herba extracts can be recognized 
by TLRs, leading to macrophage activation and the 
subsequent release of immune-related cytokines. 

Drawing from extensive scientific literature and 
clinical guidelines, immunoregulatory therapies have 
consistently maintained a significant role in cancer 
treatment [262]. The polysaccharide components 
isolated and purified from Artemisiae Annuae Herba 
have shown potential as immune function regulators, 
paving the way for the development of anti-cancer 

agents. 

Duality and unity of Artemisiae Annuae Herba 
in cancer therapy 

Clearly, the anti-cancer effects of Artemisiae 
Annuae Herba extend beyond merely targeting a 
specific gene or signaling pathway. Instead, its action 
represents a multidirectional and comprehensive 
macro-control approach against cancer. The efficacy 
of Artemisiae Annuae Herba in treating tumors is 
influenced by the organismal status of various cancer 
types and the composition of different drug groups, 
which determine the dominant components and 
effective mechanisms at play [13]. Notably, the 
anti-cancer potential of Artemisiae Annuae Herba is 
primarily driven by cell death induced through the 
tumor cytotoxicity of Artemisiae Annuae Herba 
components [119,258]. Additionally, the modest 
immunosuppressive effects of artemisinin, along with 
the complementary role of polysaccharides in 
non-specific immune activation, further enhance its 
anti-cancer capabilities [168]. The anti-cancer efficacy 
of Artemisiae Annuae Herba is thus elevated through 
the favorable interaction and synergistic unity among 
its various components. 

Feasibility of Using Artemisiae Annuae 
Herba in Cancer Treatment 

Artemisiae Annuae Herba exhibits diverse and 
rational anti-cancer mechanisms, with significant 
anti-cancer effects observed in numerous experiments 
both in vitro and in vivo. However, in recent years, 
there has been a noticeable lack of breakthroughs in 
clinical research related to the anti-cancer effects of 
this preparation [13], representing a critical gap that 
poses challenges for the use of Artemisiae Annuae 
Herba to address cancer by the medical community. 
This issue is largely attributable to the entrenched 
perception of artemisinin as primarily an 
anti-malarial agent. Both clinicians and cancer 
patients often fail to associate Artemisiae Annuae 
Herba with its potential anti-cancer applications and 
may even dismiss such claims. This cognitive bias has 
hindered the exploration and development of 
Artemisiae Annuae Herba as an anti-cancer agent. In 
this regard, it is essential to recognize that Artemisiae 
Annuae Herba components encompass more than a 
few isolated derivatives [264,265]; the plant contains 
numerous bioactive components with potential 
therapeutic benefits. Therefore, a comprehensive 
feasibility assessment of artemisinin and other 
complex components of Artemisiae Annuae Herba as 
candidates for cancer therapies remains a critical area 
for further investigation (Figure 6). 
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Figure 6: Anti-cancer applications of Artemisiae Annuae Herba: The traditional Chinese medicine Artemisiae Annuae Herba may be utilized in cancer therapies as 
direct killer drugs and as indirect adjunctive drugs in connection with the application of other Chinese medicines. 

 
Comparisons of the anti-cancer activities of 
Artemisiae Annuae Herba components and 
existing drugs  

Feasibility analyses and evaluations of 
Artemisiae Annuae Herba components as anti-cancer 
agents can be initiated by comparing them with 
conventional anti-cancer drugs approved by the FDA. 
Current anti-cancer combination therapies primarily 
include chemotherapy drugs, molecular targeted 
drugs, immunotherapy drugs, and endocrine therapy 
drugs, among other less conventional drugs. Due to 
the complex composition of Artemisiae Annuae 
Herba components, it is challenging to categorize all 
of the components under any single existing drug 
class; instead, artemisinin and other components often 
below within multiple categories. 

The primary components of Artemisiae Annuae 
Herba are sesquiterpenes, which exhibit structural 

similarities to anti-cancer agents derived from other 
medicinal plants [261,262]. As discussed above, 
structural analyses have revealed that Artemisiae 
Annuae Herba mediates cytotoxic effects and 
proliferation inhibition via the distinctive peroxide 
bridge structure of artemisinin and via other 
non-specific structural interactions [169,225,263]. 
However, compared to current alkylating agents and 
chemotherapeutics (e.g., paclitaxel and cisplatin), 
Artemisiae Annuae Herba exhibits weaker 
cytotoxicity against tumor cells. Nevertheless, the 
peroxide bridge structure and iron-dependent Fenton 
reaction mechanisms merit rigorous investigation to 
validate their therapeutic feasibility and efficacy.  

