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Abstract 

Single extracellular vesicle (EV) analysis holds great promise for non-invasive cancer diagnostics, offering insights into 
tumor-specific biomarkers and enabling personalized treatment strategies. However, a significant challenge in the path towards 
clinical applications is the low abundance of tumor-derived EVs (tEVs) in biofluids, which reduces the sensitivity, specificity, and 
accuracy of detection. This review emphasizes the importance of analyzing a large number of single EVs to overcome this limitation. 
We estimate that less than 0.1% of total EVs could be from cancer cells in a mixed sample. Additionally, the development of more 
efficient tEVs isolation methods and targeted enrichment strategies, as well as high-throughput analysis techniques are crucial for 
improving diagnostic accuracy and advancing liquid biopsy applications in cancer care. 
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1. Introduction 
Cancer remains one of the leading causes of 

morbidity and mortality worldwide, underscoring the 
critical need for early and accurate diagnostic 
methods. Current technologies for detecting cancer, 
particularly in its early stages, have made significant 
progress, but there are still challenges to overcome. 
Early-stage cancer detection is crucial for improving 
survival rates, as tumors are often more treatable 
when detected early. Imaging techniques are 
well-established for tumor detection, but their ability 
to detect early-stage cancers is limited by tumor size, 
location, and metabolic characteristics. They are often 
more useful for staging and monitoring rather than 
for initial detection in asymptomatic patients. 
Biomarker-based immunoassays show promise for 
early detection, particularly in high-risk individuals, 
but they are not universally applicable across all 
cancer types. Their current role is more about 
monitoring and screening rather than providing 
definitive early detection. Traditional biopsy 
techniques can be invasive and may not always 

provide a comprehensive view of tumor 
heterogeneity [1].  

Liquid biopsy, on the other hand, encompasses a 
range of minimally invasive techniques for analyzing 
tumor-derived materials in body fluids, including 
circulating tumor DNA (ctDNA), circulating tumor 
cells (CTCs), and cell-free RNA (cfRNA) (Figure 1) [2, 
3].  

Each of these biomarkers offers distinct 
advantages and limitations: ctDNA enables mutation 
profiling but is often present in low concentrations, 
especially in early-stage disease [5]; CTCs provide 
rich phenotypic and genomic information, but are 
rare and difficult to isolate [7]. In contrast, EVs are 
abundantly released by most cell types, are stable in 
circulation, and carry a diverse cargo of proteins, 
lipids, and nucleic acids that reflect their cell of origin 
[8]. These properties make EVs an attractive and 
versatile source of biomarkers for disease diagnosis, 
prognosis, and monitoring, warranting further 
investigation in the context of liquid biopsy [9].  
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Figure 1. Liquid biopsy and circulating biomarkers in plasma. Liquid biopsy is a minimally invasive method for analyzing tumor-derived components such as ctDNA, 
cfDNA, cfRNA, and tEVs in peripheral blood. These biomarkers are typically present at very low concentrations (CTCs found in plasma ~ 1-100 CTCs per 109 blood cells, ctDNA 
~ 0.1 % in 1 ml of plasma, cfRNA concentration 7.9 ng/ml of plasma, concentration of tEVs ~ 0.0001 % of EVs in 1 ml of plasma), posing significant analytical challenges [4-6]. The 
figure presents the literature values of the concentrations of individual circulating biomarkers in patient plasma samples. The low abundance of these analytes highlights the need 
for highly sensitive and specific technologies for clinical application in cancer diagnostics and monitoring. Created in https://BioRender.com. 

 
Nearly all cell types release these nanoscale lipid 

bilayer-enclosed particles that carry a wealth of 
information, including proteins and lipids. EVs are 
categorized mainly into three types: exosomes, 
microvesicles, and apoptotic bodies [8]. They vary in 
size and origin and serve as crucial mediators of 
cellular and tissue functions [10]. EVs are involved in 
numerous biological processes, including immune 
response [11], cellular signaling [12], and tissue repair 
[13]. Importantly, the cargo within EVs reflects the 
physiological state of their parent cells, making them 
valuable biomarkers for disease diagnosis. tEVs 
exhibit distinct biological behaviors compared to EVs 
released by normal cells (nEVs), reflecting the altered 
molecular and functional state of malignant cells 
(Figure 2) [14]. One of the most prominent distinctions 
lies in the upregulated release of tEVs, which is 
frequently driven by oncogenic signaling pathways 
such as RAS, EGFR, and MYC, as well as 
environmental stressors including hypoxia, low pH, 
and nutrient deprivation within the tumor 
microenvironment [15, 16]. These factors collectively 
enhance EV biogenesis through modulation of the 
endosomal sorting complex required for transport 
(ESCRT) machinery and other vesicle formation 
pathways, resulting in increased vesicle production 
and altered cargo composition. In terms of uptake, 
tEVs demonstrate preferential interactions with 
specific recipient cells, including various immune cell 
subsets. This selective uptake is mediated by surface 
molecules such as integrins, tetraspanins, and 
phosphatidylserine, which facilitate vesicle 
internalization and determine cellular tropism [17].  

Notably, tEVs have been shown to exert 
significant immunomodulatory effects. They are 

capable of delivering immunosuppressive cargo, 
including programmed death-ligand 1 (PD-L1), 
transforming growth factor-β (TGF-β), interleukin-10 
(IL-10), and tumor-associated microRNAs such as 
miR-21, miR-23a, to immune cells [18]. These factors 
collectively contribute to T cell exhaustion, inhibition 
of antigen presentation, expansion of regulatory T 
cells, and polarization of macrophages toward an 
M2-like immunosuppressive phenotype. Through 
these mechanisms, tEVs effectively facilitate immune 
evasion and promote tumor progression [19]. 
Furthermore, the capacity of tEVs to modulate 
immune responses may also influence their 
pharmacokinetics. While nEVs are generally subject to 
rapid clearance by the mononuclear phagocyte 
system, particularly in the liver and spleen, tEVs may 
exhibit prolonged circulation times due to their ability 
to inhibit immune recognition and phagocytic uptake 
[20, 21]. This extended half-life enhances their 
potential utility as circulating biomarkers in liquid 
biopsy applications. 

The molecular and functional divergence 
between tEVs and nEVs also provides opportunities 
for the development of selective enrichment and 
targeting strategies. Surface proteins uniquely or 
preferentially expressed on tEVs, such as epithelial 
cell adhesion molecule (EpCAM), human epidermal 
growth factor receptor 2 (HER2), or mutant forms of 
epidermal growth factor receptor (EGFR), may serve 
as effective markers for immunoaffinity-based 
isolation. In addition, differential glycosylation 
patterns, lipid compositions, and nucleic acid profiles 
may offer alternative approaches for tEV-specific 
separation, including lectin affinity chromatography, 
aptamer-based capture, or size- and density-based 
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fractionation. Exploiting these differences could 
significantly improve the sensitivity and specificity of 
EV-based diagnostics and enable the design of novel 
therapeutic strategies, including the targeted delivery 
of drugs or immune modulators via engineered 
vesicles. 

Currently, research is focused on 
characterization of the size, shape, relative number, 
and cargo of EVs and detection of specific 
tumor-associated markers [22-24]. While EVs from 
cancer and normal cell lines have been thoroughly 
evaluated, translating cell culture measurements into 
liquid biopsies has been challenging. Approaches 
such as EV isolation and enrichment (separation 
based on size, density, or surface markers) are 

commonly performed to separate EVs of a certain 
provenance, with label-free characterization being 
now explored in many reports, as detailed in the 
review article by Imanbekova et al [25]. More recently, 
single EV analysis has gained interest due to the 
possibility of revealing the heterogeneity of EVs, thus 
providing deeper insights into disease mechanisms 
and potential therapeutic targets [26]. In one of the 
first such demonstrations, Z. Smith et al demonstrated 
that Raman spectroscopy of optically-trapped single 
exosomes can reveal heterogeneity within EV 
populations that is often masked in bulk 
measurements [27]. Single EV analysis can also detect 
low-abundance biomarkers that may be overlooked in 
traditional assays.  

