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Abstract 

Introduction: High-risk/locally advanced prostate cancer (HRLPC) accounts for a large proportion of prostate cancer cases in China and 
is associated with a high recurrence rate. Androgen deprivation therapy-based treatment offers limited benefits, which may be associated 
with changes in epithelial cells and the tumor microenvironment (TME) after treatment. However, the cellular composition and molecular 
characteristics of the subpopulations following hormonal treatment in HRLPC remain unclear.  
Methods: To investigate the molecular characteristics of residual tumor samples in HRLPC patients following hormonal therapy and to 
identify the reasons for their high recurrence rates, this study performed single-cell sequencing on nine HRLPC patients. Additionally, by 
establishing patient-derived organoids (PDOs) and conducting drug screening, we analyzed epithelial cell subpopulations at different 
treatment stages and explored potential therapeutic strategies. 
Results: This study identified a population of luminal stem-like epithelial cells (Lum stem-like) with high transcriptional activity of SOX9. 
After hormonal therapy, these cells were still alive and became the predominant component of epithelial luminal cells. Additionally, after 
hormonal therapy, the proportion of stromal components, such as fibroblasts and endothelial cells, significantly increased in the TME, and 
the intercellular communication between fibroblasts and other cells was enhanced. The level of immune infiltration decreased, but the 
proportion of FOXP3+ Treg cells increased, leading to an “exhausted” immune microenvironment state. We confirmed that PDOs can 
accurately reflect the epithelial subtypes of the primary tumor, such as Lum stem-like cells. Using 18 potential therapeutic agents at the 
organoid level for drug screening, the results showed that the Lum stem-like cells exhibited greater sensitivity to platinum-based drugs. 
Conclusions: This study identified the dominant Lum stem-like epithelial cell subpopulation, along with changes in the TME characterized 
by increased stroma and decreased immune infiltration after hormonal therapy in HRLPC. These findings can help guide the subsequent 
treatment strategies for HRLPC patients. 

Keywords: high-risk/locally advanced prostate cancer; hormonal therapy; patient-derived organoids; single‐cell RNA sequencing; stem-like cells; tumor 
microenvironment 

Introduction 
Localized prostate cancer can be classified into 

localized low-and intermediate-risk prostate cancer, 
high-risk localized prostate cancer (Gleason score > 7 
and/or prostate-specific antigen (PSA) > 20 ng/mL 
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and/or clinical stage T3/T4), and locally advanced 
prostate cancer (any T and clinical N1) [1, 2]. 
Localized low- and intermediate-risk prostate cancer 
has a high proportion in Europe and the United States 
and is associated with a favorable prognosis [3]. 
However, high-risk/locally advanced prostate cancer 
(HRLPC) accounts for more than 50% of newly 
diagnosed prostate cancer cases in China [4-6]. In 
addition, HRLPC accounts for two-thirds of prostate 
cancer-specific deaths within ten years [7]. Androgen 
deprivation therapy (ADT) combined with potent 
androgen receptor (AR) signaling pathway inhibitors 
(such as enzalutamide) or androgen synthesis 
inhibitors (such as abiraterone) still cannot prevent 
HRLPC from progressing to castration-resistant 
prostate cancer (CRPC) due to resistance to hormonal 
therapy [8-11]. The poor efficacy and unfavorable 
prognosis may be closely related to changes in tumor 
cells and the tumor microenvironment (TME), as well 
as intercellular interactions, under the pressure of 
hormonal therapy. 

A large amount of single-cell transcriptomic data 
has been generated to characterize the tumor 
epithelial cells and TME in both newly diagnosed 
treatment-naïve localized prostate cancer and CRPC. 
Ren et al. performed single-cell sequencing on 12 
radical prostatectomy (RP) samples from patients 
with newly diagnosed localized prostate cancer, 
revealing multiple transcriptional programs related to 
metastasis in primary prostate cancer [12]. Other 
studies have analyzed CRPC, identifying its luminal 
cell lineage origins and transcriptional driving factors 
[13, 14]. However, the composition of tumor cell 
subpopulations and intercellular interactions within 
the TME under hormonal therapy pressure in 
HRLPC, which is in an intermediate evolutionary 
state, remain unclear. 

To identify the reasons for poor therapeutic 
efficacy in HRLPC patients and to analyze the 
dynamic changes in tumor cells and the TME 
following hormonal therapy, this study included nine 
HRLPC patients (two newly diagnosed and 
untreated, seven after hormonal therapy) for 
single-cell sequencing. We discovered and identified a 
group of luminal stem-like epithelial cells (Lum 
stem-like) that became the predominant component of 
epithelial cells after hormonal therapy. This 
subpopulation was insensitive to hormonal therapy 
and exhibited high transcriptional activity of 
stemness-related transcription factor SOX9. 
Furthermore, after treatment, there was a significant 
increase in the proportion of stroma, such as 
fibroblasts and endothelial cells (ECs) in the TME. The 
characteristic scoring of stromal cells like CXCL14+ 
fibroblasts was associated with poor prognosis. 