In advancing the herb’s anti-cancer applications, 
the combination of Artemisiae Annuae Herba 
components with transferrin-mediated drug delivery 
systems has emerged as a particularly promising 
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strategy [269-271]. This approach leverages both the 
intrinsic anti-cancer properties of Artemisiae Annuae 
Herba and the tumor-targeting capabilities of 
transferrin receptors (TfR1), which are overexpressed 
in many malignancies. Transferrin, a plasma 
glycoprotein responsible for iron transport, binds to 
TfR1 with high affinity. Since TfR1 is overexpressed in 
many cancers, including breast [267,268], lung 
[269,270], and pancreatic [271,272], transferrin has 
been widely explored as a “Trojan horse” for targeted 
drug delivery. By conjugating artemisinin derivatives 
to transferrin or encapsulating them within 
transferrin-coated nanoparticles, researchers aim to 
enhance tumor-specific accumulation while 
minimizing off-target effects. For instance, a 2022 
study demonstrated that transferrin-modified 
liposomes loaded with DHA achieved higher uptake 
in TfR1-positive triple-negative breast cancer cells 
compared to normal cells, significantly improving 
therapeutic efficacy in models [278]. In glioblastoma 
models, transferrin-conjugated artemisinin 
nanoparticles penetrated the blood-brain barrier and 
reduced tumor volume compared to free artemisinin 
[274]. 

Leveraging its targeted recognition mechanisms 
and combination-mediated precision therapy, 
Artemisiae Annuae Herba differentiates itself from 
traditional chemotherapy by selectively inducing 
tumor cell death with minimal systemic toxicity and a 
favorable safety profile, key advantages for 
anti-cancer drug development. These safety 
advantages are supported by clinical studies. For 
instance, Rassias et al. demonstrated that Artemisiae 
Annuae Herba components effectively suppress 
tumor growth while exhibiting minimal cytotoxicity 
toward normal cells, underscoring its translational 
potential for relatively safe cancer therapies [53]. 
These findings validate Artemisiae Annuae Herba’s 
feasibility as a targeted anti-cancer agent with distinct 
clinical advantages [122,275].  

In contrast to the rapid advancements in 
immunotherapy, particularly specific therapies like 
immune checkpoint inhibition and CAR-T therapy, 
polysaccharides from Artemisiae Annuae Herba 
primarily exert a non-specific immune regulatory 
effect akin to thymosin drugs [11,173,281]. They 
influence immune factor-related components within 
the tumor microenvironment [282]. When considering 
only the immunomodulatory capabilities of 
Artemisiae Annuae Herba, the isolated and purified 
components may not exhibit sufficient anti-cancer 
efficacy. However, its non-specific immune 
modulation enhances the therapeutic activity of 
Artemisiae Annuae Herba-derived anti-cancer agents. 
Moreover, the multi-mechanistic profile can enable 

Artemisiae Annuae Herba to be developed into a 
single drug with synergistic component interactions 
that amplifying its anti-cancer effects. Just as with the 
specific delivery systems based on transferrin, 
Artemisiae Annuae Herba-related 
immunomodulatory preparations are also being 
further developed. In addition to the synergistic 
effects on drug resistance and tumor suppression 
exhibited by combinations of artemisinin with 
transferrin-based delivery systems [283,284], 
transferrin-coupled artemisinin formulations have 
also shown immunomodulatory effects. In a 
hepatocellular carcinoma study, these nanoparticles 
promoted M1 macrophage polarization and increased 
CD8+ T-cell infiltration, suggesting potential for 
multi-mechanism cancer treatment [280].  

Beyond comparisons with common drugs, 
Artemisiae Annuae Herba components share 
characteristics with certain specialized anti-cancer 
agents. For instance, some preparations can serve as 
auxiliary anti-cancer agents with apoptosis inducers 
like bortezomib [281,282] and can also inhibit tumor 
neovascularization, akin to angiogenesis inhibitors 
such as thalidomide [51,283]. Additionally, 
differentiation inducers play a crucial role in treating 
hematological malignancies [289,290]. The potential of 
artemisinin to function as a differentiation inducer, 
comparable to all-trans-retinoic acid or arsenical 
agents, remains underexplored and warrants further 
research and evaluation [291]. 