 

 
Figure 2. Comparison of EVs derived from tumor cells and normal cells. Both types of EVs share a common bilayer membrane structure and carry proteins, lipids, and 
nucleic acids; however, their content and functions differ significantly. Tumor EVs are typically enriched in oncogenic proteins such as EGFR and HER2, tumor-promoting miRNAs 
including miR-21, immunosuppressive molecules (PD-L1), supporting cancer progression, angiogenesis, immune evasion, and metastasis. In contrast, EVs from healthy cells 
contain homeostatic markers (CD9, CD63, CD81, TSG101), functional mRNAs, and regulatory miRNAs, and they play roles in maintaining tissue equilibrium, intercellular 
communication, and immune surveillance. Tumor cells exhibit an increased rate of EV compared to normal cells, thereby amplifying their paracrine and systemic effects within the 
tumor microenvironment (TME). The TME is frequently characterized by hypoxic conditions, elevated levels of reactive oxygen species such as hydrogen peroxide, and metabolic 
stress, all of which influence the biogenesis, cargo composition, and functional impact of tumor-derived EVs. Importantly, tumor-derived EVs also interact dynamically with the 
extracellular matrix (ECM), contributing to its biochemical and biomechanical remodeling. The ECM often undergoes pathological stiffening due to aberrant deposition and 
cross-linking of matrix components such as collagen and fibronectin. Tumor EVs can exacerbate this process by delivering matrix-modifying enzymes and fibrogenic mediators, 
thereby facilitating ECM remodeling that supports tumor invasion, angiogenesis, and metastasis. Early endosome – EE, multivesicular body – MVB, intraluminal vesicles – ILV, 
major histocompatibility complex class I – MHCI, HSP – heat shock protein, Annexin A6+ - ANXA6, vascular endothelial growth factor – VEGF, platelet-derived growth factor 
– PDGF, fibroblast growth factor 2 – FGF2, tumor necrosis factor alpha – TNF-α, P-glycoprotein – P-gp, multidrug resistance protein 1 – MRP1, Tumor Susceptibility Gene 101 
– TSG10, ALG-2-interacting protein X – ALIX. Created in https://BioRender.com. 
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Cancer is one of the most promising areas for 
applications of single EV analysis. By focusing on 
single EVs, researchers can capture detailed 
information about the molecular characteristics of 
tumors, providing insights into the cancer's presence, 
type, and potential treatment pathways. For instance, 
in cancer diagnostics, single EVs can carry 
tumor-specific proteins or genetic material that 
signify the presence of malignancy [28]. EVs from 
cancer cells often carry tumor-specific mutations, 
oncogenic proteins, and microRNAs, which can be 
used for early detection and monitoring of disease 
progression. For example, studies have shown that 
single EV analysis can detect KRAS mutations in 
pancreatic cancer and HER2 protein levels in breast 
cancer with high sensitivity [29, 30]. This capability 
allows for not only early diagnosis but also the 
potential for personalized treatment strategies based 
on the molecular profile of the EVs. Single EV analysis 
can uncover this heterogeneity by allowing 
characterization of the molecular cargo of individual 
EVs. This can reveal different tumor subpopulations 
and their specific markers, which is crucial for 
tailoring personalized treatment strategies. For 
example, analyzing EVs from a heterogeneous tumor 
may identify distinct subclones that respond 
differently to therapies. The dynamics of EV release 
can also provide insights into tumor progression and 
treatment efficacy. As cancer evolves, the cargo of EVs 
may change, reflecting alterations in the tumor's 
biological behavior [28]. By performing serial analysis 
of single EVs over time, clinicians could monitor how 
the tumor responds to treatment or whether it is 
developing resistance, potentially allowing for timely 
adjustments to therapy. One of the most compelling 
advantages of using single EV analysis for cancer 
diagnostics is the ability to obtain samples 
non-invasively. EVs can be isolated from readily 
accessible body fluids such as blood, urine, or saliva 
[31]. This not only reduces patient discomfort but also 
allows repeated over-time sampling, which is 
essential for effective disease monitoring. 

Advancements in technologies such as nanopore 
sensing, microfluidics, and high-resolution imaging 
techniques have significantly improved the ability to 
capture and analyze individual EVs [32]. These 
innovations increase the likelihood of detecting rare 
and disease-specific biomarkers that could play a 
pivotal role in early diagnosis and personalized 
treatment. Despite the promise of these technologies, 
the number of EVs available for analysis remains a 
critical factor in the validity and reproducibility of 
results. For instance, the success of a single EV 
analysis depends not only on the ability to isolate and 
analyze EVs but also on the availability of an 

adequate number of tEVs in the sample to ensure 
statistical significance and robust findings. 

Although numerous studies have reported 
promising results using single EV analysis, a 
consistent challenge is the limited quantity of tEVs 
obtained from biofluids, which can hinder the 
accuracy of biomarker detection, especially when 
trying to detect low-abundance markers [26]. This 
issue is compounded by the inherent heterogeneity of 
EVs, where variations in size, content, and origin can 
make it difficult to draw definitive conclusions 
without large, well-characterized sample sizes. 
Furthermore, data interpretation remains complex, 
with the need to differentiate between EVs originating 
from the tumor versus those derived from other 
sources, such as immune cells or healthy tissues. 
Another limiting factor is the limited understanding 
of tumor-specific markers. While some tumor-specific 
proteins, RNAs, or other markers have been 
identified, there are still many unknowns regarding 
which markers on EVs are specific enough to reliably 
indicate the presence or progression of a particular 
type of cancer. Some markers may be expressed in 
multiple cancer types or in normal cells under certain 
conditions, complicating their use as definitive 
indicators. 

This review aims to highlight the importance of 
the number of tEVs in liquid biopsy samples when 
single EV tools are employed. We use "single EV" to 
refer to the methodology used for the analysis of 
individual EVs, while "single EVs" refers to multiple 
vesicles analyzed individually, as opposed to EVs 
analysed in bulk. In the beginning of the article, we 
estimate the number of total EVs in liquid biopsy 
samples and perform simulations on the number of 
tEVs vs total EVs found in blood based on the number 
of cells, secretion rates, elimination rates, and uptake 
rates. We then discuss the use of different 
EV-containing biofluids. Next, we address EV 
isolation challenges, with a focus on the limited 
availability of tEVs and the need for enrichment 
methodologies specific for tEVs. In addition, we 
assess EV characterization methodologies for 
improved sensitivity and robustness. The discussion 
will then focus on the number of EVs required for 
accurate cancer detection, the limitations of single EV 
analysis techniques. Finally, we address the role of 
artificial intelligence (AI)-assisted data analysis and 
classification models in advancing the analysis of 
single EV analysis for cancer diagnosis by enabling 
automated and precise categorization of EVs based on 
their characteristics. 

2. How Many EVs are Enough?  
The total number of tEVs in analyzed samples is 
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rarely evaluated and considered in single EV research. 
In a solid tumor, there may be hundreds of millions to 
billions of cancer cells [33]. Cancer cells tend to release 
EVs at significantly higher rates than normal cells [34, 
35]. By using reported data of the number of EVs in 1 
ml of blood of human prostate cancer patients, 104 are 
tumor-specific [36], and the average total number of 
EVs in ml of human blood is 1010 [33], we calculated 
that only 0.0001% of total EVs could be from cancer 
cells in a mixed sample (Figure 1). These estimations 
are supported by the findings of Auber et.al., 
indicating that only <1% of EVs are derived from 
solid organs, and the other 99% of EVs from plasma 
are derived from immune cells and non-immune cells, 
including platelets and erythrocytes [37]. 

