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Abstract 

Cancer is an extremely complex disease characterized by abnormal cell growth due to genetic and environmental factors. With the 
rise of the field of epigenetic transcriptomics, 5-methylcytidine (m5C) modification has been identified as one of the most common 
chemical modifications occurring in various RNA types. The writers, erasers, and readers of m5C modification regulate cancer 
initiation, progression, and therapeutic responses, such as the proliferation, metastasis, angiogenesis, metabolic reprogramming, 
immune escape, and therapeutic resistance of tumour cells, by regulating RNA stability, translation, nuclear export, and splicing 
processes. In this review, we elucidate the biological process of m5C modification, summarize the abnormal expression of 
RNA-modifying proteins (RMPs) in common malignant tumours, explore their functional effects on malignant hallmarks of cancer 
and molecular mechanisms, and prospect the potential clinical application value of m5C. 
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1. Introduction 
Cancer has become a major public health 

challenge that threatens human health worldwide. 
More than 52,900 people are diagnosed with cancer 
every day, and more than 27,000 people die from it, 
which places a serious economic burden on society 
[1]. The initiation of cancer was originally thought to 
be an entirely genetic disease driven by genes. 
However, the complexity of cancer reveals that it is a 
highly structured ecosystem that controls tumour 
initiation, progression, and therapeutic response [2]. 

Recently, the discovery of reversible mRNA 
methylation has opened a new scope of 
posttranscriptional gene regulation in eukaryotes, 
especially its role in cancer initiation, progression, and 
treatment [3-5]. More than 170 RNA modifications 
have been identified in eukaryotes [6]. Among these 
modifications, 5-methylcytidine (m5C) RNA 

modification has attracted increasing attention in 
cancer research [7]. Initially, m5C modification sites 
were found mainly in tRNA and rRNA. In 2012, 
bisulphite sequencing (BisSeq) of whole transcripts in 
HeLa cells revealed that m5C modification was widely 
distributed in mRNA and noncoding RNA (ncRNA), 
and the first transcriptome-wide mapping of m5C in 
human cells was performed [8]. The roles of TET and 
ALYREF in m5C were subsequently identified in 2014 
and 2017, respectively [9, 10]. An increasing number 
of studies have shown that m5C is involved in various 
diseases, such as cardiovascular, liver, Alzheimer, 
SARS-CoV-2-associated, and autoimmune disease, as 
well as several cancers [11-14]. Previous excellent 
reviews have highlighted progress in understanding 
the role of RNA m5C modification in multiple diseases 
[13, 15-19]. In addition to discussing newly discovered 
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RNA-modifying proteins (RMPs), m5C modification 
target RNAs, and updates in our understanding of 
RNA m5C modification mechanisms and functions in 
cancers, we summarize the comprehensive functions 
and molecular mechanisms of RNA m5C modification 
in more than twenty malignant tumours according to 
cancer initiation, progression, and therapeutic 
response. Importantly, we fill gaps in the study of 
several RMPs in specific cancers, which may provide 
new ideas for discovering potential biomarkers and 
therapeutic targets. We also propose the clinical 
application potential of m5C modification, which lays 
the foundation for further research. 

2. m5C RNA Modification 
m5C is a chemical modification formed by the 

addition of a methyl group from the donor, usually 
S-adenosyl-methionine (SAM), to the fifth carbon 
atom of cytosine in the RNA molecule [20] (Figure 
1A-B). In mammals, m5C modification accounts for 
approximately 0.02–0.09% of all cytosine 
modifications [21]. The first cytosine-methylated 
transcriptome analysis of human cells revealed more 
than 10,000 m5C sites (>20% methylation) located on 
approximately 8,500 mRNAs [22], mainly distributed 
in the coding sequence (CDS) region [23] (Figure 1C). 
Since m5C was first reported in 1958, this modification 
has been found to occur in any RNA type, including 
mRNA, tRNA (Figure 1D), rRNA, and eRNA, among 
others [17]. Owing to the limitations of m5C 
modification in coding RNA research, Squires et al. 
innovatively combined sulphite cell RNA 
transformation with next-generation sequencing in 
2012 [8] (Figure 1E), which promoted our 
understanding and further exploration of m5C 
modification in mRNA. Recently, various methods of 
m5C detection have emerged [24, 25]. There are two 
main categories, namely, antibody-based and 
chemical reaction-based methods (Figure 1F). 
Methylated RNA immunoprecipitation sequencing 
(MeRIP-seq) uses antibodies specific for m5C or m5C 
methyltransferase to enrich m5C-modified RNA [26]. 
Currently, RNA-BisSeq is the most widely used 
strategy for transcriptome-wide, base-resolution m5C 
detection [27, 28]. 

m5C modification is dynamically regulated by 
three types of RMPs, namely, writers, erasers, and 
readers [29] (Figure 2). Among them, the main writers 
include NOL1/NOP2/SUN (NSUN) domain protein 
family members [30-37] and DNA methyltransferase 
(DNMT) homologous DNMT2 [38, 39], and the 
erasers include the TET family (TET1-3) [9, 40, 41] and 
alkB homologue 1 (ALKBH1) [42, 43]. The m5C sites in 
RNA are recognized by two main readers, Aly/REF 
export factor (ALYREF) [10, 44, 45] and Y-box binding 

protein 1 (YBX1) [46-48], which determine the 
regulatory mechanism and function of m5C 
modification in tumour cells. To date, the 
dysregulated RMPs that have been studied in the field 
of oncology are shown in Figure 3. 

2.1 Writers 
m5C RNA methyltransferases (RNMTs) first 

form a covalent thioester bond, connecting the 
cysteine residue of their catalytic domain to the C6 
position of the target cytosine, forming an 
RNMT-RNA adduct [49]. Then, RNMTs catalyse the 
transfer of a methyl group from SAM to the fifth 
carbon of the cytosine base, forming m5C [50]. 
NSUN1-7 and DNMT2, as RNMTs, catalyse the m5C 
modification on different RNAs in different 
subcellular locations, thereby exerting their respective 
biological functions. 

The human NSUN2 gene is located at 5p15, and 
its protein has been shown to be localized to the 
nucleoli situated between or in close proximity to 
dense heterochromatic regions [51]. The role of 
NSUN2 is quite extensive, as it acts on a variety of 
RNA types, such as tRNA, mRNA, and ncRNA. 
NSUN2-mediated m5C modification of tRNA is 
common and highly conserved, occurring in the vast 
majority (>80%) of transcribed tRNA in vivo in 
humans and mice [52]. Moreover, recognition and 
methylation by NSUN2 are both site- and structure 
specific. tRNA contains five conserved domains, 
including the acceptor arm, the D arm, the anticodon 
arm, the variable loop (VL) and the TΨC arm (Figure 
1D). For eukaryotic tRNA, m5C residues cluster at the 
junction between the VL and TΨC arms, and C48 and 
C49 are most frequently modified, with a high 
prevalence [52]. BisSeq and miCLIP have confirmed 
robust m5C modification in the anticodon loop at C34 
(tRNALeu) and C38 (tRNAAsp, tRNAGly, and tRNAVal) 
and in the VL junction at C50 (tRNAGlu and tRNAGly) 
[52, 53]. Notably, methylation at C34/48/49/50 is 
solely dependent on NSUN2, whereas C38 
methylation is mediated by DNMT2 [32, 39, 54]. 
Mechanistically, NSUN2 protein accommodates the 
SAM cofactor with its Rossmann-fold catalytic core 
(residues 171-429) and PUA domain (residues 54-147). 
In addition, it uses two catalytic cysteines in the active 
site, which are present in conserved motifs IV 
(Cys271) and VI (Cys321) [55]. The deposition of m5C 
at the VL protects tRNA from tRNA‒protein 
interactions and unnecessary cleavage of mature and 
functional tRNA during the stress response [55]. In 
contrast, the functional loss of NSUN2 could result in 
the absence of tRNA LeuCAA and lead to changes in 
codon usage, significantly impacting the translation 
rate of tissue-specific proteins in mammals [56]. 
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NSUN2 is the most important RNA methyltransferase 
to induce m5C to specific RNAs that regulate the 
malignant behaviour of various cancers [57-60]. As a 
cofactor, glucose binds to NSUN2 at amino acids 1-28 
to promote NSUN2 oligomerization and activation. 

Activated NSUN2 increases m5C methylation on 
TREX2 mRNA and stabilizes TREX2 to restrict 
cytosolic dsDNA accumulation and cGAS/STING 
activation to promote tumorigenesis and resistance to 
anti-PD-L1 immunotherapy [61]. 

 

 
Figure 1. The molecular structure (A), RNA-modifying proteins (B), sites distribution on mRNA (C) and tRNA (D), development history(E) and detection techniques (F) of m5C 
modification. Created in BioRender. Mao, Z. (2025) https://BioRender.com/6nefran. 
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Figure 2. The biological processes and molecular mechanisms of m5C function in tumour cells. (A)NSUN2/YBX1/m5C regulates SKIL stability in colorectal cancer. 
(B)NSUN2/YBX1/m5C regulates QSOX1 translation in lung cancer. (C)NSUN5/ALYREF/m5C regulates ACC1 nuclear export in prostate cancer. (D)NSUN2/ALYREF/m5C 
regulates RABL6 in bladder cancer. Created in BioRender. Mao, Z. (2025) https://BioRender.com/n3el9cc. 