Despite their promising potential, Artemisiae 
Annuae Herba components exhibit certain 
weaknesses in their application as anti-cancer agents 
[127]. Unlike the widely used and highly regarded 
targeted therapies, these preparations lack the 
capability to specifically target mutated genes or 
abnormal signaling pathways, which are essential for 
precise cancer treatment. Consequently, compared to 
molecularly targeted drugs, Artemisiae Annuae 
Herba components are less effective in achieving 
precision-guided tumor cell eradication [127]. Their 
therapeutic specificity for particular tumor mutations 
is lower, and they cannot minimize individual 
drug-related side effects to the same extent as 
molecularly targeted treatments. However, this 
limitation may also present a unique advantage. 
While lacking precision, the broad and multifaceted 
anti-cancer mechanisms of Artemisiae Annuae Herba 
significantly expand their potential therapeutic 
applications. Notably, experimental evidence 
supports the anti-cancer effects of Artemisiae Annuae 
Herba components in both hematologic malignancies 
[196,287] and a variety of solid tumors [185,186,293]. 
This versatility underscores their potential utility 
across a wide range of cancer types. Taking these 
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factors into account, Artemisiae Annuae Herba 
components hold considerable promise as candidates 
for future anti-cancer strategies. 

Feasibility of combination therapies that 
include Artemisiae Annuae Herba 
components 

Cancer therapies often include numerous drugs 
that do not directly kill tumors but instead work 
synergistically with other anti-cancer agents [294,295]. 
These drugs, known as sensitizers, are crucial in 
enhancing the efficacy and reducing the toxicity of 
treatment regimens [291-293]. A significant category 
of these sensitizers is derived from TCM [294-296]. 

Among TCM-based sensitizers, Artemisiae 
Annuae Herba components possess distinctive 
similarities to certain established compounds and 
enhance the therapeutic effects of primary drugs by 
modulating signaling pathways or protein expression 
[302-304]. For instance, in research involving HCT116 
colorectal cancer cells, polyphenols isolated from 
Artemisiae Annuae Herba were found to enhance the 
anti-cancer effects of β-lapachone against 
oxaliplatin-resistant strains by inducing DNA damage 
and regulating apoptosis through multiple 
mechanisms [179]. Similarly, in hematological acute 
lymphoblastic leukemia, the methanolic extract of 
Artemisiae Annuae Herba has been shown to 
potentiate the anti-cancer effects of vincristine by 
mediating cytotoxicity [263]. 

Another mechanism by which these drugs 
operate is by modifying the tumor cell 
microenvironment, thereby optimizing conditions for 
the primary anti-cancer drugs [305,306]. For example, 
quercetin, which can be isolated from Artemisiae 
Annuae Herba, has been shown by Guo et al. to 
regulate the tumor microenvironment in endometrial 
cancer, inhibiting tumor cell growth and migration 
[177]. However, this study did not further assess the 
efficacy of Artemisiae Annuae Herba in combination 
with conventional anti-cancer drugs for endometrial 
cancer. 

Certain drugs can interact with chemotherapy 
agents or specific structural components of tumor 
cells through their molecular configurations, 
enhancing the efficacy of cancer therapies or 
weakening tumor cell activity to achieve improved 
therapeutic outcomes [307-309]. For instance, Wang et 
al. demonstrated that artemisinin derivatives can bind 
to rhein to exert dual inhibition on heat shock protein 
72 and heat shock cognate 70, thereby enhancing 
rhein’s therapeutic efficacy against liver cancer [305]. 
Similarly, Fu et al. revealed that Artemisiae Annuae 
Herba-derived compounds such as casticin and 
chrysosplenol D can bind to apical Iα-DNA. This 

interaction disrupts DNA replication, induces DNA 
damage, and consequently boosts the effectiveness of 
anti-cancer drugs in treating non-small-cell lung 
cancer [180]. 