Communication between fibroblasts, Lum stem-like 
cells, and ECs was also enhanced after hormonal 
therapy. On the other hand, immune cell analysis 
revealed a significant decrease in the infiltration of 
CD4+ T cells, CD8+ T cells, and NK cells after 
treatment, and the immune microenvironment 
exhibited an “exhausted” state. To explore potential 
treatment strategies for HRLPC patients, we 
constructed patient-derived organoids (PDOs) from 
different stages of the patients before and after 
hormonal therapy. The results showed that PDOs 
faithfully reflected the luminal epithelial 
subpopulations of the primary tumor, such as Lum 
stem-like cells and neuroendocrine (NE) epithelial 
cells. We conducted drug sensitivity testing on 18 
potential prostate cancer treatment-targeted drugs at 
the organoid level, which revealed that the Lum 
stem-like cell subpopulation was more sensitive to 
platinum-based drugs. This study provides valuable 
resources for revealing changes in the tumor epithelial 
composition and TME in HRLPC patients after 
hormonal therapy and guiding subsequent treatment 
directions. 

Methods 
Ethics declarations—ethics approval and 
consent to participate 

All studies were conducted in compliance with 
relevant ethical guidelines. Research protocols 
involving human samples were reviewed and 
approved by the Ethics Committee of Xiangya 
Hospital, Central South University (202212810). 
Informed consent was obtained from all patients in 
accordance with the principles of the Declaration of 
Helsinki. Detailed clinicopathological information of 
the patients was provided in Supplementary Table S1 
and S2. 

Sample collection and preparation 
Nine patients diagnosed with prostate cancer 

through prostate needle biopsy and meeting the 
HRLPC criteria were included in this study. Seven 
patients received hormonal therapy with ADT plus 
AR signaling inhibitors before surgery. All patients 
underwent RP in Xiangya Hospital, Central South 
University. Prostate cancer tissue samples were 
collected based on preoperative imaging examination, 
needle biopsy reports, and macroscopic gross view. 
After sampling, tissues were immediately placed in 
tissue preservation medium (DMEM supplemented 
with 1% penicillin-streptomycin (Pen-Strep) 
(BioConcept, 4-01F00-H), 10 μM Y-27632 (Millipore, 
SCM075), and 100 µg/mL Primocin (InvivoGen, 
ant-pm-05)) and rapidly transported on ice to the 
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laboratory. All tissue samples were divided into four 
portions on ice for single-cell RNA sequencing 
(scRNA-seq), organoid culture, formalin fixation and 
flash freezing in liquid nitrogen for storage. 

Isolation and culture of PDOs 
PDOs were established based on previously 

reported protocols for prostate cancer organoid 
culture [15, 16] (Table S3). Briefly, tissue samples were 
washed with pre-chilled PBS and minced into small 
fragments approximately 1–2 mm³ in size, followed 
by digestion in adDMEM/F12 (Gibco, 12634010) 
containing 5 mg/mL Collagenase type II (Gibco, 
17101015), 1% Pen-Strep and 10 μM Y-27632 on a 
shaker at 37°C for 2–5 h. The fragments were pipetted 
every 30 min until they were completely dissociated. 
Digestion was terminated with adDMEM/F12, 
followed by centrifugation, resuspension and 
filtration through a 100 μm cell strainer. Red blood 
cell lysis was performed using eBioscience™ RBC 
Lysis Buffer (Invitrogen, 00-4300-54). The resulting 
cells were resuspended in a mixture of 70% Matrigel 
(Corning, 356231) and 30% adDMEM/F12 containing 
1% Pen-Strep and 10 μM Y-27632. Every 50 μL dome 
was plated onto a pre-warmed 24-well plate and 
incubated upside down in the 37 °C, 5% CO₂ 
incubator for 30 min to allow the matrigel to solidify. 
Subsequently, 500 μL organoid culture medium was 
added to each well. The medium was changed every 
2–3 days, and organoids were passaged every 10–14 
days depending on their growth. 

Tissue dissociation and 10x single-cell 
sequencing 

For tissues designated for scRNA-seq, enzymatic 
digestion was performed as described above, 
followed by filtration through a 40 μm cell strainer 
and red blood cell lysis. The resulting single-cell 
suspension was washed and resuspended in 100 μL 
adDMEM/F12, and cell concentration and viability 
were assessed using a Luna cell counter. Dead cells 
were removed based on the proportion of non-viable 
cells using the MACS Dead Cell Removal Kit 
(130-090-101), and the remaining cells were 
recounted. For organoids intended for scRNA-seq, 
they were dissociated into single cells using TrypLE 
(Thermo Fisher, 12604013) and subsequently counted. 
Both types of sequencing samples were resuspended 
at a concentration of 700–1200 cells/μL after cell 
counting. The entire mixed cell population was 
further analyzed without sorting or enrichment for 
specific cell subtypes. Sequencing and library 
construction were performed using the 10× Genomics 
Chromium Next GEM Single Cell 3ʹ Reagent Kits v3.1 
according to the manufacturer's protocol. The 

constructed libraries were subjected to 
high-throughput sequencing on the Illumina NovaSeq 
6000 PE150 platform. All steps were performed 
according to the manufacturer's standard procedures. 

scRNA-seq data processing, data integration 
and cluster annotation 

The raw data generated from high-throughput 
sequencing were processed using Cell Ranger 
(version 8.0.1, 10x Genomics) for quality control and 
alignment to the reference genome (human: GRCh38). 
Following the initial quality control by Cell Ranger, 
further quality filtering was conducted using the 
Seurat package (version 4.0.0) [17]. High-quality cells 
were retained based on the following criteria: gene 
numbers > 200, unique molecular identifier (UMI) 
count > 1000, log10GenesPerUMI > 0.7, hemoglobin 
RNA UMIs < 5%, and less than four times the median 
mitochondrial UMIs. Additionally, doublet cells were 
identified and removed using the DoubletFinder 
package (version 2.0.3) [18]. After quality control, the 
data were normalized using the NormalizeData 
function in Seurat. Highly variable genes (HVGs) 
(Top 2000) were identified using the 
FindVariableGenes function (mean.function = 
FastExpMean, dispersion.function = FastLogVMR). 
Batch effects in single-cell expression profiles were 
corrected using the mutual nearest neighbors (MNN) 
method in the batchelor package (version 1.6.3) [19]. 
Dimensionality-reduced results were visualized in 
two-dimensional space using UMAP. 