 
NSUN1 (NOP2) is characterized primarily in 

budding yeast as an essential ribosomal biogenesis 
factor required for the deposition of m5C on 25S rRNA 
[31]. miCLIP-seq has revealed that rRNA is the major 
m5C-specific target of NSUN1 in human cells. Human 
NSUN1 binds to the rRNA 5′ -ETS region and 
crosslinks to 28S rRNA at position C4447 [62]. NSUN3 
initiates m5C biogenesis at position C34 in human 
mitochondrial tRNAMet, regulating mitochondrial 
protein synthesis, oxygen consumption, and 
mitochondrial activity [33]. Mitochondrial m5C 
modification is essential for the dynamic regulation of 
mitochondrial translation rates and thereby shapes 
metabolic reprogramming during tumour metastasis 
[63]. NSUN4 methylates cytosine 911 in the 12S rRNA 
of the small subunit (SSU), playing a key role in 
controlling the final step of ribosomal biogenesis to 
ensure that only the mature SSU and large subunit 
(LSU) are assembled [34, 64]. Similarly, NSUN5 acts 
as an RNA methyltransferase at the C3782 position of 
human 28S rRNA, which regulates the adaptive 
translational program for survival under conditions of 
cellular stress [65]. Human NSUN6 is associated with 
tRNA and acts as a tRNA methyltransferase. It can 
catalyse cytosine 72 at the 3' end of tRNACys and 
tRNAThr [66]. 

Although the sequence and structure of DNMT2 
(also known as TRNMT1) have close affinities for 
authentic DNA cytosine methyltransferases, the 
substrate of the highly conserved human DNMT2 was 
found to be predominantly aspartic acid-transfer 
RNA because the presence of a DNA competitor 
weakens but cannot eliminate the DNMT2-RNA 
complex signal [39, 67]. An increasing number of 
studies have shown that DNMT2 and its homologues 
can modify C38 of tRNAGly, tRNAAsp, tRNAGlu, and 
tRNAVal in vivo in mammals and other species [68-71]. 
In contrast with the NSNU family, only DNMT2 
methylates RNA by utilizing a single cysteine (Cys79) 
in its catalytic pocket and through a DNMT-like 
catalytic mechanism [72]. tRNA methylation catalysis 
by human DNMT requires C79 in motif IV (PCQ), 
E119 in motif VI (ENV), and R160 and R162 in motif 
VIII (RXR). In addition, some residues (such as I228, 
Q221, L229, G305, and Y297) located on the surface of 
the target recognition domain (TRD) and target 
recognition extension domain (TRED) regions in 
DNMT2 contribute to the selection of preferred 
substrate tRNA [72, 73]. Importantly, DNMT and 
NSUN2 exhibit complementary target site specificities 
and collaborate to facilitate tRNA methylation by 
complementing each other in terms of gene 
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expression, promoting tRNA stability and accurate 
protein synthesis [68, 74-76]. DNMT2 is widely 
involved in a variety of physiological regulatory 
processes. For example, DNMT2 deletion increases 
cancer cell sensitivity to radiation and PARP 
inhibitors (PARPis). This role is dependent on its m5C 
writer effect [77]. DNMT2-dependent m5C in 
damage-induced R-loops promotes transcription 
coupled-homologous recombination (TC-HR) and 

simultaneously suppresses PARP1-mediated 
alternative nonhomologous end joining (Alt-NHEJ), 
ensuring that TC-HR is the preferred double-strand 
break (DSB) repair pathway in transcribed regions 
[78]. Overall, previous studies have shown that the 
above RNMTs function primarily on tRNA and 
rRNA. Interestingly, they have been shown to be 
associated with mRNA methylation [79]. 

 

 
Figure 3. The m5C RNA-modifying proteins that play a key role in cancer. Created in BioRender. Mao, Z. (2025) https://BioRender.com/eu8anj3. 
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2.2 Erasers 
As a dynamic process, added methyl groups can 

be removed by demethylases (erasers). Previously, the 
reversible biological process of m5C modification has 
remained controversial. Over the years, m5C has been 
shown to be oxidized by TET1-3 and ALKBH1 to 
bioactive 5-hydroxymethylcytosine (hm5c) [9, 42, 63, 
80]. 

TET family members were initially identified as 
DNA demethylases for a variety of nucleic acid 
substrates [81]. The primary structure of TET enzymes 
includes a carboxy-terminal catalytic domain 
composed of a cysteine-rich domain (CRD) and two 
double-stranded β-helix (DSBH) regions flanking an 
extended low-complexity insertion region [82]. The 
DSBH domains harbour conserved residues critical 
for coordinating cofactors (Fe(II) and α-ketoglutarate) 
essential for catalysis. The catalytic core is stabilized 
by two zinc finger motifs that structurally integrate 
the DSBH regions with the CRD, forming a compact 
functional module. This architecture ensures proper 
spatial alignment of cofactor-binding sites and 
catalytic residues, enabling the oxidative modification 
of methylated cytosines during demethylation [83, 
84]. Interestingly, Fu et al. reported that TETs could 
also participate in the dynamic and reversible 
modification of RNA cytosines [9]. Multiple studies 
have indicated that TET1 and TET2 are required for 
the deposition of 5hmC in mRNA and tRNA and that 
TET-mediated 5hmC can reduce the stability of 
important pluripotency-promoting transcripts during 
embryonic stem cell (ESC) differentiation [9, 85-88]. 
Importantly, a proteomic approach confirmed that 
TET1 and TET2 contain an RNA-binding domain [88]. 
TET1-mediated m5C RNA modification, 
demethylation, and R-loop resolution during DNA 
repair are important for repair completion and the 
maintenance of genome stability [89]. TET2 mutations 
with high frequency have been identified in multiple 
haematologic malignancies [90-93]. The relationship 
between TET2 mutations and overall survival 
suggests that TET2 functions as a tumour suppressor 
[94, 95]. For example, TET2 regulates the open state of 
active chromatin by oxidizing the m5C modification of 
caRNA and inhibits leukaemogenesis [96]. 
Surprisingly, several findings on therapeutic 
resistance also support the tumour-promoting role of 
TET2 [97-99]. 

ALKBH1, which is widely distributed in the 
cytoplasm, nucleus, and mitochondria, has substrate 
diversity and can remove multiple types of RNA 
modifications, such as N1-methyladenosine (m1A), 
m6A, m5C, and 3-methylcytidine (m3C) [100-102]. It 
contains a central catalytic core, a nucleotide 

recognition lid (NRL) with Flip1 and Flip2, and a 
distinct N-terminal Flip0. In the catalytic core, there is 
a highly conserved DSBH structure [102]. Notably, 
three unique structural features outside the core 
determine the high dependence of ALKBH1 on the 
secondary structure of the substrate. Specifically, 
ALKBH1 preferentially catalyses demethylation in 
bulged, bubbled DNA and various local unpaired 
nucleic acids (such as R-loops, stem loops, D-loops, 
and bulges) [103]. Compared with TET2, ALKBH1 is 
the major m5C dioxygenase of RNA in human 
HEK293T cells, where it is responsible for the bulk of 
hm5C and f5C production [42]. Hypoxia-induced 
ALKBH1 decreases the global m5C level in human 
extravasated trophoblast cells and can regulate 
mRNA stability [104]. In addition, human ALKBH1 
catalyses the hydroxylation and oxidization of m5C34 
in both ct-tRNALeu and mt-tRNAMet, affecting 
mitochondrial translation and respiratory complex 
activity [104]. To date, ALKBH1 has not been found to 
function as an RNA demethylase in malignant 
tumours. 

2.3 Readers 
Reader proteins, with special RNA-binding 

domains, are the ultimate executors of RNA 
methylation functions (Figure 2). 

ALYREF, which is located mainly in the cell 
nucleus, is the first mRNA m5C-reading protein with 
the critical m5C recognition site K171 to be discovered, 
and it preferentially binds mature mRNA globally 
[10]. As a component of the TREX complex, it 
facilitates the nuclear export of mRNA by specifically 
binding to mRNA with m5C modifications in the 
nucleus to form the mRNA-exporting protein (mRNP) 
complex [45, 105, 106]. Mechanistically, CBP80 and 
PABPN1 are specifically involved in ALYREF 
recruitment to the 5′ and 3′ regions of mRNA. 
Moreover, CstF64 interacts with ALYREF and 
functions in ALYREF recruitment to the mRNA [105]. 
Studies have suggested that ALYREF can play an 
essential role in metastasis, cancer progression, and 
chemoresistance by modulating cell proliferation, 
migration, and invasion and antiapoptotic effects [45, 
107-110]. 