Beyond sensitizing agents that enhance the 
efficacy and mitigate the toxicity of anti-cancer 
adjuvant drugs, there is growing interest in 
resistance-reversal agents, which counteract tumor 
cell drug resistance—a major challenge in current 
cancer therapies [306-309]. To address the frequent 
emergence of drug resistance among existing 
anti-cancer agents, research has increasingly turned to 
TCM for potential solutions [310,311]. Notably, 
Artemisiae Annuae Herba components not only 
exhibit direct anti-cancer activity across various 
cancer types but also hold significant potential for 
reversing drug resistance through multilayered 
regulatory mechanisms [312-314]. For example, Ma et 
al. showed that the artemisinin derivative artesunate 
can reverse the resistance of hepatocellular carcinoma 
to sorafenib [315]. This effect is achieved by 
downregulation of expression of actin filament 
associated protein 1 like 2 protein expression, 
inhibiting the phosphorylation of inhibiting SRC and 
FUN14 domain-containing 1, and inducing 
mitochondrial autophagy and apoptosis in 
sorafenib-resistant cancer cells. Additionally, 
flavonoids extracted from Artemisiae Annuae Herba 
have been shown to regulate P-glycoprotein, a protein 
closely associated with multidrug resistance in tumor 
cells [321,322]. These findings underscore the 
potential of Artemisiae Annuae Herba components in 
overcoming tumor resistance and advancing cancer 
treatment strategies. 

Challenges in Artemisiae Annuae 
Herba-Based Cancer Therapy 

There are many aspects of Artemisiae Annuae 
Herba worth discussing in relation to its anti-cancer 
properties, and its actual efficacy and potential 
mechanisms have gained significant recognition. 
However, focusing solely on its positive aspects can 
lead to undue optimism. It is important to 
acknowledge that numerous challenges remain before 
Artemisiae Annuae Herba components can be widely 
recognized and formally used in cancer treatments 
(Figure 7). 

Challenges of guiding the components to the 
target area 

While Artemisiae Annuae Herba shows promise 
as an anti-cancer agent, reducing it to a conventional 
plant-derived chemotherapeutic would undermine its 
unique advantages. Similar to its anti-malarial action, 
the herb’s anti-cancer advantages rely on interactions 
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with specific molecular targets, which guide the 
compounds to the necessary site of action. However, 
the targets of Artemisiae Annuae Herba components 
are abundant in the context of malaria, but tumor 
heterogeneity makes such targets more scarce in the 
realm of cancer. For example, key components of 
Artemisiae Annuae Herba, such as artemisinin, 
artemisitene, and DHA, are known to target heme and 
ferrous ions [88,323,324]. In malaria, heme is 
abundant due to the parasite’s lifecycle, but in tumors, 
heme/ferrous ion targets are rare owing to genetic 
diversity and mutations. 

To address this challenge, two strategic 
approaches are proposed. The first approach involves 
the development of synthetic targeting carriers. These 
carriers, potentially constructed from nanomaterials, 
would bind to tumor-specific antigens and locally 
concentrate heme/ferrous ions, enabling precise 
tumor targeting by Artemisiae Annuae Herba. 
Inspired by malaria’s heme-targeting mechanism, 

nanocarriers could be engineered with dual- 
functional surfaces: one end binds tumor-specific 
antigens, while the other captures ferrous ions or 
promotes tumor cells to produce heme. This process 
would mimic the red blood cell invasion of 
Plasmodium, hijacking tumor cells to amplify drug 
targeting. The second strategy involves the utilization 
of heme metabolic precursors. Here, tumor 
metabolism would be leveraged by administering 
heme precursors, like aminolevulinic acid, which 
accumulates in tumors and converts to heme, creating 
localized targets for Artemisiae Annuae Herba agents 
[325,326]. 

Both strategies face significant hurdles: carrier 
design demands interdisciplinary innovation, while 
precursor optimization requires extensive trial-and- 
error validation. Overcoming these challenges is 
critical to advancing Artemisiae Annuae Herba-based 
therapies into clinical practice. 