To make the matter more complicated, 1 ml of 
blood contains up to 106 lipoproteins that may be 
misidentified as EVs, and up to 109 platelets that 
continue secreting EVs [37-39]. This makes detection 
of single tEVs in the blood even more challenging. In 
addition, a low abundance of tumor-specific 
biomarkers in tEVs can further hinder results 
interpretation. For example, a study of glioblastoma 
shows that less than one copy of most RNA species is 
present in tEVs. The levels of mRNAs that are most 
commonly mutated in glioblastoma were not higher 
than one copy per 100,000 EVs approximately, which 
indicates the necessity to appropriately interpret the 
data of EV RNA cancer biomarker research that is 

based on a single EV analysis [40].  
In addition, estimating the rate of EV production 

is challenging because of the dynamic process 
associated with the de novo production and uptake of 
external EVs by any given cell type [41]. The 
estimation of tEV secretion rates is complicated by the 
heterogeneity of tumors that have been shown to vary 
in cellular composition, genetic mutations, and 
phenotypic characteristics. The number of cancer cells 
can vary widely depending on the type and stage of 
cancer, which is shown to be reflected in EV secretion 
rates [42, 43]. For example, the level of EVs in 
colorectal cancer and prostate cancer patients was 
statistically higher than that in healthy controls or 
benign tumor groups, and the numbers of EVs in 
plasma were associated with the degree of tumor 
differentiation and overall survival [44]. Breast cancer 
cells shed lower numbers of EVs (~60 to 65 per cell per 
hour) compared with tissue-matched, 
nontumorigenic cell line-derived EVs [45]. Several 
strategies and labeling methods are used to study EV 
secretion rates and their uptake, including fluorescent 
labeling, reporter gene systems, biotinylation, and 
stable isotope labeling. [41, 46-49]. While mechanisms 
of EV uptake and cargo delivery are incompletely 
characterized, these studies show that EV uptake is 
highly regulated by the surface composition of EVs, 
may occur at different rates, and depends on the type 
of recipient cells.  

 
 

 
Figure 3. An overview of the critical factors affecting the efficacy of single EV analysis, such as EV release rates, isolation yields (Yi), and the importance of prior tEV enrichment. 
Cancer cell-derived EVs typically exhibit higher release rates, which can vary according to the tumor’s type, grade, and microenvironmental factors. The release rates are 
quantified in terms of the number of EVs secreted per cell per day and are shown to correlate with tumor size and metabolic activity. Although total EV concentrations in 1 ml 
of body fluid can be in the range of 109 to 1010 particles per milliliter, the proportion of tEVs is often low (<0.1 %). Therefore, it is crucial to implement enrichment strategies and 
single EV entrapment methodologies for increasing the proportion of tEVs, which, in turn, improves the detection of cancer-specific biomarkers. 
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To compare the number of tEV with that of nEV 
we can use the following formula:  

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡
𝑁𝑁𝑛𝑛𝑡𝑡𝑡𝑡

= (𝑁𝑁𝑡𝑡𝑡𝑡× 𝑆𝑆𝑟𝑟𝑡𝑡𝑡𝑡− 𝑈𝑈𝑟𝑟𝑡𝑡𝑡𝑡− 𝐸𝐸𝑟𝑟𝑡𝑡𝑡𝑡 )× 𝑌𝑌𝑖𝑖𝑡𝑡
(𝑁𝑁𝑛𝑛𝑡𝑡× 𝑆𝑆𝑛𝑛𝑡𝑡𝑡𝑡− 𝑈𝑈𝑛𝑛𝑡𝑡𝑡𝑡− 𝐸𝐸𝑛𝑛𝑡𝑡𝑡𝑡)× 𝑌𝑌𝑖𝑖𝑛𝑛

  (Eq 1) 

where Ntc and Nnc are number of tumor cells and 
normal cells, respectively, Srtc and Srnc are the EV 
secretion rates from tumor and normal cells, 
respectively, Urtc and Untc are the uptake rates for 
tumor and normal cells, respectively, Ertc and Entc are 
elimination rates for tumor and normal cells, 
respectively, and Yit and Yin are the isolation yields of 
tEVs and nEVs, respectively.  

This formula gives a more nuanced 
understanding of the abundance of tEVs versus nEVs 
by considering both the biological factors, including 
the number of tumor and normal cells, their secretion 
rates, and technical aspects such as the isolation 
efficiency. Notably, the secretion rates and isolation 
yields may significantly vary between tumor and 
normal cells. The number of tEVs for single EV 
analysis can be potentially enhanced by over 90% by 
selectively enriching tEVs [29, 50, 51]. This has been 
demonstrated by S. Stott and collaborators, who 
achieved 94% tEV specificity in the detection of 
glioblastoma multiforme patients via immunocapture 
of EGFRvIII in plasma spiked with tEVs [50]. 
Moreover, Ferguson et al. achieved 100% specificity in 
the detection of stage 1 pancreatic cancer, below the 
minimal tumor size for imaging-based detection, via 
single EV analysis through the detection of mutated 
KRAS and P53 proteins in endogenous EVs [29]. 
Furthermore, Min et al. achieved, via single EV 
analysis of endogenous EVs, 100% specificity in 
detecting esophageal cancer via the CD36 marker, 95% 
specificity for stomach cancer via the TENM2 marker, 
100% specificity for colorectal cancer via the CDH13 
marker, 93% specificity for liver cancer via the TIMP2 
marker, and 97% specificity for detecting lung cancer 
via the MUC1 marker [51]. Selective enrichment can 
therefore lead to a more accurate reflection of the tEV 
population in the analysis, improving both the 
sensitivity and reliability of the results (Figure 3). 

The rates of EV uptake and clearance are 
influenced by various factors, including the size, 
composition, and surface markers of the EVs, as well 
as the target cell type and the presence of specific 
receptors [52]. EV uptake typically follows a 
dose-dependent pattern, meaning that larger 
quantities of EVs are more likely to be internalized, 
but the efficiency of uptake can vary based on the 
recipient cell's ability to recognize and internalize the 
vesicles. Immune cells, such as macrophages and 
dendritic cells, are particularly efficient at EV uptake 
due to their specialized role in maintaining immune 
homeostasis [53]. The rate of clearance from the 

bloodstream, on the other hand, is largely determined 
by the reticuloendothelial system (RES), primarily the 
liver and spleen, which filter out circulating EVs. 
Larger or more negatively charged EVs are generally 
cleared faster due to greater recognition by 
phagocytic cells in these organs [54]. In contrast, 
smaller EVs or those with camouflaged surface 
markers, such as those expressing certain proteins or 
lipid modifications, may evade rapid clearance, circu-
lating for longer periods. Additionally, the half-life of 
EVs in circulation can vary depending on whether 
they are exposed to enzymatic degradation, endo-
cytosis, or renal filtration. A study by Matsumoto et al. 
reported that the half-life of plasma-derived small 
EVs in circulation is about 7 min and was directly 
affected by the concentration of macrophages [53].  