Cell clustering was performed using the 
FindClusters function at a resolution of 0.8. Cell types 
were annotated using the SingleR package (version 
1.4.1) [20], which calculated the correlation between 
cell expression profiles to be identified and those in a 
public reference dataset. Each cell to be identified was 
assigned the cell type with the highest correlation 
from the reference dataset. The final cell type was 
determined by selecting the reference cell type most 
closely related to the sample's cell expression profile 
and further manually identified using known cell 
subtype markers (Table S4). For cell subpopulation 
clustering, different cell types were extracted 
individually, and clustering was performed using the 
respective top 10 principal components (PCs) with 
different visual inspection resolutions. 

InferCNV estimation 
Based on gene expression level from single-cell 

transcriptomic data, CNV values within each 
chromosomal region (cutoff 0.1) were estimated by 
the inferCNV package (version 1.0.4) [21]. ECs and 
fibroblasts were selected as the normal reference cells. 
Genes were ordered according to their chromosomal 
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positions, and a sliding window of 101 genes was 
used to calculate the average gene expression values. 
The expression level of normal cells was used as a 
control, and the final CNV result file was generated 
after denoising. Spike-in methods was used to 
identify the normal epithelial cells and cancer cells 
[22, 23]. 

Gene signatures 
Gene list scores were calculated by 

AddModuleScore function in Seurat. TCGA and 
CPGEA prostate cancer gene lists were obtained from 
previous publication by Wang et.al [13]. The 
well-established gene signatures for AR target genes 
(AR score) and NE, luminal, basal, stem-like and 
epithelial-mesenchymal transition (EMT) scores were 
taken from Deng et.al and Dong et.al [14, 24]. 
Cytotoxic genes, including PRF1, GZMB, GZMH, 
GZMA, NKG7, GNLY, TNFSF10, IFNG and CST7, 
were obtained from Long et.al [25] (Table S5). 

Pathway analysis 
For Gene Set Enrichment Analysis (GSEA) 

analysis, Hallmark, GO and KEGG term enrichment 
analyses were performed using GSEA [26] with the 
H1 Hallmark gene set, C5 GO gene set and C2 KEGG 
gene set (version 7.2) from the MSigDB database 
(http://www.gsea-msigdb.org/gsea/msigdb). For 
Gene Set Variation Analysis (GSVA) analysis, the 
background gene set file was first downloaded and 
processed from the KEGG database using the 
GSEABase package (version 1.44.0). Pathway activity 
scores for individual cells were then assigned using 
the GSVA package (version 1.30.0) [27]. Finally, the 
differences in pathway activities between groups 
were calculated with the LIMMA package (version 
3.38.3). 

SCENIC analysis 
The SCENIC analysis was performed using the 

motifs database for RcisTarget and GRNboost 
(SCENIC version 1.2.4, and AUCell version 1.12.0) 
with default parameters [28]. Each transcription factor 
(TF) binding motifs were identified based on 
co-expression. Regulatory activity of each group of 
regulons was scored by the AUCell package. To 
evaluate the cell type specificity of each regulon, the 
regulon specificity score (RSS) [29] based on 
Jensen-Shannon divergence was calculated using the 
scFunctions package (https://github.com/ 
FloWuenne/scFunctions/). 

Pseudotime analysis by Monocle 
Cell differentiation trajectory inference was 

performed using the Monocle2 package (version 2.9.0) 

[30]. The importCDS function was used to convert the 
Seurat object into a CellDataSet object. Genes used for 
cell ordering (ordering genes, qval < 0.01) were 
screened by the differentialGeneTest function. 
Dimensionality reduction and clustering were 
performed using the reduceDimension function, 
followed by differentiation trajectory inference using 
the orderCells function. 

RNA velocity analysis 
The spliced and unspliced reads were computed 

using the Python script velocy.py [31] 
(https://github.com/velocyto-team/velocy.py) 
based on the Cell Ranger output folder. RNA velocity 
values for each gene in each cell were calculated using 
the R package velocy.R (version 0.6) [31] and 
projected onto the two-dimensional UMAP space for 
visualization. 

Cell–cell interaction analysis 
Intercellular ligand-receptor interaction analysis 

was performed using the CellChat R package (version 
1.1.3) [32]. First, the normalized expression matrix 
was imported, and a CellChat object was created 
using the createCellchat function. Preprocessing was 
conducted with default parameters using 
identifyOverExpressedGenes, 
identifyOverExpressedInteractions and projectData 
functions. Potential ligand-receptor interactions were 
calculated using computeCommunProb, 
filterCommunication (min.cells = 10) and 
computeCommunProbPathway functions. Finally, the 
intercellular communication network was aggregated 
using the aggregateNet function. 

Cell cycle analysis 
Cell cycle was predicted by the expression of 

"marker gene pairs" using the Cyclone function of the 
Scran package (version 1.14.3) [33]. The classification 
was performed using a training dataset and variations 
in gene expression levels. Cells were classified as 
being in S phase if both G1 and G2/M phase scores 
were below 0.5; otherwise, cells were assigned to the 
cell cycle phase with the higher score. 