YBX1 is localized primarily in the cytoplasm and 
serves as an RNA m5C reader that plays a crucial role 
in regulating RNA metabolism [111]. YBX1 comprises 
three primary structural domains: the cold shock 
domain (CSD), the alanine/proline domain (A/P 
domain), and the C-terminal domain (CTD) [112]. 
These domains mediate complex interactions between 
YBX1 and both nucleic acids (DNA and RNA) and 
other proteins. The CSD uniquely contains nucleic 
acid-binding sites, enabling YBX1 to engage 
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preferentially with m5C-modified RNA. 
High-resolution crystal structures have revealed that 
CSD interacts with RNA mainly through π–π stacking 
interactions assembled by four highly conserved 
aromatic residues (His-87, Phe-85, Phe-74, and Trp-65) 
[48, 113]. Subsequently, it promotes mRNA stability in 
an m5C-dependent manner by recruiting the mRNA 
stabilizer ELAVL1 [47]. YBX1 is expressed in a broad 
range of tissues, and its roles in regulating cell 
proliferation, stress responses, and apoptosis make it 
crucial for normal development and tissue 
homeostasis [114, 115]. In addition, its dysregulation 
has been linked to various diseases, including cancer 
[116-119]. 

3. The Fates of RNA Molecules with m5C 
Modifications 
3.1 mRNA 

Generally, m5C modification participates in four 
metabolic processes of mRNA, including pre-mRNA 
splicing, nuclear export, stability, and translation of 
mature mRNA, thereby altering the expression of 
m5C-related genes [10, 118, 120-122] (Figure 2). Taking 
the most common RNMP as an example, NSUN2 
induces different biological mechanisms in various 
mRNAs. On the one hand, NSUN2 alters the 
methylation pattern of PTEN pre-mRNA, resulting in 
the downregulation of PTEN expression by mediating 
its alternative splicing events [123]. On the other 
hand, NSUN2 functions as a writer of m5C 
modifications on SRSF6 mRNA. The increasing level 
of m5C induce its nuclear‒cytoplasmic transport, 
which plays a vital role in multidrug resistance. In 
addition, NSUN2-mediated m5C modification 
enhances FABP5 and LAMC2 stability in 
osteosarcoma (OS) and head and neck squamous cell 
carcinoma (HNSCC), respectively [124, 125]. 
Moreover, the overexpression of wild-type NSUN2 
leads to gefitinib resistance and tumour recurrence, 
which are related to the m5C site at the CDS region of 
QSOX1 mRNA. Interestingly, unlike others, the 
increasing m5C modification of QSOX1 promotes its 
translation [126]. 

3.2 tRNA 
tRNA shows the widest variety and largest 

number of RNA modifications, which are pivotal for 
stabilizing the tertiary structure of tRNA molecules 
(modifications outside of the anticodon loop) and 
decoding the genetic code (modifications in the 
anticodon loop). NSUN2 is upregulated in anaplastic 
thyroid cancer (ATC) and increases the m5C 
modification on tRNAleu at the C48 site, which 
stabilizes tRNAleu by preventing its cleavage. This 

stable tRNAleu maintains homeostasis and rapidly 
transports leucine, substantially increasing the 
efficiency necessary to support the translation of 
c-MYC, BCL2, RAB31, JUNB, and TRAF2, among 
others. As pro-oncogenic proteins, they contribute to 
promoting tumour formation, proliferation, invasion, 
migration, and resistance to genotoxic drugs [127]. 

3.3 circRNA 
circRNA is a class of covalently closed RNA 

molecules characterized by universality, diversity, 
stability and conservative evolution. Recent studies 
have shown that some epitranscriptomic 
modifications affect circRNA metabolism, such as 
stability, subcellular localization, and even 
translation. The m5C modification of circFAM190B 
increases its stability, which is dependent on NSUN2. 
circFAM190B targets SFN and regulates its 
ubiquitination, thereby inhibiting cellular autophagy 
through the SFN/mTOR/ULK1 pathway and 
ultimately promoting lung cancer development [128]. 
The increased circ_0102913 expression in cancer cells 
was attributed to NSUN5 at least partly because the 
hypermethylated m5C modification stabilizes the 
specific RNA. It subsequently enhances the malignant 
properties of cells via the miR-571/RAC2 axis [129]. 
The carcinogenic effects of RAC2 might be attributed 
to its role in the alternative activation of macrophages 
[130]. A combined m5C microarray analysis revealed 
that circERI3 contains m5C modifications and that the 
NSUN4-mediated m5C modification of circERI3 could 
increase its nuclear export. Additionally, circERI3 
inhibits DDB1 ubiquitination and regulates PGC-1α 
transcription through DDB1, thus increasing 
mitochondrial energy metabolism and ultimately 
contributing to the development of lung cancer [131]. 

3.4 lncRNA 
lncRNA plays two distinct roles in 

epitranscriptomic modifications. On the one hand, 
lncRNA has emerged as a critical regulator of RMPs. 
In addition, there are many sites on their sequences 
that can be modified. In glioblastoma endothelial 
cells, NSUN2 increases the stability of LINC00324 and 
upregulates its expression through m5C modification. 
LINC00324 competes with the 3′-UTR of CBX3 mRNA 
for binding to the AUH protein and reducing CBX3 
mRNA degradation. In addition, CBX3 directly binds 
to the promoter region of VEGFR2, enhancing 
VEGFR2 transcription and promoting angiogenesis 
[132]. The stable lncRNA NR_033928 with m5C 
modification can upregulate the expression of 
glutaminase by interacting with the IGF2BP3/HUR 
complex, which is a potential prognostic and 
therapeutic target in gastric cancer [133]. The 
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expression of H19 lncRNA is abnormally increased in 
liver cancer, and this RNA is a specific target of 
NSUN2. Through m5C modification, its stability is 
significantly increased, and it recruits the oncoprotein 
G3BP1, further leading to the accumulation of MYC, 
which is a new mechanism of angiogenesis [134]. 

4. Functions and Mechanisms of m5C 
Modification in Cancer 

To date, a total of 14 cancer hallmarks have been 

identified to explain the mechanisms of malignant 
tumour initiation, progression, and therapeutic 
response [135, 136]. Among them, nonmutational 
epigenetic reprogramming, defined as enabling 
characteristics, was officially shown to play a 
significant role in 2022 [137]. Figure 4 and Table 1 
summarize the functions and regulatory mechanisms 
of m5C in cancer. 

 
 
 

 
Figure 4. The functions and mechanisms of m5C in cancer. Created in BioRender. Mao, Z. (2025) https://BioRender.com/e9rc6z6. 
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Table 1. The functions and mechanisms of m5C RMPs in cancer. 

Type RMPs Target RNA Mechanism Function Ref. 
Glioma Writer NSUN2 Up ATX Nuclear export, 

Translation 
(ALYREF) 

ATX-LPA axis Migration [139] 

    LINC00324 Stability CBX3-VEGFR2 axis Proliferation, Migration [132] 
  NSUN4 Up CDC42 Stability (ALYREF) PI3K-AKT signaling Proliferation, Migration, 

Invasion 
[138] 

  NSUN5 Down CTNNB1 Stability TET2-RBFOX2 axis Immune evasion [143] 
HNSCC Writer NSUN2 Up LAMC2 Stability (YBX1) - Proliferation, Migration, 

Invasion, EMT 
[125] 

Retinoblastoma Writer NSUN2 Up PFAS Stability (ALYREF) - Proliferation [4] 
Nasopharyngeal 
carcinoma 

Reader ALYREF Up NOTCH1 Stability (ALYREF) Notch signaling Proliferation, Migration, 
Invasion 

[153] 

Thyroid cancer Writer NSUN2 Up SRSF6 Nuclear export 
(ALYREF) 

UAP1-AGX2-ABC transporter axis Multidrug resistance [108] 

    tRNALeu Stability c-MYC/BCL2/RAB31/JUNB/TRAF2 Proliferation, Migration, 
Invasion, Chemotherapy 
resistance 

[127] 

Esophageal cancer Writer NSUN2 Up GRB2 Stability PI3K-AKT and ERK/MAPK signaling Proliferation, Migration, 
Invasion 

[157] 

    SMOX Stability (YBX1) mTORC1 signaling Proliferation, Migration, 
Invasion 

[156] 

    NLRP3 Nuclear export, 
Stability (ALYREF, 
YBX1) 

NLRP3/caspase 1/IL-1β inflammatory 
pathway 

Proliferation, Migration, 
Invasion 

[121] 

  NSUN5 Up METTL1 - - Proliferation [158] 
 Reader ALYREF Up TBL1XR1, 

KMT2E 
Stability Upregulate APOC1 expression Oxaliplatin resistance [163] 

  YBX1 Up CSF2 Stability - Migration, Invasion, 
Glycolysis 

[167] 

Breast cancer Writer NSUN2 Up HGH1 Stability, Translation 
(YBX1) 

Bind to EEF2 Proliferation, Migration, 
Invasion 

[252] 

 Reader YBX1 Up mTOR Stability - Proliferation, Migration, 
Autophagy 

[253] 

Lung cancer Writer NOP2 Up EZH2 Stability (ALYREF) H3K27me3-E-cadherin axis Migration, Invasion, EMT [147] 
  NSUN2 Up QSOX1 Translation (YBX1) - EGFR-TKIs resistance [126] 
    NRF2 Stability (YBX1) Enhance the transcription of GPX4, FTH1, 

and other antioxidants 
Proliferation, Migration, 
Invasion, Ferroptosis 

[145] 

    PD-L1 Stability (ALYREF) Inhibit CD8+ T-cell infiltration Immune evasion [146] 
    CircFAM190B Stability SFN-mMOR-ULK1 axis Proliferation, Migration, 

Apoptosis 
[128] 