Simulations of EV numbers in blood. 
Simulations were performed using Eq 1 to 
demonstrate the impact of varying different biological 
factors on the number and progression of blood 
plasma tEVs originating from breast cancer tumors. 
Contributions from various non-cancerous blood cell 
types were included in the calculations, including red 
blood cells, platelets, monocytes, and memory cells, 
for which secretion rates (in EVs/cell/min) and 
cellular quantities, i.e. Sntc and Nnc, respectively, were 
acquired from Auber & Svenningsen [37]. While 
organ-derived EVs were not considered during the 
simulations, their contribution to the total plasma EV 
makeup has been demonstrated to account for only 
~1% of all plasma EVs. Additionally, Bonsergent et al. 
demonstrated the normal uptake of EVs to be a 
low-yield process, with a spontaneous rate of 
approximately 1%/hour, 0.01 hour-1, or ~0.0001667 
min-1 [41]. Pharmacokinetic analyses of blood plasma 
sEV (small EV) concentrations by Matsumoto et al. [53] 
also suggested an elimination half-life of 7 minutes, 
which can be converted into an elimination rate 
through pharmacokinetic considerations: 

𝐸𝐸𝑟𝑟 = 𝑙𝑙𝑙𝑙2
𝑡𝑡1/2

≈ 0.693
7 𝑚𝑚𝑚𝑚𝑙𝑙

= 0.099 𝑚𝑚𝑚𝑚𝑛𝑛−1  (Eq 2) 

For the purposes of the simulation, identical 
isolation yields of 1 were assumed between cancerous 
and non-cancerous EVs, thereby permitting Yit and Yin 
to be disregarded from the analysis. Consequently, for 
any given cell type, with the consideration of the 
secretion rate in EVs/cell/min and the 
uptake/elimination rates in the units of EVs/min, the 
rate of plasma EV inflow per minute (Rinflow) can be 
found as follows: 

𝑅𝑅𝑚𝑚𝑙𝑙𝑖𝑖𝑙𝑙𝑖𝑖𝑖𝑖 = 𝑁𝑁𝑐𝑐 × 𝑆𝑆𝑟𝑟𝑐𝑐 − 𝑈𝑈𝑟𝑟𝑐𝑐 − 𝐸𝐸𝑟𝑟𝑐𝑐  (Eq 3) 
However, with the aforementioned secretion and 

uptake rates being found in the units of min-1, a time- 
dependent analysis is evidently required. Conseq-
uently, Rinflow at any given minute k can be found by 
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computing the number of EVs secreted per minute, Nc 

✕ Src, and subtracting from that the product between 
the total number of EVs at the previous time point and 
the sum between the elimination and uptake rates: 

𝑅𝑅𝑚𝑚𝑙𝑙𝑖𝑖𝑙𝑙𝑖𝑖𝑖𝑖 (𝑡𝑡 = 𝑘𝑘) = 𝑁𝑁𝑐𝑐 × 𝑆𝑆𝑟𝑟𝑐𝑐 − 𝑁𝑁𝐸𝐸𝐸𝐸(𝑡𝑡 = 𝑘𝑘 − 1) × (𝑈𝑈𝑟𝑟𝑐𝑐 +
𝐸𝐸𝑟𝑟𝑐𝑐)  (Eq 4) 

Note that the first and second terms of Eq. 4 both 
give values in the units of EVs/min, thereby giving 
Rinflow in EVs/min as well. As a result, the net number 
of plasma EVs at any given minute k can be found 
iteratively: 

𝑁𝑁𝐸𝐸𝐸𝐸(𝑡𝑡 = 𝑘𝑘)  = 𝑁𝑁𝐸𝐸𝐸𝐸(𝑡𝑡 = 𝑘𝑘 − 1)  + 𝑅𝑅𝑚𝑚𝑙𝑙𝑖𝑖𝑙𝑙𝑖𝑖𝑖𝑖 (𝑡𝑡 = 𝑘𝑘)  (Eq 
5) 

or 

𝑁𝑁𝐸𝐸𝐸𝐸(𝑡𝑡 = 𝑘𝑘)  = 𝑁𝑁𝐸𝐸𝐸𝐸(𝑡𝑡 = 𝑘𝑘 − 1)  + 𝑁𝑁𝑐𝑐 × 𝑆𝑆𝑟𝑟𝑐𝑐 − 𝑁𝑁𝐸𝐸𝐸𝐸(𝑡𝑡 =
𝑘𝑘 − 1) × (𝑈𝑈𝑟𝑟𝑐𝑐 + 𝐸𝐸𝑟𝑟𝑐𝑐)  (Eq 6) 

Considering the aforementioned cellular 
quantities and secretion rates from Auber & 
Svenningsen [37], as well as the normal elimination 
and uptake rates of ER = 0.099 min-1 and UR = 
0.0001667 min-1, the progressions in the number of 
plasma EVs originating from non-cancerous blood cell 
types were simulated using Eq. 6. Furthermore, the 
progression in plasma EVs originating from breast 
cancer cells was also simulated, considering the 
previously mentioned secretion rate of ~65 
EVs/cell/hour [45]. It is worth noting that this 
secretion rate approximation was acquired from 
breast cancer cells cultured in vitro. Consequently, 
this is likely an overestimation of the contribution to 
the total number of EVs by breast cancer cells in vivo, 
as in vivo secretion rates are likely to vary from those 
observed in vitro, and only a fraction of EVs secreted 
by tumors are transferred to plasma. Ultimately, our 
estimate constitutes an approximation for the 
purposes of demonstrating the effect of changing 
tumor size, tumor-EV uptake, and tumor-EV 
elimination. Notably, by estimating a tumor as a 
sphere with a density of 109 cells/cm3, the diameter of 
the breast tumor could be directly related to the 
number of tumor cells, Ntc. Furthermore, EV clearance 
from the blood has been demonstrated as being 
heavily dependent on phagocytic activity by immune 
cells [53]. Considering that tEVs have been 
demonstrated as being capable of evading immune 
cells and impairing their function, it is likely that tEVs 
also exhibit slower blood plasma elimination rates 
[55]. Consequently, elimination rates 0.1x and 0.01x 
the normal elimination rate were also tested to 
determine their effect on tEV progression. Finally, 
properties of the tumor microenvironment have been 
shown to promote tEV uptake, thereby suggesting 

that tEVs may exhibit higher than normal uptake 
rates, prompting an investigation into the effect of 
uptake rates 10x and 100x higher than normal on tEV 
progression [56]. 

The results obtained from the simulated 
investigations are shown in Figure 4, where the top 
graph shows the progression, in the blood plasma, of 
EVs originating from normal cells and breast cancer 
cells with varying tumor sizes, uptake rates, and 
elimination rates. The three bar graphs respectively 
showcase the steady-state EV quantities reached for 
each simulated cell type, the number of minutes taken 
to reach steady states, and the steady-state percentage 
contributions of breast cancer tEVs to the total 
makeup of plasma EVs under various simulation 
conditions. Notably, with regards to non-tumor cells, 
platelets, CD4 memory cells, and monocytes make up 
the primary contributors of net EV quantities in the 
plasma, consistent with the observations made by 
Auber & Svenningsen [37]. Additionally, steady-state 
quantities were reached at relatively the same time for 
all normal cell types.  

With regards to investigations performed in 
relation to breast-cancer-derived EVs, increasing 
tumor size had no significant impact on the speed at 
which steady state was reached, but instead shifted 
the curve upwards to higher steady state 
concentrations, likely as a result of the higher net 
secretion rates arising from the increased number of 
cells. Notably, increasing the tumor size from 0.5 cm 
in diameter to 2 cm in diameter resulted in an over 
ten-fold increase in the steady state number of 
tumor-derived EVs in the plasma. Opposingly, 
increasing uptake rate had no significant impact on 
both the steady-state number of tEVs and the speed at 
which the steady state was reached. Notably, there 
was a negligible decrease in the number of tEVs 
originating from a 1cm breast tumor when the uptake 
rate was increased from 1xUR to 100xUR, likely as a 
result of the basal uptake rate UR being relatively low 
to start with. Contrastingly, decreasing the 
elimination rate from 1xER to 0.01xER resulted in a 
significant increase in both the steady-state tEV 
quantity and the time taken to reach the steady state. 
As is showcased in Figure 4, each tenfold decrease in 
the elimination rate was accompanied by a tenfold 
increase in both the steady state tEV number and the 
time-to-steady-state, thereby suggesting that immune 
cell evasion and impairment is the primary means by 
which tumor EVs proliferate and promote tumor 
progression. Ultimately, the tumor size increase 
accompanied by tumor progression exacerbates tEV 
secretion further, with the increased tEV uptake rate 
having an almost strategically negligible impact on 
slowing tEV secretion in the blood plasma.  
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Figure 4. Simulated progression of EVs in blood plasma originating from different cell types. (Top) Variation in the quantity of EVs over 500 minutes, demonstrating 
the effect on EV progression of changing tumor size, uptake rate, and elimination rate for breast cancer cells; (Bottom-Left) Steady-state EV quantity reached for the different cell 
types; (Bottom-Middle) Time taken to reach steady-state EV quantities for different cell types; (Bottom-Right) Steady-state percentage contributions of breast cancer tEVs under 
different simulation conditions. Note that increasing tumor size shifts steady state concentrations of tEVs to higher values, without having discernible effects on the time taken to 
reach steady state. However, a ten-fold decrease of the elimination/clearance rate leads to a ten-fold increase in both the steady state concentrations of tEVs and the time taken 
to reach steady state. Uptake rates, on the other hand, have little effect on both the steady state tEV concentration and the time-to-steady-state. 