Survival analysis 
Survival analysis was performed using the 

online tool GEPIA2.0. RNA-seq and clinical data from 
TCGA database for prostate adenocarcinoma (PRAD) 
and other malignancies were used to evaluate the 
association between genes or gene sets derived from 
specific cell states and prognosis. To assess the effect 
of specifically differentially expressed marker genes 
on tumor progression, tumor samples were divided 
into two groups with average expression levels of 
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target genes above 75% and below 25%, respectively. 
Survival curves were plotted using the Kaplan-Meier 
(KM) method, and statistical significance between the 
two groups was evaluated using the log-rank test 
(p-value). 

Hematoxylin-Eosin (H&E) and 
Immunohistochemistry (IHC) staining 

Prostate cancer tissues or matrigel dissolved 
PDOs were fixed overnight in 10% neutral formalin 
and embedded in paraffin for sectioning. The sections 
were stained with H&E (BSBA-4027, ZSGB-BIO) and 
subjected to IHC staining using antibodies such as 
PSMA (ab133579, Abcam) and CHGA (TA506095, 
ZSGB-BIO) following standard protocols (PV-9000, 
ZSGB-BIO). 

Multiplex immunohistochemistry (mIHC) and 
IF staining 

Double or triple IF staining was performed 
following the standard staining protocol provided by 
the TSA kit (AFIHC024, AiFang Biological). The 
antibodies used for staining included CD4 (#25229, 
CST), CD8 (#98941, CST), CD56 (#99746, CST), CD31 
(ab281583, Abcam), α-SMA (BM0002, Boster), 
COL1A1 (#72026, CST), ITGA1 (BD-PT5908, 
Biodragon), TROP2 (ab214488, Abcam) and SOX9 
(#82630, CST). The antibodies and corresponding 
concentrations were detailed in Supplementary Table 
S6. 

PDOs drug screening 
When organoids cultured in a 24-well plate 

reached a size of 100–150 μm, they were dissolved 
using TrypLE and digested into single cells. After 
terminating the digestion, cell density was calculated 
and adjusted to 400 cells/μL in adDMEM/F12 
medium supplemented with 70% Matrigel. A 
pre-warmed black, clear-bottom 96-well plate 
(Corning, #3904) was tilted, and 5 μL the cell 
suspension was pipetted into each well. The plate was 
inverted and incubated in a 37°C cell incubator for 10 
min to allow the matrigel to solidify. Subsequently, 
100 μL organoid culture medium (without EGF) was 
added to each well, and 100 μL PBS was added to the 
outermost wells of the plate. The growth of organoids 
was monitored periodically under a light microscope, 
and the culture medium was replaced every 2–3 days. 
After 7 days of culture, drug screening was initiated. 
For each well, 100 μL medium containing drugs or 
vehicle was added, with 3–5 replicates per group. The 
organoids were incubated with the drugs for 6 days 
and the growth was observed regularly using the 
microscope. On the 7th day post-treatment, organoid 
viability was assessed using the CellTiter-Glo ® 3D 

Cell Viability Assay kit (Promega). 

Statistics 
All data analyses were performed using 

GraphPad Prism 10. The significance of differences 
between groups was determined using the unpaired 
two-tailed Student’s t-test or Mann-Whitney U test. 
All values were presented as mean ± standard 
deviation, with statistical significance set at p < 0.05 
(*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). 

Results 
Significant increase in stromal proportion 
following hormonal therapy in HRLPC 
patients 

In our constructed HRLPC cohort, the pathologic 
complete response (pCR) rate of primary tumors in 
patients receiving hormonal therapy combined with 
RP was only around 10% (Figure 1A). Importantly, 
none of the pCR patients experienced biochemical 
recurrence (BCR) or radiographic recurrence, whereas 
the BCR rate among non-pCR patients was nearly 60% 
(Figure 1A). This suggests that the current treatment 
regimen provides limited efficacy for HRLPC 
patients. To clarify the changes in the TME of 
non-pCR patients following hormonal therapy, we 
performed scRNA-seq analysis on the primary tumor 
tissues and matched PDOs from nine HRLPC patients 
(Figure 1B), including two treatment-naïve samples 
(patient 01, 04), six castration-sensitive prostate cancer 
(CSPC) samples post-hormonal therapy (patient 02, 
05, 06, 07, 08, 09), one amphicrine (AR+ and NE+) 
CRPC sample post-hormonal therapy (patient 03) 
(Figure 1C). Although post-operative prostate-specific 
antigen (PSA) changes and pathological response 
evaluations indicated that all patients undergoing 
hormonal therapy had a treatment response, H&E 
staining showed that none of patients achieved pCR 
(Figure 1K; Figure 5H; Figure S1A). After scRNA-seq 
quality control, we analyzed a total of 91,117 cells 
across nine samples and identified seven distinct cell 
types (Figure 1D; Figure S1B-D). Based on established 
marker genes for major cell types, cells in the merged 
dataset from nine tissues were annotated as epithelial 
cells (EPCAM, CDH1, KRT8, KRT18), endothelial cells 
(ECs) (VWF, CDH5, PECAM1), fibroblasts (APOD, 
COL1A1, DCN, PDGFRA), smooth muscle cells 
(MYH11, TAGLN, ACTA2), T cells & NK cells (CD3D, 
CD3E, NKG7), B cells (CD79A, CD19), and myeloid 
cells (C1QA, C1QB) (Figure 1D-E, H). We observed 
that almost all major cell types were present in each 
primary tumor sample. However, epithelial cells, 
fibroblasts and immune cells displayed substantial 
heterogeneity between treatment-naïve and 
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post-treatment samples and were also cell subsets 
with more differentially expressed genes (DEGs), 
indicating highly dynamic transcriptional states in 
these cells after hormonal therapy (Figure 1F). We 
assessed the cell types using The Cancer Genome 
Atlas (TCGA) - PRAD and Chinese Prostate Cancer 
Genome and Epigenome Atlas (CPGEA) signature 
scores (Figure 1G; Figure S1E). In post-treatment 
samples, the proportion of immune cells significantly 
decreased, while the proportion of stromal cells, 
especially fibroblasts and ECs, significantly increased 
(Figure 1I-K). The above results suggest that these cell 
types deserve further in-depth investigation for their 
roles in shaping the TME of non-pCR cases. Next, we 
aimed to dissect the transcriptional dynamics of cell 
subpopulations in the TME post-hormonal therapy. 