    ME1, GLUT3, 
CDK2 

Stability (ALYREF) - Proliferation, Migration, 
Invasion, Angiogenesis, Cell 
cycle, Metabolism 

[109] 

  NSUN4 Up CircERI3 Nuclear export DDB1-PGC-1α-mitochondria axis Mitochondrial energy 
metabolism, Proliferation, 
Migration, Cell cycle, 
Apoptosis 

[131] 

    CDC20 Stability (ALYREF) - Proliferation, Migration, 
Invasion 

[110] 

  NSUN6 Down NM23-H1 - - Proliferation, Migration, EMT [148] 
 Reader ALYREF Up YAP1 Stability Hippo and Wnt/β-catenin signaling Proliferation, Migration, 

Invasion, Apoptosis, Cell 
cycle, Therapy resistance 

[149] 

  YBX1 Up PFKFB4 Stability - Proliferation, Migration, 
Glycolysis 

[118] 

Gastric cancer Writer NSUN2 Up NR_033928 Stability HUR/IGF2BP3-GLS axis Proliferation, Apoptosis, 
Glutamine metabolism 

[133] 

    NTN1 Stability - Migration, Invasion, Neural 
invasion 

[172] 

    ORAI2 Stability (YBX1) PI3K-AKT signaling Proliferation, Migration, 
Invasion, Peritoneal metastasis 

[173] 

    PIK3R1, 
PCYT1A 

- - Proliferation, Migration, 
Invasion, Chemotherapy 
resistance 

[5] 

    FOXC2 Stability (YBX1) - Proliferation, Migration, 
Invasion 

[174] 

    PTEN Splicing PI3K-AKT signaling Proliferation, Migration [123] 
    ATG9A Stability (YBX1) - 5-Fluorouracil resistance, 

Autophagy 
[265] 

Liver cancer Writer NOP2 Up c-MYC Stability, Translation LDHA/PKM2/ENO1/TPI1 Glycolysis [180] 
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Type RMPs Target RNA Mechanism Function Ref. 
  NSUN2 Up GRB2, RNF115, 

AATF 
- Ras signaling Sorafenib resistance [181] 

    H19 Stability Recruit the G3BP1 oncoprotein Proliferation, Migration, 
Invasion, Angiogenesis 

[134] 

    SREBP2 Stability (YBX1) - Proliferation, Migration, EMT, 
Cholesterol metabolism 

[119] 

    PKM2 Stability - Proliferation, Migration, 
Glycolysis 

[182] 

    MALAT1 Stability (ALYREF) ELAVL1-SLC7A11 axis Ferroptosis, Sorafenib 
resistance 

[267] 

    SOAT2 Stability - Proliferation, Migration, 
Invasion, Apoptosis, Immune 
evasion 

[58] 

 Reader ALYREF Up EGFR Stability STAT3 signaling Proliferation, Migration, 
Invasion, EMT 

[177] 

  YBX1 Up RNF115 Circularization, 
Translation 

DHODH K27 ubiquitination Ferroptosis [178] 

Cholangiocarcinoma Writer NSUN5 Up GLS Stability - Proliferation, Migration, 
Invasion, Cuproptosis 

[186] 

 Reader ALYREF Up PKM2 Stability - Proliferation, Migration, 
Glycolysis, Ferroptosis 

[120] 

Pancreatic cancer Writer NSUN2 Up TIAM2 Stability (YBX1) - Proliferation, Migration, 
Invasion, EMT 

[196] 

 Reader YBX1 Up EGR1, NTRK1, 
SMAD7 

Stability MIF/TNF-α Perineural invasion [192] 

    Caspase-8 Stability PIPK1/PIPK3/MLKL pathway Proliferation [193] 
  ALYREF Up JunD Stability SLC7A5-mTORC1 signaling Proliferation, Immune evasion [194] 
Colorectal cancer Writer NSUN2 Up ENO1 Stability (YBX1) - Proliferation, Invasion, 

Glycolysis 
[197] 

    SKIL Stability (YBX1) Activate TAZ expression Proliferation, Migration [198] 
    SLC7A11 Translation, Stability - Proliferation, Ferroptosis [199] 
    KSR1 Stability (YBX1) ERK/MAPK signaling Migration, Invasion [59] 
  NSUN4 Up NXPH4 Stability PHD4-HIF1A axis Proliferation, Migration, 

Invasion, RNautophagy 
[200] 

  NSUN5 Up circ0102913 Stability miR-571-RAC2 axis Proliferation, Migration, 
Invasion 

[129] 

    GPX4 Stability cGAS-STING signaling Anticancer immunity [208] 
 Reader ALYREF Up RPS6KB2, 

RPTOR 
Nuclear export - Proliferation, Migration [211] 

Renal cancer Writer NOP2 Up APOL1 Stability (YBX1) PI3K-AKT signaling Proliferation, Migration, 
Invasion 

[213] 

 Reader YBX1 Up PEBP1 Stability - Migration, Invasion [215] 
Bladder cancer Writer NSUN2 Up RABL6, TK1 Splicing, Stability 

(ALYREF) 
- Proliferation, Invasion [218] 

    HDGF Stability (YBX1) - Proliferation, Migration, 
Invasion 

[47] 

 Reader ALYREF Up PKM2 Stability - Glycolysis [220] 
Prostate cancer Writer NSUN2 Up AR Stability (YBX1) - Proliferation, Migration, 

Invasion 
[226] 

    TRIM28 Stability - Proliferation, Migration [60] 
  NSUN5 Up ACC1 Nuclear export 

(ALYREF) 
- Proliferation, Lipid deposition [223] 

Ovarian cancer Writer NOP2 Up RAPGEF4 - - Proliferation, Migration, 
Invasion 

[247] 

  NSUN2 Up E2F1 Stability (YBX1) MYBL2/RAD54L Proliferation, Migration, 
Invasion 

[246] 

 Reader YBX1 Up CDH3 Stability HR-related proteins, such as BRCA1, 
RAD50, NBS1, RAD51, etc. 

Apoptosis, Cisplatin resistance [242] 

    E2F5, YY1, 
RCC2 

Stability - Proliferation, Migration, 
Invasion, Chemoresistance 

[243] 

Endometrial cancer Writer NSUN2 Up SLC7A11 Stability (YBX1) - Ferroptosis resistance [239] 
Cervical cancer Writer NSUN2 Up LRRC8A Stability (YBX1) PI3K-AKT signaling Proliferation, Migration, 

Invasion 
[233] 

    KRT13 Stability (YBX1)  Migration, Invasion [234] 
  NSUN6 Up NDRG1 Stability (ALYREF) HR-mediated DNA damage repair Radioresistance [232] 
Leukemia Writer NSUN2 Up PHHGH, 

SHMT2 
Stability (YBX1) - Proliferation, Apoptosis, 

Serine metabolism 
[263] 

 Eraser TET2 Down TSPAN13 Stability (YBX1) - stem cell homing and 
self-renewal 

[93] 

Melanoma Writer NSUN2 Up CTNNB1 - c-MYC/Cyclin D1 Proliferation, Migration [144] 
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Type RMPs Target RNA Mechanism Function Ref. 
 Reader YBX1 Up MAGEA1 Stability P53 signaling Stemness, Proliferation, 

Migration, Invasion 
[268] 

Osteosarcoma Writer NSUN2 Up FABP5 Stability - Proliferation, Migration, 
Invasion, Fatty acid 
metabolism 

[124] 

  NSUN6 Up EEF1A2 Stability AKT/mTOR signaling Proliferation, Migration, 
Invasion 

[122] 

 
4.1 Central nervous system cancers 

4.1.1 Glioma 

The level of m5C modification in glioma tissue is 
significantly greater than that in peritumoral tissue 
and is positively correlated with the tumour grade 
[138]. While NSUN2 and NSUN4 are highly expressed 
in glioma, single-cell bioinformatic analysis has 
revealed that malignant cells present the lowest 
NSUN5 expression levels among the different cell 
types that make up the tumour mass. NSUN2 
methylates the 3′-UTR of ATX mRNA at the C2756 site 
in the human glioma cell line U87. With the 
recognition of ALYREF, ATX is exported from the 
nucleus to the cytoplasm and subsequently translated 
into ATX protein [139]. ATX is a secreted glycoprotein 
that can convert lysophosphatidylcholine into 
lysophosphatidic acid (LPA), functioning as the major 
enzyme for extracellular LPA production. LPA can 
regulate a broad range of cell functions, such as cell 
survival, proliferation, and migration [140, 141]. 
Malignant gliomas exhibit immune evasion 
characterized by increased expression of the immune 
checkpoint protein CD47 [142]. By combining 
databases, the m5C prediction website, and the 
MeRIP-qPCR assay, Zhao et al. revealed for the first 
time that NSUN4, as a key writer for controlling m5C 
levels in glioma, mediates changes in m5C levels to 
promote the stability of CDC42 mRNA. This cascade, 
in turn, promotes activation of the PI3K-AKT 
pathway, culminating in the malignant progression of 
glioma cells [138]. NSUN5 directly interacts with 
CTNNB1 caRNA and increases its m5C modification, 
which is subsequently oxidized by TET2 to 5hmC. 
RBFOX2 functions as a 5hmC-specific reader to 
recognize and promote CTNNB1 degradation. Finally, 
the downregulation of β-catenin interferes with the 
binding of CD47 to SIRPα, thereby weakening the 
phagocytosis of tumour-associated macrophages 
(TAMs) [143]. Intriguingly, this study revealed that 
NSUN5 could act as an immune therapy target to 
transform glioma into a “warm tumour” and lead to 
impressive therapeutic outcomes when NSUN5 is 
restored in IDH1-R132H mutant glioma cells. 