 
Furthermore, to evaluate the contribution of 

tEVs to the total plasma EV makeup, percentage 
makeups of tEVs under the tested simulation 
conditions were calculated as follows: 

% 𝑜𝑜𝑜𝑜 𝑇𝑇𝑜𝑜𝑡𝑡𝑇𝑇𝑇𝑇 𝑃𝑃𝑇𝑇𝑇𝑇𝑃𝑃𝑚𝑚𝑇𝑇 𝐸𝐸𝐸𝐸𝑃𝑃 =
 

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡,𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡,𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠+𝑁𝑁𝑛𝑛𝑡𝑡𝑡𝑡,𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠
 (Eq 7) 

In our case, NnEV, steady-state was estimated by 
adding up all the steady-state EV quantities of the 

simulated non-cancerous blood cell types. As 
previously mentioned, while these do not make up an 
exhaustive list of all sources of plasma EVs in the 
body, 99% of all plasma EVs are estimated to arise 
from these blood cells [37]. That being said, as shown 
in Figure 4, the percentage contribution of tEVs does 
not typically rise above 0.1%, usually falling around 
the mark of 0.06%. It is noteworthy, however, that 
actual percentage contributions of tEVs are likely to be 
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much lower with the addition of organ-derived EVs 
and with the consideration that only a certain 
percentage of tEVs is likely to leave the tumor 
microenvironment to enter the bloodstream. Notably, 
the uptake of tEVs in the blood and by surrounding 
cells, tumor cells, and immune cells is influenced by 
several factors, including the enhanced permeability 
and retention (EPR) effect [57]. The EPR effect is a 
phenomenon that describes the irregular and leaky 
structure of tumor vasculature with large gaps 
between endothelial cells, leading to increased 
permeability [58]. It allows macromolecules and 
nanoparticles to accumulate more easily within tumor 
tissue compared to normal tissues [59]. Due to the 
leaky nature of tumor vasculature, EVs are more 
likely to accumulate in the tumor microenvironment, 
where they can be internalized by recipient cells 
through various mechanisms depending on the 
specific characteristics of the EVs and the type of 
target cell. This interaction can alter cellular behavior, 
promoting tumor cell proliferation, migration, and 
immune evasion. The EPR effect not only enhances 
the passive accumulation of EVs in the tumor but also 
improves their interaction with target cells in the 
tumor microenvironment, leading to a more effective 
cellular uptake [60]. 

Overall, the simulations presented in Figure 4 
show that larger tumors result in a larger contribution 
of tEVs to the plasma, as generally expected. 
Additionally, it is once more notable that the strong 
impact of decreasing elimination rate on the 
proliferation of tEVs, with a 100x reduction in ER, 
causing the percentage contribution to rise to almost 
5%. While such low tEV elimination rates are highly 
unlikely, the impact of immune cell evasion and 
impairment is once more demonstrated as being an 
indispensable contributor to a tumor’s progression 

and growth. 

3. Choosing the Optimal Biofluid for 
Single EV Analysis in Liquid Biopsy 

The choice of the optimal biofluid for single EV 
analysis in liquid biopsy is critical to ensuring the 
sensitivity and accuracy of biomarker detection. 
Different biofluids, such as blood, urine, and saliva, 
contain varying concentrations and types of EVs, 
which can influence the detection of tEVs. The choice 
of biofluid must be carefully considered based on the 
stage of disease and the EV profile that best correlates 
with diagnostic and prognostic outcomes (Table 1).  

While blood plasma in many cases is the biofluid 
of choice for tEV isolation due to its relatively higher 
EV yield and the ability to reflect systemic changes 
associated with cancer, urine and saliva are used to 
isolate EVs for prostate cancer detection and oral 
disease diagnosis, respectively. The anatomical 
proximity to the prostate makes urine a rational 
biofluid for prostate cancer diagnosis [66]. This 
excretory biofluid is highly dynamic in terms of 
composition and depends on diet and medications, 
and requires pre-analytical steps to ensure consistent 
experimental results. Microbial contamination of 
urine may influence EV quantitation. In addition, the 
reported total number of EVs isolated from urine (109 
EVs/ml) is approximately the same as in blood [67].  

Given its direct interaction with the oral 
environment, saliva is a biofluid of choice for oral 
cancer EV liquid biopsy. Reported concentrations of 
salivary EVs are slightly lower compared to blood, 108 
EVs/ml [68]. As urine, salivary composition is highly 
dependent on medications and circadian rhythms 
[69].  

 
 

Table 1. Comparison of optimal body fluids for single EV analysis in liquid biopsy 

Biofluid Advantages Disadvantages Applications References 
Plasma high EV concentration 

rich in tEVs 
widely used clinically 

high background of lipoproteins/proteins 
co-isolation of contaminants 
hemolysis may affect results 

cancer diagnostics, biomarker 
discovery, monitoring treatment 

[61] 

Urine non-invasive  
low protein background  

low EV concentration 
diluted samples 
variable EV content depending on hydration 

urological cancers  [62] 

Saliva non-invasive 
easy sampling 
reflects oral and systemic 
conditions 

low EV concentration 
high bacterial content 
contamination with mucins, high viscosity 
challenges EV isolation 

oral cancers  [63] 

 CSF high relevance for CNS diseases invasive collection 
low volume available 

brain tumors  [64] 

Pleural/Ascitic 
Fluids 

abundance of tEVs  
relevant for metastatic cancers 

invasive 
patient-specific variability 

ovarian, lung, and gastrointestinal 
cancers 

[65] 
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4 Is the Enrichment of tEVs the Key to 
Unlocking the Potential of Single EV 
Analysis in Liquid Biopsy? 