 

 
Figure 7: Challenges facing the application of Artemisiae Annuae Herba: Although Artemisiae Annuae Herba has bright prospects as cancer treatment, the challenges 
to its implementation cannot be ignored. The main dilemmas include: A) Challenges of guiding compounds to the cancer site: two strategic approaches are proposed, including 
synthetic targeting carriers and metabolic precursor utilization; B) Challenges of solubility and delivery: liposomal formulations are a possible solution; C) Challenges of potential 
risks related to drug metabolism: albumin-bound formulations are proposed as a key strategy; D) Challenges of side effects and safety related to long-term management: 
multicenter large-scale research must be prioritized and expanded. 
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Delivery challenges due to low water solubility  
Artemisiae Annuae Herba faces hurdles in 

anti-cancer applications that are akin to its historical 
limitations in the context of malaria treatment. 
Initially, the herb’s anti-malarial efficacy was limited 
by suboptimal extraction methods and the poor 
aqueous solubility of its active sesquiterpene 
compounds. The lipophilic nature of sesquiterpenes, 
the key bioactive components, results in low aqueous 
solubility, hindering clinical translation [322]. Even 
solubility-enhanced derivatives face stability issues, 
creating a dilemma between precise dosing 
requirements for cancer therapy and physicochemical 
limitations. 

Similar solubility challenges plague other 
plant-derived chemotherapeutics (e.g., paclitaxel and 
vincristine), yet advanced delivery systems have 
enabled their clinical success. Innovative drug 
delivery strategies, particularly liposomal 
formulations, offer transformative solutions for 
low-solubility agents. Liposomes enhance stability 
and enable precise drug loading, mitigating 
solubility-related bioavailability fluctuations. While 
Artemisiae Annuae Herba-derived liposomes (e.g., 
artesunate liposomes) remain experimental, 
optimizing drug-carrier compatibility, encapsulation 
efficiency, and payload capacity represent critical 
research frontiers [323-325]. 

Challenges of rapid drug metabolism 
In addition to the challenges that are related to 

those faced for malaria treatment, Artemisiae Annuae 
Herba agents also face hurdles that are unique to 
clinical translation for oncology. Unlike malaria, an 
acute infection, tumor management requires chronic 
suppression of proliferating cells to maintain a low 
tumor burden, a distinction rooted in disease 
pathophysiology. Anti-malarial therapy aims to 
eradicate parasites in a single course, whereas tumors 
demand prolonged, cyclical treatment due to their 
self-renewing, proliferative nature. These prolonged 
treatments thus require the optimization of dosing 
regimens for Artemisiae Annuae Herba in oncology.  

One potential solution is referred to as 
short-cycle therapy. Considering the precision 
anti-cancer action of Artemisiae Annuae Herba 
components and their association with fewer side 
effects compared with traditional chemotherapy, it is 
worth considering shortening dosing intervals during 
cancer therapy to achieve a shorter total cycle and to 
allow patients to return to normal life earlier while 
ensuring the same survival benefit. A second potential 
solution is to use these agents in maintenance therapy. 
As long as the risk of significant side effects remains 
low, it is worth considering long-term administration 

of drugs derived from Artemisiae Annuae Herba and 
to no longer routinely discontinue the drug when the 
tumor burden has decreased. The goal would be to 
maintain a low-level balance of tumor burden 
through tumor killing and inhibition of tumor 
proliferation in order to reduce tumor recurrence and 
metastasis. Finally, a third possible option is to 
implement a pulse-dosing strategy. This option is 
essentially a combination of the other two options in 
which the agents are delivered at a low level for 
long-term administration, but the patient receives 
regular high-dose pulsative shock treatments with 
appropriate Artemisiae Annuae Herba agents. This 
strategy could further reduce the occurrence of drug 
resistance, and we posit that pre-clinical and clinical 
studies are warranted.  

Dosing regimens for Artemisiae Annuae Herba 
also face pharmacokinetic challenges, particularly in 
maintaining therapeutic drug concentrations. In 
malaria therapy, rapid drug clearance of Artemisiae 
Annuae Herba derivatives can lead to subtherapeutic 
drug levels, leading to pseudo-resistance. 
Pharmacokinetic studies have revealed that 
Artemisiae Annuae Herba components achieve rapid 
peak plasma concentrations but exhibit short 
half-lives due to fast metabolism and excretion 
[326,327]. This transient subtherapeutic exposure may 
be misinterpreted as drug resistance in malaria, 
complicating treatment outcomes. For anti-cancer 
applications, these pharmacokinetic limitations pose 
significant challenges for sustaining therapeutic drug 
levels. To address this, albumin-bound formulations 
could prolong the onset time of the drug by delaying 
drug release and metabolism. Alternatively, 
developing derivatives with extended half-lives 
represents a promising research direction. 