3.1.2 Ocular cancer 

The global and mRNA m5C levels are 
significantly enriched in retinoblastoma (RB) tissue 

compared with normal retinal tissue, which is 
attributed to the high expression of tumour-specific 
NSUN2 [4]. Through multiomic analysis, PFAS 
mRNA has been identified as a downstream 
candidate target of NSUN2. As a vital enzyme in 
purine biosynthesis, PFAS upregulated by m5C 
modification accelerates retinoblastoma progression, 
which bridges the current understanding of RNA 
modification and metabolic reprogramming. NSUN2 
increases m5C modification on CTNNB1 mRNA and 
then promotes uveal melanoma cell migration and 
proliferation by regulating the cell cycle [144]. 

4.2 Respiratory tract cancers 

4.2.1 Lung cancer 

Lung cancer remains the leading cause of 
cancer-related deaths worldwide, and the most 
prevalent histological type is non-small cell lung 
cancer (NSCLC), which constitutes approximately 
80% of all cases. NOP2, NSUN2, and NSUN4, key 
RNA m5C methyltransferases, are highly expressed in 
NSCLC tumour tissue, and their levels are strongly 
correlated with tumour grade, tumour size, and poor 
outcomes. In addition, ALYREF and YBX1, which are 
readers of m5C, are upregulated in lung cancer. 
However, the levels of NSUN6 are low in lung cancer, 
and NSUN6 may play a protective role. Cr(VI), a 
common environmental contaminant, has been shown 
to result in NSUN2 upregulation in human bronchial 
epithelial cells and mouse lung tissues [109]. Using 
RNA-seq, MeRIP-seq, and MeRIP-qPCR, several 
targets of NSUN2 have been identified, including 
mRNAs (QSOX1, NRF2, PD-L1, ME1, GLUT3, and 
CDK) [109, 126, 145, 146] and circRNAs (circFAM190B) 
[128]. Chen et al. reported that NSUN2-mediated m5C 
modification of the NRF2 mRNA 5′-UTR enhances its 
stability in an m5C-YBX1-dependent manner. NRF2 is 
renowned for its integral role in managing ferroptosis, 
which relies on the disengagement of KEAP1 from 
NRF2 when faced with oxidative stress [145]. 
Interestingly, the findings of m5C modification have 
shed light on a novel, noncanonical pathway in which 
NRF2 activation modulated by NSUN2 operates 
independently of the KEAP1-mediated mechanism. In 
contrast, NSUN2 posttranscriptionally enhances 
PD-L1 mRNA stability, subsequently increasing 
PD-L1 expression in an m5C-ALYREF–dependent 
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manner and providing protective effects for tumour 
cells against CD8+ T-cell-mediated cytotoxicity in 
NSCLC [146]. Additionally, NOP2 and NSUN4 are 
highly expressed in lung cancer. The stable EZH2 
mRNA produced by NOP2 and ALYREF coregulation 
leads to EMT and promotes the malignant properties 
of cancer cells through the H3K27me3/E-cadherin 
axis [147]. NSUN6 regulates NM23-H1 expression by 
modifying the 3′-UTR of NM23-H1 mRNA through 
the m5C mechanism and inhibits cancer cell 
proliferation, migration, and EMT [148]. These studies 
have greatly enriched the understanding of the role of 
writers other than NSUN2 in cancer regulation. The 
binding of ALYREF to YAP1 mRNA inhibits the 
apoptosis of tumour cells through activation of the 
Hippo and Wnt/β-catenin pathways [149]. YBX1 
ensures the stability of PFKFB4 mRNA by recognizing 
its 3′-UTR m5C sites in the cytoplasm after the 
exportation effect of THOC3 [118]. PFKFB4, a 
glycolysis regulator, produces pentose phosphate to 
perform carcinogenic functions [150]. 

4.2.2 Nasopharyngeal carcinoma 

Nasopharyngeal carcinoma (NPC) has high rates 
of metastasis and invasion, with a particularly high 
incidence in Southeast Asia, southern China, and 
North Africa [151, 152]. NSUN2 and ALYREF are 
significantly upregulated in NPC tissues, and their 
high expression is correlated with poor distant 
metastasis-free survival (DMFS) and overall survival 
(OS) [107, 153]. The analysis of GSEA RNA-seq data 
revealed that NOTCH1 mRNA is m5C-modified by 
NSUN2. This protein is subsequently recognized and 
stabilized by ALYREF, which promotes NOTCH1 
expression and activates the Notch signalling 
pathway in NPC cells. Notably, the evolutionarily 
conserved Notch signalling pathway plays an 
important role in determining the fate of NPC cells. 
Moreover, treatment with the NOTCH1 inhibitor 
LY3039478 and its relationship with prognosis in this 
study highlighted that ALYREF could serve as a 
therapeutic target and potential biomarker. 

4.3 Digestive tract cancers 

4.3.1 Esophageal cancer 

Esophageal squamous cell carcinoma (ESCC) is 
one of the most aggressive gastrointestinal 
malignancies worldwide, with a 5-year survival rate 
of approximately 20% [154, 155]. The levels of RNA 
m5C methylation are substantially increased in ESCC 
tissues due to the upregulation of NSUN2 and 
NSUN5, which constitutes an important regulatory 
mechanism for ESCC progression [156-158]. 
Additionally, ALYREF and YBX1 levels are also 

elevated in ESCC. NSUN2 increases the m5C 
modification on GRB2 and SMOX mRNA and 
promotes their stability [156, 157]. The upregulation of 
GRB2 evokes oncogenic PI3K/AKT and ERK/MAPK 
signalling [159]. SMOX activates the mTORC1 
signalling pathway with the recognition of YBX1. 
NSUN5 is also significantly upregulated in 
esophageal Cancer (EC) and shows promising 
diagnostic potential [158]. Gene coexpression analysis 
of data from the databases GEPIA and UALCAN and 
site analysis from RMBase v3.0 have suggested that 
NSUN5 binds directly to the METTL1 transcript, 
facilitating its m5C modification in EC cells. METTL1, 
an m7G‐modifying enzyme, has been identified as a 
novel epigenetic oncogene, and elevated METTL1 
activity is essential for promoting EC tumour growth 
[160, 161]. Oxaliplatin (L-OHP) is a potent 
chemotherapeutic agent that induces apoptosis in EC 
cells [162]. However, its effectiveness is significantly 
hindered by the development of resistance. ALYREF 
expression is elevated in L-OHP-resistant EC tissues, 
and ALYREF further recognizes the m5C sites on 
TBL1XR1 and KMT2E mRNAs, stabilizing these 
transcripts and promoting APOC1 expression [163]. 
APOC1, a protransfer factor, plays a crucial role in the 
metabolism of very-low-density lipoprotein (VLDL) 
and high-density lipoprotein (HDL) cholesterol, 
predicting a poor prognosis and correlating with 
tumour immune infiltration [164-166]. Within the 
cytoplasmic milieu of ESCC cells, circPRKCA interacts 
with YBX1, consequently preventing the 
ubiquitination-mediated degradation of YBX1. 
Increased concentrations of YBX1 increase the 
stability of CSF2 mRNA in a m5C-dependent manner 
[167]. CSF2, a tumour-derived growth factor, is 
widely recognized for its role in promoting 
angiogenesis, which is often a crucial process [168]. 
Additionally, it drives EMT and enhances immune 
checkpoint protein expression, thereby facilitating the 
malignant progression of cancer [169, 170]. Hence, 
these findings highlight the potential of RMPs as more 
comprehensive biomarkers due to the broader 
involvement of RMPs in the critical pathways and 
tumorigenesis of EC, providing a preclinical rationale 
for selectively targeting m5C modification as a 
promising therapeutic strategy. 

4.3.2 Gastric cancer 

Gastric cancer (GC) is the fifth most common 
malignant tumour and the fourth leading cause of 
cancer-associated death worldwide [171]. Overall, the 
RNA m5C content is increased in GC samples and is 
positively correlated with NSUN2 expression [5, 123, 
133, 172-175]. One reason for the upregulation of 
NSUN2 expression is that the SUMOylation of 
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NSUN2 on the basis of SUMO-2/3 promotes its 
stability [5]. In addition, studies have shown that the 
transcription factor E2F1 can activate NSUN2 
expression via the AMPK pathway in a peritoneal 
high-fat environment. Increased NSUN2 regulates 
ORAI2 mRNA stability through m5C modification via 
YBX1 recognition, thereby promoting ORAI2 
expression and accelerating peritoneal metastasis via 
PI3K-AKT signalling in GC [173]. Notably, in addition 
to being recognized by NSUN2, lncRNAs can also 
reversibly regulate NSUN2 expression and 
enrichment to further exert m5C-based functions in 
cells. For example, FOXC2-AS1 increases the m5C 
methylation level of FOXC2 mRNA by recruiting 
NSUN2, which is further recognized by YBX1 and 
regulates the proliferation, migration, and invasion of 
tumour cells [174]. In addition, DIAPH2-AS1 
upregulates the expression of NSUN2 by stabilizing 
the NSUN2 protein and promotes the 
epitranscriptomic modification of NTN1 mRNA in 
gastrointestinal cancer cells [172]. 