Lum stem-like cells become the dominant 
luminal epithelial subgroup in residual tumors 
after hormonal therapy 

We performed dimensionality reduction on 
13,286 epithelial cells identified from the nine primary 
tumor samples, resulting in 10 subclusters (Figure 
S2A). Based on reported gene markers for prostate 
epithelium, we classified these into five epithelial cell 
subtypes with distinct expression patterns: basal cells 
and four luminal epithelial subtypes—Lum DPP4+, 
Lum stem-like, Lum Vim+ and Lum NE+ (Figure 2A; 
Figure S2B-D). We assessed the epithelial cell 
subtypes using TCGA - PRAD and CPGEA signature 
scores (Figure S2E-H). The results showed the lowest 
scores in basal cells. The signature scores of lineage 
marker genes for epithelial cells highlighted lineage 
characteristics of each custom subpopulation (Figure 
2B-C; Figure S2I-N). To further identify malignant 
epithelial cells within these subpopulations, we used 
ECs and fibroblasts as normal diploid reference and 
applied inferCNV to predict copy number variations 
(CNVs) at the single-cell level. Using the spike-in 
method, benign and malignant epithelial cells were 
identified in each sample (Figure S3A-C). Benign 
epithelial cells exhibited lower levels of CNV 
compared to malignant epithelial cells (Figure S3D). 
By comparing the composition of epithelial cell 
clusters before and after hormonal therapy, our 
results indicated that Lum stem-like and Lum NE+ 
cells emerged as the predominant components among 
luminal epithelial cell populations in post-treatment 
samples (Figure 2D). The proportion of Lum DPP4+ 
subtype decreased markedly in post-treatment 