Challenges of side effects and safety related to 
long-term management 

Despite the potential of Artemisiae Annuae 
Herba components to reverse drug resistance in 
certain tumors, they also exhibit notable resistance 
issues themselves when employed in cancer therapy. 
For instance, in a clinical study on Artemisiae Annuae 
Herba-assisted prostate cancer treatment, researchers 
observed that although some patients initially 
experienced tumor control, prolonged oral 
administration of Artemisiae Annuae Herba capsules 
was associated with a progressive rise in PSA levels 
[122]. This underscores the necessity for further 
investigation into the mechanisms of drug resistance 
and the development of strategies to mitigate this 
issue. 

Anti-cancer efficacy of Artemisiae Annuae 
Herba components is further complicated by 
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insufficient pharmacotoxicological data on chronic 
exposure. While acute exposure to artemisinin in 
anti-malarial therapy has rarely resulted in 
neurotoxicity [333,334] or anaphylaxis [335], the use of 
Artemisiae Annuae Herba as a direct anti-cancer 
chemotherapeutic agent necessitates comprehensive 
pharmacokinetic and toxicological data, particularly 
concerning the short-term effects of high doses. When 
Artemisiae Annuae Herba components are 
considered for long-term adjuvant cancer therapy, it is 
imperative to conduct studies on chronic toxicology 
and drug interactions, especially for patients with 
chronic diseases requiring prolonged medication. 
Given these challenges, multicenter, large-scale 
research on Artemisiae Annuae Herba must be 
prioritized and expanded. 

Despite these challenges, the potential of 
Artemisiae Annuae Herba components to deliver 
breakthroughs in cancer treatment is undeniable. The 
scientific community has amassed a wealth of basic 
and clinical research data on the anti-cancer effects of 
Artemisiae Annuae Herba over the past two decades. 
It is now important to further investigate their clinical 
application value to benefit cancer patients globally. 

Conclusion and Prospects 
The development of new cancer therapies has 

faced significant bottlenecks, prompting exploration 
into repurposing natural drugs and TCM agents for 
cancer treatment. This review examines the potential 
of Artemisiae Annuae Herba components as 
anti-cancer agents. It begins by reviewing the 
historical context of Artemisiae Annuae Herba in both 
Eastern and Western medicine, highlighting the 
increasingly sophisticated isolation and purification 
of its medicinal components, as well as the ongoing 
redefinition and expansion of its pharmacological 
effects. The article then elaborates on the diverse and 
complex, yet interacting, pharmacological effects of 
Artemisiae Annuae Herba components, including 
sesquiterpenes, polysaccharides, and peptides, 
encompassing anti-parasitic, anti-viral, anti-bacterial, 
anti-fungal, anti-inflammatory, anti-obesity, 
anti-osteoporosis, and anti-cancer activities. To 
elucidate the mechanisms underlying its anti-cancer 
effects, two analytical approaches have been 
employed. First, a forward reasoning approach from 
molecular structures to anti-cancer effects posits three 
independent but synergistic herb structures: the 
specific peroxy-bridge structures, the non-specific 
anti-proliferation structures, and the immuno-
modulatory structures. Second, a reverse reflection 
from herb response to potential anti-cancer 
mechanisms details the various modes of action and 
applications of Artemisiae Annuae Herba 

components in cancer treatment. These mechanisms 
include cell cycle arrest, induction of tumor cell 
apoptosis, non-apoptotic cell death, inhibition of 
tumor angiogenesis, regulation of EMT, and 
modulation of immune function. This analysis of the 
multiple synergistic mechanisms underlying 
Artemisiae Annuae Herba’s anti-cancer activity 
supports its potential as an urgently needed 
anti-cancer drug and underscores the feasibility of its 
application in cancer therapies. This potential is 
further strengthened by early anti-cancer experiments 
suggesting its wide applicability. 