4.3.3 Liver cancer 

The main type of liver cancer is hepatocellular 
carcinoma (HCC), which is a primary malignant 
tumour originating from liver epithelial tissue or 
mesenchymal tissue [176]. The overall m5C 
modification level and the levels of its RMPs, such as 
NOP2, NSUN2, ALYREF, and YBX1, are greater in 
HCC tissues than in adjacent tissues. ALYREF 
expression is significantly increased in HCC, and 
ALYREF can directly bind to and stabilize the m5C 
modification site in the 3′-UTR of EGFR mRNA. The 
subsequent activation of the STAT3 signalling 
pathway is a critical regulatory mechanism that 
mediates EMT [177]. YBX1 is highly expressed in 
HCC and is associated with a poor prognosis. 
Analysis of RNA-seq and Ribo-seq data has revealed 
that RNF115 is the target of YBX1 in regulating HCC 
development [178]. Mechanistically, YBX1 binds to 
the m5C site of the RNF115 mRNA 3′-UTR and 
interacts with EIF4A1 to bridge the 5′-UTR, promoting 
mRNA circularization and translation. RNF115, an E3 
ligase, subsequently mediates K27 ubiquitination and 
autophagic degradation of DHODH to suppress 
ferroptosis. The main classic functions of m5C readers 
in cancer are stability and nuclear export. 
Interestingly, a new biological mechanism of YBX1 
has been discovered in HCC. As a multitarget kinase 
inhibitor for Raf kinases, sorafenib has been approved 
as a first-line treatment for advanced HCC by the 
Food and Drug Administration (FDA) of the United 
States [179]. Studies on m5C modification in HCC 
have revealed the role of NSUN2 and ALYREF in 
sorafenib resistance. By RNA-seq and RNA-BisSeq, 

several mRNAs, including GRB2, RNF115, AATF, 
c-MYC, PKM2, and MALAT1, have been identified as 
targets with abundant m5C sites [180-182]. The 
enrichment of these mRNAs induces sorafenib 
resistance through various pathways, such as Ras 
signalling, glycolysis, and ferroptosis. 

4.3.4 Cholangiocarcinoma 

Cholangiocarcinoma (CCA) is a significant 
contributor to cancer-related mortality, and its 
incidence is increasing on a global scale [183, 184]. 
NSUN5 and ALYREF have been found to be 
upregulated in CCA tissues and cells [120, 185]. A 
recent study has revealed that upregulated NSUN5 in 
CCA mediates the enrichment of glutaminase by 
increasing m5C modification at the cytosine 137 site 
within the untranslated region of GLS mRNA [186]. 
Furthermore, GLS enhances cancer progression by 
impeding copper-induced cell death mechanisms. 
Copper is an essential trace element, and its 
homeostasis can impact cell metabolic processes and 
even confer resistance to chemotherapy [187]. 
However, a surplus of copper leads to cuproptosis 
[188]. These findings establish a correlation between 
m5C modification and cuproptosis in CCA for the first 
time, shedding light on the underlying molecular 
mechanisms and indicating a potential therapeutic 
target for this disease. 

4.3.5 Pancreatic cancer 

Pancreatic cancer (PC) is one of the most lethal 
solid malignancies in which NSUN2, YBX1, and 
ALYREF are overexpressed. Notably, the highest 
incidence of perineural invasion (PNI) manifests 
mainly by the invasion of tumour cells into nerve 
tissue and their subsequent spread and metastasis 
along nerves [189, 190]. The severity of PNI is 
associated with severe disease-related pain and poor 
survival [191]. YBX1 enhances the stability of 
PNI-associated mRNAs, including EGR1, NTRK1, and 
SMAD7, through m5C modification [192]. The 
increased secretion of migration inhibition factor 
(MIF) and tumour necrosis factor-α (TNF-α) promote 
invasion. Overall, epigenetic cross-talk between YBX1 
and PNI in PC cells has been reported to be involved. 
YBX1 also affects the stability of caspase-8 mRNA via 
m5C modification, resulting in increased caspase-8 
expression and inhibition of RIPK1/RIPK3/MLKL 
pathway phosphorylation in PC [193]. Overexpressed 
ALYREF might be a novel target for modulating 
pancreatic ductal adenocarcinoma (PDAC) metabolic 
vulnerability and immune surveillance [194]. 
Investigations involving the JASPAR database and 
RNA-seq data have revealed that ALYREF specifically 
recognizes and stabilizes JunD mRNA, whose protein 
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serves as a transcription factor of SLC7A5. As SLC7A5 
is a key transporter of large neutral amino acids 
(LNAAs), the overexpression of SLC7A5 in tumour 
cells depletes amino acids in the TME and restricts the 
function of CD8+ T cells [195]. In addition, the 
aberrant m5C modification mediated by NSUN2 in PC 
is associated with the upregulated expression of 
TIAM2 mRNA, which promotes EMT and the 
likelihood of cancer cell migration [196]. 

4.3.6 Colorectal cancer 

In colorectal cancer (CRC), tissue 
immunohistochemistry has demonstrated an elevated 
level of m5C modification in tumour tissues compared 
with adjacent normal tissues. The m5C 
methyltransferases NSUN2, NSUN4, NSUN5 and the 
reader protein ALYREF exhibit significantly elevated 
expression and exert oncogenic functions [129, 
197-200]. By RNA-Seq and RNA-BisSeq, NSUN2 and 
YBX1 have been identified as "writers" and "readers" 
of ENO1 and SKIL mRNAs in CRC cells. ENO1, the 
core catalytic enzyme of glycolysis, ultimately 
reprogrammes glucose metabolism and increases 
lactate production in an m5C-dependent manner. 
Interestingly, lactate accumulation in tumour cells, in 
turn, activates NSUN2 transcription via histone 
H3K18 lactylation (H3K18la) and induces NSUN2 
lactylation at residue Lys356 (K356), which is essential 
for target RNA capture. The positive-feedback loop of 
the NSUN2/YBX1/m5C-ENO1 axis connects 
epigenetic remodelling and metabolic 
reprogramming [197]. However, the elevated stability 
of SKIL mRNA ultimately increases transcriptional 
coactivator with PDZ-binding motif (TAZ) activation 
[198]. As the first barrier of the body’s defense, innate 
immunity plays a key role in tumour immune 
surveillance and anti-tumour response, in which type 
I interferon (IFN-I) is an important mediator with 
significant antiviral and anti-tumour functions 
[201-203]. cGAS-STING signaling is a cytosolic 
DNA-sensing pathway that activates the expression of 
IFN-I [204, 205]. In colon adenocarcinoma (COAD), 
GPX4 has emerged as the vital enzyme to prevent 
lipid peroxidation and maintain cellular redox 
homeostasis [206, 207]. And NSUN5-mediated m5C 
modification on GPX4 mRNA facilitated anticancer 
immunity via activation of cGAS-STING signaling by 
maintaining redox homeostasis [208, 209]. 
Accumulating evidence has demonstrated the pivotal 
role of STING in the antitumour immune response, 
and the current receptor agonist exhibits potent 
antineoplastic activity in an immunocompetent 
mouse model of colon cancer [210]. Therefore, 
m5C-regulated STING activation holds great potential 
for therapeutic intervention in cancer 

immunotherapy. Correlation analysis using the 
TCGA database and an RIP assay has revealed the 
direct binding of NSUN4 to NXPH4 mRNA. By 
relying on the m5C-dependent mechanism, NXPH4 
mRNA can avoid degradation by RNautophagy. 
Furthermore, the competitive binding of the NXPH4 
protein with PHD4 impedes HIF1A degradation and 
activates the HIF signalling pathway. Collectively, 
these results underscore a new regulatory pathway in 
which m5C-based NXPH4 plays a pivotal role in 
driving CRC progression [200]. ALYREF is highly 
expressed in CRC tissues and predictive of a poor 
patient prognosis. Integrated analysis of the 
RIP-BisSeq and transcriptome profiles has revealed 
RPS6KB2 and RPTOR mRNAs as its downstream 
effectors. Additionally, ALYREF promotes tumour 
growth and migration by recruiting ELAVL1 to 
facilitate the nuclear export of these two transcripts 
[211]. 

4.4 Urinary system cancers 

4.4.1 Renal cell carcinoma 

Clear cell renal cell carcinoma (ccRCC) patients 
are usually diagnosed at late stages [212]. Therefore, it 
is imperative to find new strategies for ccRCC 
therapy. Excitingly, the overexpression of m5C RMPs, 
NOP2, and YBX1 has provided key insights into the 
treatment of solid ccRCC tumours [213]. Several 
analyses, including analyses of TCGA transcriptome 
profiles, RNA-seq data, and BisSeq data, have 
revealed that APOL1, a participant in lipid transport 
and metabolism [214], is a downstream mRNA 
regulated by NOP2. YBX1 subsequently stabilizes 
APOL1 mRNA by binding to the m5C site in the 
3′-UTR, thus affecting ccRCC cell proliferation, 
migration, and invasion through the PI3K-Akt 
pathway. YBX1 also recognizes PEBP1 mRNA via 
PEBP1P2 recruitment [215]. PEBP1 is a crucial 
ferroptosis regulator that mediates many 
cancer-related processes, such as tumour 
development, metastasis, and the microenvironment 
[216, 217]. 