As our estimation shows, one significant 
challenge is the often-limited number of single tEVs 
that can be analyzed from a mixed sample of EVs in 
biofluids. Despite the high release rates of tEVs from 
cancer cells, the actual number of tEVs isolated and 
successfully analyzed may be low, particularly in 
early-stage diseases where the tumor burden is 
smaller. This limitation can result in insufficient data 
to make robust diagnostic conclusions or to capture 
the full spectrum of biomarkers present in EVs. 
Achieving high-purity tEV populations from complex 
biological fluids is critical for accurate analysis. 
Current isolation techniques, such as 
ultracentrifugation, polymer precipitation, and 
immunoaffinity capture, may lead to contamination 
with proteins and cellular debris, affecting the 
reliability of results. Inadequate purification can mask 
the true tEV population and hinder the detection of 
relevant biomarkers. Recently, new methods of 
isolation, including size exclusion chromatography, 
ultrafiltration, and immunocapture, showed higher 
purity in isolated EVs [70]. In the single EV analysis of 
biofluids, prior enrichment of tEVs by employing 
immunocapture techniques targeting cancer-related 
or tissue-specific molecules can enhance specificity. 
For example, Melan A and MICA for melanoma [71], 
PSA for prostate cancer [66], L1CAM for brain tissue 
[72], epithelial cell adhesion molecule EpCAM, and 
HER2 are enrichment markers used for breast cancer 
[30]. This approach of targeted enrichment of tEVs 
may yield over 90% tEV specificity across various 
cancer types, provided the correct biomarker is 
chosen [50, 73, 74]. These promising results highlight 
the potential of selective enrichment techniques in 
improving the accuracy and sensitivity of single EV 
analysis of liquid biopsy. Additionally, selective 
enrichment through specific tEV biomarkers can assist 
in prognosis, on top of diagnosis, by targeting specific 
surface markers during immunocapture techniques. 
Examples of such markers include TMPRSS2 for 
bladder cancer, CPNE3 for colorectal cancer, and 
GPC1 for pancreatic cancer [75]. However, the 
effectiveness of this approach can be challenged by 
the fact that the expression of tissue-specific and 
cancer-specific proteins in EVs is not fully 
understood. One of the major challenges in enriching 
tEVs for single EV analysis is the lack of a universal 
surface marker that can reliably distinguish these 
vesicles from others in the biofluid. While various 
surface markers mentioned above have been 
suggested for tEVs enrichment, none of these markers 

are universally expressed on all tEVs [76, 77]. The 
challenges of this heterogeneity on selective 
enrichment are further exacerbated by the presence of 
active proteases on the surface of some EVs. Notably, 
these proteases can cleave surface proteins of EVs in a 
sample, potentially leading to the shedding of 
important surface biomarkers before they can be 
immunocaptured [78]. Another potential type of 
tumor marker for tEV enrichment is neoantigens. 
Neoantigens are mutated proteins that arise from 
genetic alterations in tumor cells. These mutations, 
whether point mutations, insertions, deletions, or 
gene rearrangements, generate new peptide 
sequences that are absent in normal tissues. These 
altered peptides are displayed on major 
histocompatibility complex (MHC) molecules on the 
surface of cancer cells and can be recognized by the 
immune system as foreign. Neoantigens are 
particularly attractive for cancer immunotherapy 
because they are specific to the tumor and not present 
on normal cells. This makes them ideal targets for 
immune responses without causing widespread 
autoimmune effects. As tumors evolve, the landscape 
of neoantigens can change, which means that 
tumor-specific EVs could potentially carry different 
neoantigens depending on the tumor’s stage, 
heterogeneity, and genetic evolution. Currently, EVs 
are mainly explored as immunotherapeutic agents for 
neoantigen loading and delivery [79]. Yet, 
neoantigens in EVs can be utilized as potential 
biomarkers, increasing the specificity of EV-based 
diagnostics. In addition to neoantigens, there are 
several new promising marker types that are being 
actively studied for applications in EV analysis, such 
as glycosylation patterns, membrane lipid 
components, and non-coding RNAs. Notably, these 
new marker types display significant heterogeneity 
from nEVs to tEVs across different cancer cell types, 
offering diagnostic potential that has been extensively 
reviewed elsewhere [80-83].  

Tumors exhibit heterogeneity in their EV 
populations, with different cancer types and even 
stages within the same type showing variable marker 
expression [84]. Continued work on establishing 
universal and specific markers for enriching tEVs is 
essential to overcome a major hurdle that impacts the 
reproducibility and reliability of single EV analysis, 
particularly in liquid biopsy applications for early 
cancer detection. The lack of standardized markers for 
tEV enrichment is further complicated by the 
proteolytic cleavage of surface markers, which can 
lead to the loss or alteration of these markers on EVs, 
diminishing the effectiveness of enrichment 
strategies. This challenge underscores the need for 
more robust methods and markers that can 
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consistently identify and isolate tumor-derived EVs, 
ensuring more accurate and reliable results in clinical 
applications [85].  

Moreover, there is a pressing need for 
standardized protocols in EV isolation, 
characterization, and analysis. Variability in EV 
isolation methodologies can hinder reproducibility 
and the comparability of findings across different 
studies. Establishing consensus guidelines is essential 
to facilitate the adaptation of single EV analysis in 
clinical practice. The International Extracellular 
Vesicle Society addressed the initial lack of 
methodological consensus and reporting in the EV 
field by introducing several initiatives, such as MISEV 
guidelines and EV-TRACK platform.  

The heterogeneity of EV populations 
complicates data interpretation. Single EV analysis 
can reveal diverse biomarker profiles, which may 
vary not only between different tumor types but also 
within the same tumor. A thorough understanding of 
the biological context of the analyzed EVs is essential 
for accurate diagnostic conclusions. Moreover, 
distinguishing between clinically relevant signals and 
background noise can be challenging, particularly 
with low-abundance biomarkers. 

Beyond low-abundance and standardization 
issues, high-throughput single EV analysis faces other 
challenges to clinical translation. Notably, cost is 
variable depending on the methodology employed, 
where digital ELISA assays come at moderate costs 
compared to flow cytometry- and Raman 
spectroscopy-based high-throughput technologies, 
which incur high costs due to the need to purchase 
large, expensive equipment [86-88]. However, such 
single EV analysis technologies are nevertheless 
expected to incur less cost than liquid biopsies 
focusing on ctDNA of CTCs [89]. Liquid biopsies are 
typically slightly more expensive than traditional 
tissue biopsies, but often incur less cost compared to 
imaging techniques such as CT and MRI scans [90]. 
Additionally, with regards to time required to 
perform diagnostic tests, liquid biopsy-based single 
EV analysis techniques are typically time-consuming, 
particularly due to the time required for isolating EVs, 
on top of the time needed for measurement and data 
analysis/interpretation [91]. Ultimately, for single EV 
analysis to undergo widespread adoption as a 
non-invasive cancer diagnosis technique, further 
standardization is inevitably needed [91]. Moreover, 
rather than competing with alternative liquid biopsy 
techniques involving ctDNA and/or CTCs, combined 
analysis of EVs, ctDNA, and CTCs offers significant 
synergistic potential, but has minimal clinical 
evidence and standardization, as well as further 

challenges arising from handling of the multimodal 
data [92]. 

5. Balancing Robustness and Sensitivity 
in Single EV Characterization Methods 

To detect one copy of certain cancer biomarkers, 
including miRNA, a large number of single EVs must 
be analyzed [26, 93]. This number varies depending 
on the biomarker of interest and the cancer stage. As 
shown previously, the levels of most commonly 
mutated mRNAs in glioblastoma (TP53 and PTEN) 
were approximately 1 molecule per 100,000 EVs, 
while most abundant mRNA species were present at 1 
copy per 1,000 EVs [40]. This threshold helps ensure 
that the heterogeneity of EV populations is 
adequately represented and that rare biomarkers are 
detected with sufficient confidence. However, for 
certain applications, such as monitoring specific 
mutations or protein expressions associated with 
particular cancers, significantly higher numbers may 
be necessary to improve statistical power and 
diagnostic accuracy.  

Existing single-particle analysis techniques, 
including electron microscopy, surface plasmon 
resonance imaging (SPRi), super-resolution 
microscopy, fluorescent microscopy, and label-free 
plasmonic sensors, while being sensitive, are 
low-throughput, require expensive instrumentation, 
and are time-consuming (Table 2) [25]. Therefore, the 
optimization of these methods is needed for the 
analysis of a large number of single EVs and to detect 
rare tEVs.  