samples, whereas the Lum stem-like subtype 
maintained a high proportion before and after 
treatment (Figure 2D). The shift in luminal epithelial 
cell subtypes directly reflected the composition of 
epithelial cells in residual tumor lesions of non-pCR 
patients following hormonal therapy. The proportion 
of Lum DPP4+ subtype with highest AR score 
diminished under hormonal treatment pressure, 
while other luminal epithelial subtypes especially 
Lum stem-like became predominant, suggesting a 
need for further analysis of these subtypes. First, we 
performed SCENIC analysis on the four malignant 
epithelial cell subtypes (Figure 2E). Regulons 
associated with stemness and the luminal signature 
transcription factors (TFs), such as SOX9, GATA3 and 
NFKB1, showed high regulon specificity score (RSS) 
in Lum stem-like cells (Figure 2F-G). Meanwhile, we 
found that SOX9 was relatively highly expressed in 
the Lum stem-like subgroup (Figure 2H). mIHC 
staining confirmed the high expression of SOX9 in 
post-treatment Lum stem-like cells (Figure 2I). SOX9 
is known for stemness maintenance, prevention of 
stem-like cell differentiation in various tumors, and is 
associated with prostate cancer progression and 
treatment resistance [34]. The high transcriptional 
activity of these TFs in the above cell clusters 
validated our definition of residual malignant cell 
subpopulations associated characterization. To 
further clarify the trajectory of malignant epithelial 
changes before and after hormonal therapy, we 
mapped the pseudotime trajectories of the four 
luminal epithelial subtypes (Figure 2J). Early state 
was characterized by Lum stem-like cells and Lum 
DPP4+ cells. This corresponded to the untreated 
tumors of patients 01 and 04, indicating a 
pre-treatment phase with an active AR-regulated axis 
before therapeutic intervention. In trajectory 1, the 
endpoint consisted predominantly of Lum NE1 NEPC 
cells, whereas the endpoint of trajectory 2 was 
composed of Lum stem-like cells, and a small 
proportion of Lum NE2 cells. These two distinct 
trajectory endpoints represented the residual 
epithelial cell states in patients with poor response to 
hormonal therapy—one type dominated by Lum NE1 
cells, representing CRPC patients with characteristic 
of neuroendocrine small cell carcinoma, and the other 
dominated by stem-like, EMT cells and a few Lum 
NE2 cells, representing CSPC patients with a high 
recurrence rate post-treatment.  
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Figure 1. Hormonal therapy leads to a notable rise in stromal proportion. (A) Pie charts showing the proportion of pCR and non-pCR patients in the HRLPC cohort 
after hormonal therapy (left), and the proportion of non-pCR patients who experienced biochemical recurrence (right). (B) Summary of experimental methodologies for 
single-cell analysis of HRLPC. Tissues were isolated from HRLPC patients, and both the tissues and successfully constructed organoids were dissociated into single cells for 
scRNA-seq. (C) Clinical, pathological information and PDOs construction status of the 9 patients. Samples are ordered according to therapy, treatment time, treatment 
response, Gleason score (GS), Gleason group (GG), PSA before hormonal therapy, PSA after hormonal therapy, NEPC. See also Supplementary Table 1. (D) UMAP plot showing 
identified cell populations from 9 HRLPC patients. (E) Dot plot showing representative marker genes across 7 cell subtypes. (F) UMAP plot showing the number of DEGs in each 
cell type. (G) UMAP plot showing the CPGEA signature score of all cell types. (H) Cell composition distribution for each patient sample. (I) UMAP plot showing the distribution 
of major cell types and treatment groups. (J) The stacked bar chart showing the cell composition distribution for each patient sample. (K) H&E staining showing the epithelial and 
stromal proportion change between treatment-naïve and post-treatment groups. 
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Figure 2. Lum stem-like cell is the dominant epithelial subgroup in HRLPC after hormonal therapy. (A) UMAP plot showing the subtypes of epithelial cells from 
9 HRLPC patients, including basal cells, Lum DPP4+, Lum stem-like, Lum Vim+ and Lum NE+. (B) UMAP plot of single-cell transcriptomic profiles colored by AR, luminal, 
stem-like, NE-like, basal and EMT gene signature score (z score) for each cell (dot). (C) Heat map representing the lineage scores of lineage marker gene signatures in cell 
subtypes. (D) Proportions of each epithelial cell subtypes before and after hormonal therapy and the composition of epithelial cell subtypes for each patient. (E) 
Subpopulation-specific regulons of each epithelial cell subpopulation revealed by SCENIC analysis. (F) The regulon specificity score (RSS) ranking plot for Lum stem-like cell 
subtype. (G) The transcriptional activity levels of SOX9 in epithelial cells, cells with the highest transcription level are colored blue. (H) The expression level of SOX9 in epithelial 
cells. Cells with the highest expression level are colored red. (I) H&E and mIHC staining showing TROP2+ (red) SOX9+ (green) and DAPI (blue) in Lum stem-like cells in patient 
08. (J) Pseudotime trajectory of epithelial cell subtypes by Monocle2. Trajectory is colored by pseudotime (left), cell subtypes (middle), treatment groups (right). (K-L) 
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Pseudotime trajectory and boxplot showing the latent time of epithelial cell subtypes by pseudotime. Trajectory is colored by cell subtypes for patient 01, 08 and 03. (M) 
Two-dimensional plots showing the dynamic expression of CHGA along the pseudo-time, colored by epithelial cell subclusters. (N) Bar plot for Hallmark pathway enrichment 
of upregulated genes for Lum NE1 and Lum NE2. (O) Heatmap showing the differentially expressed genes across two pseudotime trajectories. (P-Q) KM analysis showing the 
disease-free survival rate of TCGA-PRAD patients with high levels of the two trajectory varied genes using the two-sided log-rank test. 

 
We subsequently analyzed all epithelial cells in 

representative samples from treatment-naïve (patient 
01), post-treatment CSPC (patient 08), and 
post-treatment CRPC (patient 03) cases separately 
(Figure 2K-L). Patient 01 exhibited Lum DPP4+ cells, 
along with Lum stem-like cells already present. 
However, the proportion of Lum DPP4+ cells in 
patient 08 significantly decreased, indicating a 
gradual reduction of Lum DPP4+ cells during 
hormonal therapy. Lum stem-like cells remained 
abundant as a crucial component of residual tumors 
in non-pCR patients. In patient 03, Lum NE1 and Lum 
NE2 cells predominated, representing the final state 
of treatment resistance (Figure 2K-L). Both trajectory 
endpoints showed high expression of CHGA (Figure 
2M). We further compared NE1 and NE2 cells, finding 
that NE1 retained relative activation of the AR 
signaling axis and enrichment in cancer-promoting 
signaling pathways such as TNF-α and TGF-β, 
whereas NE2 showed upregulation in oxidative 
phosphorylation and mitochondrial metabolism 
(Figure 2N). By aligning the two trajectories with the 
pseudotime of luminal epithelial cells, we identified 
the distribution of each cell subtype and noted distinct 
gene expression changes along trajectories 1 and 2. In 
trajectory 1, there was a gradual upregulation of genes 
related to cell cycle and DNA replication, while 
trajectory 2 was characterized by increased expression 
of genes related to the mTORC1 pathway (Figure 2O). 
Genes upregulated at both endpoints were associated 
with shorter disease-free survival (DFS) in 
TCGA-PRAD (Figure 2P-Q). Overall, these two 
trajectories represent distinct malignant outcomes 
with different molecular characteristics in non-pCR 
patients post-hormonal therapy. The molecular 
features of various epithelial cell subtypes provide 
potential therapeutic targets for further targeted 
treatments.  