4.4.2 Bladder cancer 

m5C is frequently hypermethylated in urothelial 
carcinoma of the bladder (UCB) and enriched in 
oncogenic pathways, and NSUN2 and ALYREF have 
been found to be upregulated in these tissues. 
Interestingly, the aberrant expression of NSUN2 
protein is partially attributed to high levels of m5C 
methylation of its mRNA [218]. More specifically, 
ALYREF recognizes the hypermethylated m5C site of 
NSUN2 mRNA, resulting in NSUN2 upregulation in 
UCB. BisSeq, RNA-seq, and RIP-seq analyses have 
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revealed that elevated NSUN2 and ALYREF 
specifically bind to the m5C site in the target TK1 and 
RABL6 pre-mRNAs, contributing to splicing and 
stabilization. These results suggest a novel 
m5C-dependent mechanism of TK1 and RABL6 
oncogene expression that enhances the proliferation 
and invasion of UCB cells. In addition, NSUN2 
regulates the m5C site in the 3′-UTR of HDGF mRNA, 
and YBX1 controls its stability through the indole ring 
of W65 in its cold shock domain [47]. As a well-known 
oncogene, HDGF is positively associated with 
aggressive UCB [219]. HIF-1α induces transcriptional 
activation of ALYREF, which binds to m5C sites in the 
3′-UTR of PKM2 mRNA and enhances its stability 
[220]. Hence, PKM2, a key enzyme in glycolysis, is 
upregulated and promotes the proliferation of cancer 
cells [221]. These findings suggest that NSUN2, YBX1, 
and ALYREF play oncogenic roles in bladder cancer 
and participate in the complex regulatory network, 
providing new insights into the mechanisms of m5C 
modification in cancer. 

4.4.3 Prostate cancer 

The m5C RNMTs NSUN2 and NSUN5 are 
expressed at higher levels in prostate cancer (PCa) 
tissues than in adjacent tissues. ACC1 is the first 
rate-limiting enzyme for fatty acid synthesis [222]. 
Interestingly, phosphorylated NSUN5 increases the 
m5C modification on ACC1 mRNA in PCa and 
enhances its stability and nuclear export with the 
recognition of ALYREF, thereby mediating 
CDK13-induced lipid accumulation and synthesis to 
promote PCa growth [223]. These findings indicate 
that a previously unrecognized m5C-based 
CDK13-NSUN5-ACC1 axis mediates fatty acid 
synthesis and lipid accumulation in PCa cells. Lipid 
metabolism is an extremely important metabolic 
change in the TME of PCa [224, 225]. NSUN2 
expression is also upregulated in PCa and is 
associated with a poor prognosis [226]. 
Epitranscriptome assays with RNA-BisSeq analysis 
have revealed that the 5′-end regions of AR mRNA are 
modified by NSUN2 and stabilized by an 
m5C-YBX1-dependent mechanism, which influences 
several AR variants, including AR-V7. AR is one of 
the most crucial therapeutic targets in PCa [227, 228]. 
Since 2012, several new AR inhibitors, such as 
enzalutamide, abiraterone, and apalutamide, have 
been approved to treat castration-resistant PCa [229]. 
However, stimulation of AR variants by AR inhibitors 
could induce drug resistance because of 
self-activation without androgen binding [230]. The 
positive feedback between NSUN2 and AR provides 
novel evidence that m5C modification clusters exist in 
PCa and explain cancer progression and the 

occurrence of castration-resistant PCa. 

4.5 Gynaecological cancers 

4.5.1 Cervical cancer 

Radiotherapy is the main treatment for advanced 
cervical cancer (CC) [231]. The level of m5C 
modification is greater in patients with 
radioresistance, which is related to overexpression of 
NSUN6 m5C protein and associated with a poor 
prognosis. Integration of MeRIP-seq and mRNA-seq 
analysis has revealed that NDGR1 is a downstream 
target mRNA of NSUN6 and that its stability is 
increased by specific binding to the m5C reader 
ALYREF. Abnormal overexpression of NDGR1 
promotes homologous recombination (HR)-mediated 
DNA damage repair (DDR) by recruiting and 
stabilizing the HR-related protein RDA51, which 
leads to radiotherapy resistance in CC [232]. 
Additionally, NSUN2 is also upregulated in CC, 
increases m5C modification on LRRC8A and KRT13 
mRNA, and promotes tumour cell migration and 
invasion via the YBX1 reader [233, 234]. When cancer 
cells swell, volume-regulated anion channels 
(VRACs) are activated [235, 236]. LRRC8A has 
recently been identified as an essential component of 
VRACs that can promote the proliferation and 
migration of cancer cells in CC. Although the role of 
KRT13 is different in distinct cancers depending on 
the context [237, 238], research has revealed that the 
NSUN2-YBX1-KRT13 pathway stimulates CC cell 
migration and invasion.  
4.5.2 Endometrial cancer 

Endometrial cancer (EC), the incidence of which 
has increased by more than 50% during the past two 
decades, is the most common cancer within the female 
reproductive system in developed countries [171]. 
NSUN2 and YBX1 are significantly overexpressed in 
EC [239]. BisSeq analysis of mRNAs derived from 
HEC-1B cells has revealed enrichment of 
ferroptosis-related pathways among differentially 
methylated genes. Furthermore, NSUN2 promotes 
SLC7A11 mRNA stability via the recognition role of 
YBX1, which resists the ferroptosis pathway of 
tumour cells to promote survival. These results 
provide new insight into the mechanisms of 
m5C-based ferroptosis regulation and suggest a 
promising treatment strategy for EC patients. 

4.5.3 Ovarian cancer 

Ovarian cancer (OC) has the highest death rate 
and the worst prognosis of all gynaecological tumours 
[240], and cytoreductive surgery combined with 
chemotherapy remains the gold standard of treatment 
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[241]. However, chemotherapy resistance followed by 
intraperitoneal dissemination still leads to 
unpredictable deaths. YBX1, an m5C reader, is highly 
expressed and maintains the stability of various 
mRNAs, including CDH3, E2F5, YY1, and RCC2, by 
recognizing their m5C sites, which ultimately leads to 
drug resistance in cancer cells [242, 243]. Notably, 
CHD3, an important member of the chromodomain 
helicase DNA-binding protein (CHD) family, which is 
involved in regulating chromatin remodelling [244, 
245], is a key protein in the response of YBX1 to stress 
induced by platinum-based drugs. Specifically, highly 
expressed CHD3 promotes chromatin opening and 
further enhances HR repair by HR-related proteins 
such as BRCA1 and RAD50. Platinum resistance is the 
primary barrier affecting the prognosis of OC 
patients; hence, the working model of the 
m5C-CDH3-chromatin accessibility-HR repair axis 
proposed by these researchers is important for 
developing therapies that can reverse platinum 
resistance. In addition, the presence of NOP2 and 
NSUN2 in OC is associated with the 
hypermethylation of RAPGEF4 and E2F1 mRNA, 
respectively, leading to uncontrolled proliferation, 
migration, and invasion of tumour cells [246, 247]. 

4.5.4 Breast cancer 

Breast cancer (BC) poses a significant threat to 
women's health because of its intricate pathogenesis 
and diverse clinical manifestations [248, 249]. 
Notably, the absolute number of BC cases is 
increasing in many developing countries due to 
population growth and the adoption of Western 
lifestyles [250]. Studies show that most m5C RMPs are 
significantly dysregulated in BC tissue, and regulate 
tumorigenesis, progression, prognosis, drug 
resistance and immune landscape [251]. The 
malignant phenotype of BC is partially promoted by 
the overexpression of NSUN2 and YBX1. Through a 
combination of RNA-Seq and RNA-BisSeq, HGH1 has 
been identified as a target RNA of NSUN2 [252]. YBX1 
synergistically regulates the expression of HGH1 in 
an m5C-dependent manner by increasing its RNA 
stability and overall protein synthesis efficiency. The 
role of HGH1 in human physiology and pathology 
has rarely been reported. These results preliminarily 
clarify the biological role that HGH1 might play in the 
progression of BC. The findings of the m5C 
mechanism in HGH1 mRNA also reveal a regulatory 
pathway from posttranscriptional modification to 
protein translation. Additionally, YBX1, which is 
stably mediated by SAT1, recognizes the m5C 
modification site of mTOR mRNA and significantly 
inhibits autophagy through this gatekeeper of the 
mTOR signalling pathway in triple-negative BC 

(TNBC) [253]. The involvement of m5C modification 
in TNBC, the most aggressive subtype with the 
poorest prognosis, reveal the complicated interaction 
between autophagy and tumour progression. 

5. Clinical Implications of m5C 
Modification in Cancer 

Recently, the profiles and signatures of m5C in 
RNA, including the expression and mutation of m5C 
proteins and the m5C modification levels of mRNA 
and ncRNA, are closely related to the clinical 
characteristics of patients with tumours. These 
findings suggest that m5C, as a potential biomarker 
and therapeutic target, is expected to be applied in 
clinical practice to benefit cancer patients (Figure 5). 