In addition, there are methods such as 
nanoparticle tracking analysis and flow cytometry 
that can analyze a large number of single EVs with 
high throughput. Flow cytometry is widely available 
in clinical laboratories, which makes it the most 
promising method for cancer EV liquid biopsy, as 
indicated in the recent review by Mizenko et al [111]. 
Yet, the sensitivity of the technology remains to be 
improved to eliminate swarm detection. While 
traditional flow cytometers lack sensitivity to small 
nanoparticles and EVs, recent advancements of nano 
flow cytometers address this shortcoming and have 
been applied to analyse small nanoparticles, single 
EVs, and viruses. Liu H. and colleagues employed this 
emerging technology to perform in-depth 
characterization of DNA associated with single EVs. 
The study showed that localization of the DNA 
depends on the size of the EVs, revealing attachment 
of the DNA to the surface of the small EVs (<100 nm) 
and luminal localization of DNA in larger EVs (80 nm 
– 200 nm) [96].   
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Table 2. Single EV characterization methods 

Method Advantages Disadvantages Detection 
Limit 

References 

flow cytometry high-throughput multiparametric analysis 
surface marker-specific detection using fluorescent antibodies  

limited sensitivity to small EVs (<100 nm), 
specificity depends on antibody quality and 
labeling 
signal overlap and background can affect accuracy 

~100–150 
nm 

[94-96] 

 NTA size distribution of individual EVs 
high-throughput  
fluorescent mode allows limited marker-specific detection 

low resolution for heterogeneous or small EVs 
requires large sample volumes 

~30–100 nm  [97, 98] 

AFM high spatial resolution 
label-free morphological analysis 
high specificity for physical properties (stiffness, size, surface 
structure) 

low throughput 
technical expertise required 

<10 nm [99] 

Raman 
spectroscopy/SERS 

label-free chemical composition high biochemical specificity  low throughput sensitive to noise and sample 
preparation artifacts 

 
[27, 100, 
101] 

TEM high morphological resolution 
high specificity for EV structure and morphology selective 
molecular identification via immunogold labeling enables 

labor-intensive 
low throughput 

<10 nm [102] 

Super-Resolution 
Microscopy  

allows investigation of EVs functions in vivo/in situ with molecular 
resolution 

requires labels  [103, 104] 

SPRi real-time monitoring of EVs-ligand binding kinetics, small sample 
size, label free 

labor intensive, limited by use of capturing 
molecules 

 [105, 106] 

Digital ELISA  detection of EV surface or cargo proteins  requires optimized antibody pairs  <100 
EVs/mL 

[95, 107] 

Nano-FTIR  label-free quantitative and qualitative characterization of EV 
biochemical content, minimal preprocessing, small sample size 

technically demanding  
low throughput 

~50–100 nm [108] 

qSMLM Quantitative characterization of the size, shape and protein 
content  

requires optimized antibody pairs, 
low throughput, complex sample preparation, and 
limited multiplexing capabilities 

~10 nm [109, 110] 

 
In recent years, notable advancements were 

made in the efforts to tackle this fundamental 
challenge by developing innovative high-throughput 
single EV analysis platforms with the ability to 
analyze 20 million single vesicles per minute and limit 
of detection of 11 EVs/μl in blood [95]. This 
technology is based on digital ELISA that utilizes 
paramagnetic, fluorescent beads coated with CD81 
antibodies to capture single EVs. Another interesting 
approach for analysing a single EV is quantitative 
single-molecule localization spectroscopy (qSMLM) 
[112]. This method had been applied to asses shape, 
size, tetraspanins content of single EV and explore 
their heterogeneity [109, 110]. C. Han and colleagues 
developed single EV imaging methods based on total 
internal reflection microscopy to explore EV 
subpopulations [113]. 

Emerging high-throughput technologies for 
single EV analysis require robust data analysis 
capabilities to fully unlock their potential. The sheer 
volume of data generated by these platforms, 
combined with the inherent complexity of 
extracellular vesicle populations, necessitates the 
application of advanced computational tools to 
ensure accurate and meaningful interpretation. By 
implementing advanced machine learning 
algorithms, AI can analyze complex datasets 
generated from single EV characterization, such as 
size, shape, and molecular composition. This 
capability enables the identification of specific 
biomarkers associated with cancer, facilitating early 

detection and more accurate diagnoses. Additionally, 
AI-driven image analysis and pattern recognition 
techniques can significantly improve the sensitivity of 
detecting rare cancer-related EVs in biological 
samples, thus enabling personalized treatment 
strategies. AI classification models are pivotal in 
advancing the analysis of single EV analysis for 
cancer diagnosis by enabling automated and precise 
categorization of EVs based on their characteristics. 
These models often developed using machine 
learning techniques such as support vector machines 
(SVM), random forests, convolutional neural 
networks (CNN), transfer learning, and deep learning 
algorithms, can learn from large datasets to identify 
patterns that distinguish cancer-related EVs from 
normal ones. For example, SVM has been used to 
classify EVs based on their protein profiles obtained 
through mass spectrometry. By training on labeled 
datasets, SVM can effectively differentiate between 
EVs from cancer patients and healthy controls, 
highlighting specific biomarkers associated with 
tumor presence [114]. CNNs have been applied to 
analyze imaging data from flow cytometry or 
nanoparticle tracking analysis. These models can 
automatically identify and classify EVs based on 
morphological features, enabling the detection of 
subtle differences that may indicate malignancy. 
CNNs have been used to classify EVs isolated from 
the 6 types of early-stage cancers based on Raman 
spectroscopy profile [115]. Random forests have been 
utilized to analyze multi-omics data from EVs isolated 
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serum of colon cancer, integrating information from 
RNA sequencing and proteomics [116, 117]. Random 
Forests can classify EVs based on a combination of 
molecular signatures, providing a robust approach to 
identifying cancer-associated EVs. Next, advanced 
deep learning architectures, such as recurrent neural 
networks (RNNs) and autoencoders, have been 
explored for analyzing time-series data and 
high-dimensional feature sets from EVs [118]. These 
models can detect dynamic changes in EV 
composition that correlate with tumor evolution, 
aiding in real-time monitoring of cancer.  

As single EV data becomes more complex with 
the advancement of high-throughput technologies 
and the integration of multi-omics approaches, 
incorporating unsupervised clustering and 
dimensionality reduction pre-processing steps in 
model pipelines has become essential. It is widely 
accepted that biological data often suffers from the 
“curse of dimensionality”, wherein the number of 
data points required for a model to effectively form 
generalizations increases exponentially with the 
number of features [119]. For biological datasets, such 
as transcriptomics and proteomics, the high 
dimensionality can significantly degrade model 
performance if proper pre-processing techniques like 
clustering and dimensionality reduction are not 
applied [119]. This is also relevant to single EV 
analysis data, which often demonstrates high 
dimensionality that benefits from treatment with 
unsupervised learning algorithms [120-122]. In 
essence, clustering methodologies identify instances 
with inherent similarities within the feature space, 
thereby partitioning the data to capture inherent 
subpopulations. Common clustering methodologies 
include K-Means Clustering, Hierarchical Clustering, 
and Expectation-Maximization Clustering. Notably, 
Yin et al. utilized K-Means clustering for their 
AI-assisted analysis of high-throughput SERS-based 
digital counting of single EVs for cancer diagnosis 
[120]. Moreover, Wen et al. applied hierarchical 
clustering to their algorithm for the detection of 
plasma EV protein biomarkers for Ewing Sarcoma 
diagnosis via microfluidic Topographically- 
Intensified Partition-less dELISA [121]. On the other 
hand, dimensionality reduction serves the purpose of 
transforming high-dimensional data into a 
low-dimensional representation that retains the most 
informative features, while discarding noise and 
redundancy. Some examples of dimensionality 
reduction techniques include linear methods such as 
Principal Component Analysis (PCA) and 
Independent Component Analysis (ICA), as well as 
non-linear techniques such as t-distributed Stochastic 
Neighbour Embedding (t-SNE) and Uniform 

Manifold Approximation and Projection (UMAP) 
[123]. In addition to K-Means clustering, Yin et al. also 
utilized PCA for distinguishing between patients with 
different cancer types via SERS-based digital counting 
of single EVs [120]. Moreover, Von Lersner et al. have 
applied UMAP in their machine-learning pipeline for 
analyzing and converting data from multiparametric 
single-vesicle flow cytometry into distinguishable EV 
fingerprints [122].  