Fibro_CXCL14 and Fibro_SFRP4 are 
associated with poor prognosis in HRLPC 
patients 

A total of 11,839 fibroblasts were reclassified into 
six subclusters: Fibro_CSMD3, Fibro_TUBB3, 
Fibro_CLU, Fibro_BRINP3, Fibro_CXCL14, and 
Fibro_SFRP4 (Figure 3A), all of which expressed 
fibroblasts related genes such as PDGFRA and DCN 
(Figure 3B-C). The expression patterns, biological 
functions and proportions of each subcluster varied 
significantly pre- and post-hormonal therapy, 
indicating high intratumoral and intertumoral 

heterogeneity. The Fibro_CXCL14 and Fibro_SFRP4 
subclusters were rich in extracellular matrix and cell 
adhesion functions, with high expression of collagen 
genes (COL1A1, COL3A1, COL8A1, COL12A1), 
whereas the Fibro_BRINP3 subcluster was enriched in 
the cell differentiation pathway (Figure 3D). Using 
monocle2 for pseudotime analysis, we ordered 
fibroblasts along a pseudotemporal trajectory, with 
Fibro_BRINP3 as the starting point, revealing seven 
distinct states and two trajectory routes (Figure 3E-H). 
The endpoint of trajectory 1, composed of 
Fibro_CXCL14 and Fibro_SFRP4 cells, primarily 
originated from fibroblasts in patients 03 and 06. 
Genes upregulated along the pseudotime of trajectory 
1 were associated with cytokine-cytokine receptor 
interaction, hormonal therapy resistance and TGF-β 
signaling pathway (Figure 3I). Survival analysis using 
23 highly expressed genes as characteristic fibroblasts 
signature showed that a high score was associated 
with poor prognosis in prostate cancer (Figure 3J). 
This signature was also related to recurrence in other 
solid tumors include both cancer cells and stromal cell 
elements (Figure 3K-M). 

Cell-cell communication among Lum 
stem-like, fibroblasts and ECs is enhanced 
after hormonal therapy 

The proportion of stromal cells increased in 
post-hormonal therapy samples (Figure 1I-J). mIHC 
staining confirmed an increased proportion of stromal 
cells, particularly fibroblasts and ECs, within the TME 
after hormonal therapy (Figure 4A-B; Figure S4A). We 
analyzed the composition of endothelial cells after 
treatment, identifying a total of 24,700 ECs divided 
into five subtypes (Figure 4C; Figure S4B), and 
observed universal expression of the endothelial 
marker gene PECAM1 (CD31). High expression of 
FLT and ACKR1 indicated that most of ECs were of 
vascular origin (Figure 4D-E). GSVA analysis showed 
enrichment of pathways related to protein folding, 
angiogenesis, neuron recognition and steroid 
response (Figure 4F). Through RNA velocity analysis, 
we identified unsupervised pseudotime trajectories 
among various endothelial cell subtypes. ECs_HSPA6 
and ECs_THY1 cell subtypes were in the terminal 
differentiation stage as pseudotemporal mid-to-late 
stages (Figure S4C-D), and high expression of HSPA6 
and THY1 in TCGA-PRAD was associated with poor 
prognosis (Figure 4G-H). ECs_THY1 cells mainly 
originated from post-hormonal therapy CRPC patient 
03 (Figure 4C; Figure S4B). To investigate cell-cell 
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communication in the TME after hormonal therapy, 
we used CellChat to compute interaction strengths 
among cell types before and after therapy and found 
increased incoming and outgoing signaling strengths 
for Lum stem-like cells, ECs_THY1 and 
Fibro_CXCL14 after treatment (Figure 4I). Analysis of 
the number and strength of ligand-receptor cell 
communications among seven major cell types 
revealed that fibroblasts frequently interacted with 
epithelial cells and ECs after hormonal therapy 
(Figure 4J). These findings suggest that the 
reprogrammed interactome landscape of stromal cells 
post-hormonal therapy may be one reason for failing 
to achieve pCR in most HRLPC patients. We have 
demonstrated the simultaneous increase of fibroblasts 
and ECs and enhanced intercellular communication in 
the residual TME. Then we further analyzed the 
ligand-receptor interactions between fibroblasts and 
other cells within the TME (Figure 4K). Using 
CellChat to assess the cellular communication among 
cell subtypes post-hormonal therapy, we found that 
collagen pathways exhibited the strongest 
intercellular communication among all 
ligand-receptor pathways in post-treatment samples 
(Figure S4E-F). Ligand–receptor interaction analysis 
suggested potential crosstalk between Fibro_CXCL14 
cells and ECs, in which collagen secreted by 
Fibro_CXCL14 may bind to integrin receptors such as 
ITGA1 and ITGB1 on ECs (Figure 4L). mIHC staining 
further confirmed the spatial co-expression of 
COL1A1 and ITGA1 in post-treatment non-pCR 
samples (Figure 4M; Figure S4G). In general, the 
above results indicate that the stromal TME 
co-constructed by post-treatment fibroblasts, 
particularly Fibro_CXCL14 cells and ECs_THY1 are 
associated with hormonal therapy resistance and poor 
prognosis.  

Decreased immune infiltration and the 
formation of the immunosuppressive tumor 
microenvironment post-hormonal therapy 

Next, we characterized the transcriptional 
features of immune cell populations in HRLPC 
patients before and after hormonal therapy. 
Unsupervised clustering identified 14 clusters (Figure 
S4H), which were categorized based on characteristic 
genes into six CD8+ T cell subsets (CD8_CXCL13, 
CD8_IFNG, CD8_GZMK, CD8_KLK3, CD8_SLC16A7, 
CD8_SLC4A10), three CD4+ T cell subsets 
(CD4_CCR7, CD4_BTBD11, CD4_KLK3), and subsets 
of T regulatory (Treg) (Treg_FOXP3), NK 
(NK_NCAM1), and MAST (MAST_TPSB2) cells 