It is important to note that the anti-cancer 
capabilities of various components of Artemisiae 
Annuae Herba differ due to their distinct 
pharmacological activities and mechanisms of action. 
Sesquiterpenoids, the core components, exert direct 
anti-cancer effects, demonstrating demonstrable 
efficacy in inhibiting proliferation and inducing 
tumor cell death, while coumarins and lignans offer 
unique advantages in modulating the tumor 
microenvironment. Furthermore, the auxiliary 
anti-cancer role of polysaccharide-related components 
in regulating immune function should not be 
underestimated.  

However, despite the increasing recognition of 
the anti-cancer effects of Artemisiae Annuae Herba, 
current research faces several gaps. Existing studies 
have relied heavily on in vitro cell experiments, which, 
while useful for demonstrating anti-cancer potential 
in a simplified setting, fail to replicate the complexity 
of the tumor microenvironment and the host’s 
immune system. This limitation hinders the accurate 
assessment of the translational potential of Artemisiae 
Annuae Herba. Furthermore, research has often 
focused on single-agent artemisinin and its 
derivatives, neglecting the synergistic regulatory 
anti-cancer effects of other components, such as 
polysaccharides and peptides. This isolation of 
components fragments the complex interactions 
within Artemisiae Annuae Herba and obscures the 
potential contributions of regulatory molecules. In 
addition, many studies do not explicitly state whether 
the tested component is a pure component or a hybrid 
product containing small amounts of other regulatory 
components, leading to inconsistencies in reported 
anti-cancer efficacy. Finally, the field lacks precision 
in defining the specific roles of different Artemisiae 
Annuae Herba components in cancer therapy. 
Grouping components with diverse mechanisms, 
such as those primarily targeting tumor cells, 
inhibiting angiogenesis, or modulating immune 
function, under the umbrella term “Artemisinin 
derivatives” impedes clinical translation. Addressing 
these research gaps requires more comprehensive 
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experimental studies, utilizing animal models, 
organoid models, and, critically, clinical trials. 
Increased clinical investigation will elucidate the true 
efficacy of Artemisiae Annuae Herba in treating 
cancers, assess the influence of the tumor 
microenvironment and host immunity on its 
anti-cancer effects, and identify potential synergistic 
interactions between its various components through 
comparative trials. Concurrently, the implementation 
of additional clinical studies will facilitate the 
standardized classification and characterization of 
Artemisiae Annuae Herba components, streamlining 
research efforts and promoting a more efficient cycle 
of discovery and clinical translation. 

Meanwhile, further development of Artemisiae 
Annuae Herba in cancer treatment faces several 
challenges, including guiding ligands related to their 
desired targets, issues with solubility and drug 
delivery, potential risks related to drug metabolism, 
side effects, and safety concerns related to long-term 
management. Addressing the challenge of ligand 
targeting through artificially constructed ligands or 
target precursors could enable Artemisiae Annuae 
Herba to achieve a breakthrough in precision 
treatment. This would allow it to specifically identify 
and target tumor lesions, similar to its anti-malarial 
activity, potentially facilitating the clinical translation 
of its cancer therapeutic effects. Overcoming 
challenges related to drug solubility, delivery, and 
distribution could also break through the blockade of 
the strict dosage requirements that currently limit 
many anti-cancer drugs, enabling standardized 
regulation of Artemisiae Annuae Herba-based 
anti-cancer agents. Validating and evaluating 
sufficient research data in the future could lead to a 
departure from the current rigid chemotherapy 
treatment cycles, providing cancer patients with more 
treatment options and improved time management, 
ultimately enhancing their quality of life. 
Furthermore, a deeper understanding of Artemisiae 
Annuae Herba drug metabolism, coupled with the 
use of albumin and other related carriers to slow 
down drug half-life and maintain blood drug 
concentrations, could provide a solution for long-term 
and stable anti-cancer needs, positioning it 
advantageously for clinical translation. Finally, 
collecting comprehensive experimental data on 
long-term and high-dose pulse use, and analyzing the 
corresponding effectiveness, side effects, and 
potential problems, can effectively prevent 
subsequent adverse events before it becomes a widely 
accepted anti-cancer drug. 

Artemisiae Annuae Herba has evolved beyond 
its initial recognition as a specialized anti-malarial 
drug. Research into its anti-cancer properties is now 

well established and increasingly recognized. 
Continued basic research and sustained efforts are 
actively advancing its practical application in cancer 
therapies, marking a promising direction for future 
exploration. 
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