AI-assisted analysis techniques, when exploited 
in conjunction with high-throughput single EV 
detection methodologies, have also demonstrated 
significant potential in resolving heterogeneities 
within EVs. Min et al. trained a logistic regression 
model on single EV proteomic data of surface 
biomarkers from 100 cancer patients and 100 healthy 
patients, demonstrating the ability to distinguish 
between (i) healthy and cancerous patients, (ii) cancer 
type in cancerous patients (esophageal, stomach, 
colorectal, liver, or lung cancer), and (iii) 
intra-tumoral heterogeneity of EVs in colorectal 
cancer patients [51]. Moreover, von Lersner et al. 
combined high-throughput multiparametric single 
vesicle flow cytometry with AI-assisted 
dimensionality reduction and clustering techniques to 
form EV fingerprints that help discern the 
partitioning of molecular cargo across different EV 
subpopulations [122]. Furthermore, Yin et al. 
combined clustering and dimensionality reduction to 
create an algorithm that can potentially be used for 
distinguishing between patients with different cancer 
types via SERS-based digital counting of single EVs 
[120]. However, the main obstacle in developing 
high-performing and versatile algorithms for 
resolving heterogeneity in single EVs remains a lack 
of annotated data, especially when considering the 
high-dimensionality of newly developed 
high-throughput techniques.  

In addition, single EVs contain a wealth of 
information, including proteins, lipids, mRNA, and 
DNA. AI models can integrate these multiple types of 
data, generating more comprehensive insights. 
Multi-omics approaches such as proteomics, 
transcriptomics, and genomics allow for deeper 
understanding and cross-validation of cancer markers 
at different molecular levels, helping to pinpoint the 
most informative biomarkers for early detection. AI 
can also be used to merge data from different 
experimental platforms (flow cytometry, mass 
spectrometry, RNA sequencing). This data fusion 
enables researchers to better understand the 
complexity of cancer-derived EVs and identify 
comprehensive molecular signatures that may 
indicate the presence of early-stage cancer. Moreover, 
AI can be used to enhance the real-time detection of 
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tEVs using microfluidic platforms and biosensors. 
Such technologies could potentially isolate individual 
EVs and analyze them in real time, while AI models 
process the data to classify EVs as cancerous or 
normal immediately. This real-time analysis is 
especially valuable for monitoring treatment 
responses or detecting recurrences. 

While there are exciting avenues for AI 
application in single EV research, a lack of large, 
annotated datasets for training machine learning 
models can lead to data imbalance and reduce model 
performance, especially for rare cancers or early-stage 
diseases. Also, it is essential to develop ML models 
with deeper integration with domain-specific 
biological knowledge. 

Overall, the integration of AI in single EV 
analysis not only streamlines diagnostic workflows 
but also holds the potential to revolutionize cancer 
management through more targeted and effective 
therapeutic interventions. 

6. Conclusions 
Single EV analysis represents a groundbreaking 

advancement in liquid biopsy technology, offering 
unprecedented opportunities for disease diagnosis. 
By enhancing sensitivity and specificity, it has the 
potential to transform the diagnostic landscape for 
various diseases, including cancer. This non-invasive 
method may offer detection of tumor-specific 
biomarkers with high sensitivity and specificity. The 
ability to analyze individual EVs provides valuable 
insights into the diverse characteristics of tumors, 
facilitating the development of personalized 
treatment strategies based on specific molecular 
profiles. However, a critical challenge in 
implementing single EV analysis is the availability of 
a sufficient number of tEVs for analysis. Despite the 
promise shown by EVs, our analysis indicates that 
current studies based on the analysis of hundreds of 
single EVs may lack robust statistical power and 
accurate representation of EV heterogeneity. For 
certain applications, particularly those monitoring 
specific mutations or protein expressions, even higher 
numbers of single EVs may be necessary to enhance 
diagnostic accuracy. Given the vast number of EVs 
released from a variety of cell types, including the 
immune cells, platelets, and erythrocytes, the 
concentration of cancer-specific EVs in a typical 
plasma sample is extremely low.  

To address this challenge, in this article, we 
introduced a simulation model that helps provide an 
estimate of the abundance of tEVs among the total 
number of EVs. This model accounts for variabilities 
in the EV secretion, elimination, and uptake rates, as 
well as for the cell type and isolation yields. Using this 

simulation model, we estimate that no more than 
~0.1% of the total EVs in a blood sample might 
originate from cancer cells, making it exceptionally 
difficult to capture and identify a single 
tumor-derived EV in a mixed sample. This low 
abundance is further complicated by the 
heterogeneity of tumors and the dynamic nature of 
EV production and uptake by different cell types. One 
important question that still needs to be addressed is 
whether studies analyzing hundreds or thousands of 
single EVs are inherently biased towards the detection 
of soluble tumor-associated markers within the 
analyte, or do they more accurately reflect alterations 
in the immune landscape of cancer patients rather 
than detecting cancer biomarkers associated with 
tEVs. 

Considering these factors, it is critical in single 
EV studies to analyze a large number of single EVs in 
order to reliably detect tumor-specific EVs and 
associated cancer biomarkers. Therefore, for the 
identification of the extremely small fraction of cancer 
EVs, large-scale EV analyses are necessary, with the 
number of single EVs to be analyzed depending on 
the expected concentration of tumor-derived EVs. In 
practice, the number of EVs to be analyzed (with 
single EV techniques) should be at least 1 million per 
test to ensure that rare, low-abundance cancer-specific 
EVs are sufficiently represented. This is especially 
important for ensuring accurate biomarker analysis, 
given the low levels of tumor-specific RNA or 
proteins often found within these EVs. The number 
we provide here can be further refined by performing 
additional, detailed, and specific simulations in order 
to capture the prevalence of tEVs in different 
diagnostic circumstances, such as other tumor types, 
cancer stage, or biofluids. While improvements to the 
simulation model will be necessary to perform more 
accurate estimates, the main challenge is the 
availability of accurate data obtained from in vivo 
measurements. In this context, EV subtype-specific 
rates that are measured in relevant environments will 
be needed. 

Furthermore, similar recommendations apply 
for other biofluids such as urine and saliva, although 
factors like microbial contamination and the highly 
variable composition of these fluids may further 
influence EV quantification. Despite these challenges, 
increasing the number of single EVs analyzed remains 
the most effective strategy for overcoming the low 
abundance and variability inherent in tumor-derived 
EV detection, paving the way for more accurate liquid 
biopsy diagnostics for cancer. 

To propel the field forward, it is imperative to 
improve EV isolation and enrichment techniques to 
capture adequate amounts of tEVs from complex 
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biological fluids, as well as develop high-throughput 
characterization techniques. However, 
post-processing of high-throughput single EV data 
necessitates the incorporation of machine learning 
pipelines for efficient and thorough consideration of 
inter- and intra-tumor heterogeneity within EV 
subpopulations. As research continues to refine these 
methodologies, single EV analysis could transform 
cancer diagnosis and monitoring, offering hope for 
early detection and improved patient outcomes. 
Efforts should also be placed to overcome accessibility 
barriers to clinical translation, including diagnostic 
time frames, cost, and standardization. Ultimately, 
while single EV analysis is not yet fully realized as a 
standalone or complementary diagnostic tool, it holds 
significant promise as part of a comprehensive 
approach to cancer care. 
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