5.1 m5C as a biological marker 
Technical advances over the past two decades, 

especially the unprecedented progression of 
next-generation sequencing (NGS) technology, have 
enabled robust diagnosis and detection of cancer in 
biological samples. In addition to tissue biopsy, 
liquid-based biopsy assays have been proposed, with 
a focus on biomarkers, circulating tumour cells 
(CTCs) [254], circulating tumour DNA (ctDNA) [255], 
tumour-induced extracellular vehicles (EVs) [256], 
and other components in body fluids such as blood, 
urine, and saliva. The level of m5C modification and 
the status of m5C RMPs are associated with 
tumorigenesis. Yin et al. reported that the m5C level in 
peripheral blood immune cells was significantly 
increased in patients with colorectal cancer and that 
the degree of m5C modification was positively 
correlated with tumour progression and metastasis. 
Therefore, m5C methylation in peripheral blood 
immune cells is a promising biomarker for 
noninvasive diagnosis [257]. 

The clinical and pathological characteristics of 
tumours, such as stage, pathological type, and 
treatment sensitivity, determine the prognosis of 
patients. Increasing evidence has shown that m5C 
plays an important role in cancer [258]. Therefore, 
m5C-related features have become a powerful tool for 
predicting patient prognosis. Huang et al. constructed 
a survival prediction model for patients with TNBC 
on the basis of the mRNA expression profiles of 
NSUN6 and NSUN2 in the TCGA database. The risk 
score of each patient was calculated using the 
following formula: risk score = −0.5714 × NSUN6 + 
0.024 × NSUN2, where NSUN6 is a protective factor, 
and NSUN2 is a risk factor. The prediction model 
shows good performance in evaluating the overall 
survival (OS) of patients in the public database [259]. 
According to the TCGA data, genetic alterations in 
endogenous m5C RMPs were observed in 236 out of 



Theranostics 2025, Vol. 15, Issue 16 
 

 
https://www.thno.org 

8420 

297 CC patients (79%) [260]. This high prevalence 
underscores the translational potential of these 
alterations as promising diagnostic biomarkers and 
therapeutic targets. Based on consistent clustering 
map of 13 m5C RMPs, upregulation of NSUN2, 
NSUN3, NSUN6, and TET2, coupled with the 
downregulation of NSUN5 and ALYREF, is 
associated with poor survival outcomes of CC 
patients. Besides, a 4-gene m5C signature comprising 
FNDC3A, VEGFA, OPN3, and CPE has also 
demonstrated remarkable 1-year, 3-years and 5-years 
prognostic capabilities [261]. This refined 
understanding of m5C RMPs and gene signatures 
enables the development of a novel molecular 
diagnostic test, facilitating prognostic assessment and 
the identification of potential therapeutic targets for 
CC patients. By integrating mRNA expression data 
from TCGA, GEO, and real-world cohorts, Liu et al. 
successfully identified 6 candidate m5C-related genes 
(SOCS2, LCAT, FTCD, KRT17, PBK, and CBX2) and 
constructed an m5C scoring model that can be used to 
effectively predict the prognosis of patients. Survival 
analysis in the real-world cohort (2-△△CT-based risk 
score) revealed that the prognostic risk score model 
was a strong independent prognostic factor. 

Treatment resistance in cancer is challenging for 
doctors regarding the decision-making process in 
clinical practice. For example, pancreatic ductal 
adenocarcinoma is the most aggressive malignant 
tumour of the digestive tract and is highly resistant to 

treatment. Duo et al. used unsupervised consensus 
clustering analyses, LASSO, and multivariate Cox 
regression analysis to construct an m5C scoring 
signature (m5C score). They reported that the m5C 
score was associated with the activation of 
cancer-related pathways, including the Ras, MAPK, 
and PI3K pathways. Therefore, the sensitivity of 
patients to pathway-specific inhibitors of PARP, 
EGFR, AKT, HER2, and mTOR could be evaluated to 
guide the use of targeted drugs [262]. 

5.2 m5C as a therapeutic target 
Tumour-targeted therapy, also known as 

molecular-targeted drug therapy, refers to drugs or 
biological products that inhibit tumour growth and 
development in local tumour tissue. Such approaches 
can reduce the toxic effects on normal cells by 
inhibiting the key signalling pathways involved in 
tumour initiation and progression and provide more 
precise and effective strategies. NSUN2 expression is 
significantly increased in CRC and plays a 
carcinogenic role. Chen et al. identified a biologically 
active small-molecule inhibitor in the ChemDiv 
library that could effectively inhibit NSUN2 
expression. The NSUN2 inhibitor NSUN2-i4 
significantly enhances the efficacy of PD-1 against 
colorectal cancer without causing significant toxicity, 
indicating that NSUN2 is has promise as a target for 
cancer immunotherapy combined with an immune 
checkpoint inhibitor (ICI) [197]. Research has revealed 

 

 
Figure 5. Clinical implications of m5C modification in cancer. Created in BioRender. Mao, Z. (2025) https://BioRender.com/49digcl. 
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that NSUN2 is upregulated in AML and that the 
inhibition of NSUN2 prevents AML progression in 
vivo in xenograft experiments [263]. These results 
indicate that targeting NSUN2 may offer new 
strategies for treating AML. SU056 is an 
azodiamidazole-like small molecule that efficiently 
inhibits the function of the YBX1 protein. Recent 
studies have shown that targeting YBX1 is expected to 
reverse platinum resistance in ovarian cancer [242]. 
5-Fluorouracil (5-FU) is a first-line chemotherapeutic 
agent for advanced GC [264]. YBX1 is significantly 
upregulated in 5-FU-resistant GC cell lines and 
patient tissues, and YBX1 knockdown increases 
apoptosis in resistant cells treated with 5-FU [265]. 
These findings establish YBX1 as a key regulator of 
autophagy and 5-FU resistance in GC and highlight 
its potential as a novel therapeutic target for 
overcoming 5-FU resistance. 

6. Conclusion and Future Perspectives 
Lifestyle changes, increased access to early 

screening, and improved treatment continue to 
reduce cancer-related mortality. However, the 
incidence of malignant tumours such as those of 
breast, prostate, and endometrial cancer continues to 
increase annually. The morbidity of cervical and 
colorectal cancer tends to be greater in younger 
patients, which causes serious economic and social 
burdens around the world. Recently, with advances in 
technology, in-depth research in the field of 
epitranscriptomics has revealed the critical role of 
m5C RNA modification in regulating many cellular 
pathways [122, 192, 266-268]. However, its potential 
functions in cancer have not been fully explored. To 
date, m5C modification is common in rRNA [269], but 
evidence that rRNA m5C modification regulates 
reprogramming in cancer is currently lacking. 
Whether there are more m5C regulatory proteins 
requires further analysis and demonstration [270, 
271]. Moreover, whether RMPs exhibit selectivity or 
complementarity for the m5C modification sites of 
RNA is worth further investigation. In particular, why 
does m5C modification occur in specific mRNAs 
during cancer progression? We postulate that the m5C 
modification has a stoichiometric effect. In general, 
numerous RNAs undergo chemical modification to 
varying degrees, resulting in a dynamic and 
reversible equilibrium process. However, during the 
initiation, progression, and treatment of malignant 
tumours, dysregulation of RMPs elevates RNA 
modification levels beyond a critical dose threshold. 
This disruption breaks the dynamic equilibrium state, 
rendering it irreversible. Although current research 
cannot systematically explain the substrate specificity 
of m5C modification, we propose the following three 

hypotheses: high CG content, high transcriptome 
abundance, and structural accessibility. First, specific 
RNAs possess a high CG content, making them more 
readily recognizable by RNMTs. Additionally, some 
RNAs constitute a relatively large proportion of the 
overall transcriptome, consequently increasing the 
probability of modification events. Furthermore, the 
structural conformation of these RNAs renders 
potential m5C sites more exposed, thereby increasing 
their accessibility to catalytic enzymes. Hence, a more 
detailed examination of the regulatory patterns of 
m5C modification in different parts of a single 
transcript is essential for advancing our 
understanding of pathophysiological processes. The 
small molecules NSUN2-i4 and SU056, which are 
NSUN2 and YBX1 inhibitors, have been demonstrated 
to enhance the efficacy of immunotherapy and 
chemotherapy in mouse models. However, the 
development of drugs that target m5C modification is 
still a long way off. Owing to the success of mRNA 
vaccines in the prevention and treatment of infectious 
diseases, we are interested in the use of mRNA 
vaccines in the context of cancer immunotherapy 
[272]. Whether m5C modification could be applied to 
mRNA vaccine development deserves further 
consideration. In addition, in almost all types of 
malignant tumours, the overall level of m5C 
modification is elevated, which is related to the 
deposition of writer proteins in tumour cells. 
Generally, the factors influencing the expression of 
writers include genomic mutations and 
environmental changes. For example, persistent 
high-risk HPV infection can interfere with the 
expression of RNMPs at the DNA, RNA and protein 
levels in cervical cancer. Understanding the upstream 
regulatory elements of RNMPs can provide valuable 
insights for clarifying the origin of cancer, developing 
screening methods, and preventing cancer. In 
summary, the characteristics, mechanisms, and 
potential application value of m5C modification in 
cancer need further exploration. 
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