(Figure 5A-B). All immune cells were divided into 
two or three groups based on the treatment phase, 
with each group of cells present in the samples across 
different treatment stages (Figure 5C-D; Figure S4I-K). 
Notably, the proportion of T cells within total cells 
progressively decreased through the three stages, 
especially with only a minimal proportion observed 
in the treatment-NE stage (Figure 5E). Treg_FOXP3 
cells were enriched in post-treatment samples, 
exhibiting co-stimulatory and exhaustible 
characteristics, with high expression of 
immunosuppressive factors such as TIGIT and 
CTLA4 in Treg cells, but lower expression in other 
clusters (Figure 5F-G). mIHC staining revealed 
extensive infiltration of CD4+ and CD8+ T cells in 
pre-treatment samples, which decreased in 
post-treatment samples (Figure 5H-I). We detected the 
average expression of T cell exhaustion-related genes 
and inhibitory immune checkpoint receptor genes 
among the three groups, revealing elevated levels in 
the post-treatment samples, particularly the 
treatment-NE stage (Figure 5J-K). Exhaustion scores 
were applied to each subgroup, indicating that Tregs 
had the highest scores (Figure 5L). Survival analysis 
using five highly expressed genes as characteristic 
Treg signature showed that a high score was 
associated with poor prognosis in prostate cancer 
(Figure 5M). GSVA analysis of each immune cell 
subset revealed that CD8+ T cells were mainly 
associated with chemokine receptor binding and NK 
cell immune regulatory pathways, while Treg cells 
were enriched in TNFR activity, T cell lineage 
determination and Toll signaling pathways. Both 
KLK3+ T cells were highly enriched in the Golgi 
vesicle transport pathway, indicating high vesicular 
transport activity within the two cell subsets (Figure 
S4L). NK cells demonstrated significantly 
upregulated expression of cytotoxic genes, including 
GNLY, NKG7 and GZMB (Figure S4M-O). 
Furthermore, scoring using a published signature 
gene set of cytotoxicity indicated that NK_NCAM1 
cells exhibited a relatively high cytotoxicity score, 
suggesting stronger tumor-killing effect (Figure S4P). 
Additionally, we identified cell subsets expressing 
KLK2 and KLK3 in CD4+ and CD8+ T cells (Figure 5F), 
a phenomenon proven to be mediated by exogenous 
KLK3 [12], and the subsets significantly decreased 
post-hormonal therapy (Figure S4K). The above 
findings suggest that hormonal therapy alters the 
immune microenvironment of the primary prostate 
cancer lesion, gradually leading to immune-desert 
and immune-privileged states. 
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Figure 3. Fibro_CXCL14 and Fibro_SFRP4 are associated with poor prognosis in HRLPC patients. (A) UMAP plot showing the subtypes of fibroblasts from 9 
HRLPC patients, colored by subtypes. (B) The expression level of selected genes. Cells with the highest expression level are colored red. (C) Violin plots showing the expression 
levels of selected markers across fibroblasts subtypes. (D) Heatmap (left) displaying the top 10 differentially expressed genes for each defined subtype, and the bar chart (right) 
showing the GO biological process pathways enriched in each subtype. Significance was determined using a two-sided Wilcoxon rank-sum test. (E-G) Pseudotime trajectory of 
fibroblast subtypes by Monocle2. Trajectory is colored by pseudotime (E), cell states (F) and subtypes (G). (H) Boxplot showing the pseudotime of fibroblast subtypes by 
Monocle2. (I) Heatmap showing the differentially expressed genes across pseudotime trajectory 1. The bar charts above represent scaled depictions of subtypes, cell states, and 
cell clusters along the pseudotime differentiation trajectory. (J-M) KM analysis showing the disease-free survival rate of TCGA-PRAD (Prostate adenocarcinoma), LIHC (Liver 
hepatocellular carcinoma), PAAD (Pancreatic adenocarcinoma) and BLCA (Bladder Urothelial Carcinoma) patients with high and low levels of trajectory 1 fibroblasts 23 genes 
signature using the two-sided log-rank test. 
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Figure 4. Cell-cell communication among epithelial cells and the tumor stroma. (A-B) IF staining showing CD31 (red), a-SMA (green) and DAPI (blue) in 
treatment-naïve (A) and post-treatment (B) samples. (C) UMAP plot showing the 5 subtypes of ECs from 9 HRLPC patients, colored by subtypes. (D) The expression level of 
selected genes. Cells with the highest expression level are colored red. (E) Violin plots showing the expression levels of vascular endothelial markers across various EC subtypes. 
(F) Top three most enriched gene ontology (GO) terms for each EC subtype. (G-H) KM analysis showing the disease-free survival rate of TCGA-PRAD patients with high and 
low levels of THY1 (G) or HSPA6 (H) using the two-sided log-rank test. (I) The scatter plot showing the incoming and outgoing interaction strengths of each cell type in pre- and 
post-hormonal therapy samples. (J) Interaction number and strength of the 7 annotated cell types after hormonal therapy. (K) Heatmap illustrating the cell-cell interaction 
patterns in post-treatment samples. (L) Ligand-receptor pairs between Fibro_CXCL14 and ECs in the collagen pathway, and the communication probability and significance of 
their communication. (M) H&E and IF staining showing COL1A1+ (green), ITGA+ (red) and DAPI (blue) in treatment-naïve group (patient 04) and post-treatment group (patient 
08). 
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Figure 5. Hormonal therapy reduces immune infiltration and fosters an immunosuppressive tumor microenvironment. (A) UMAP plot showing the subtypes 
of immune cells from 9 HRLPC patients, colored by subtypes. (B) The expression level of selected cluster-specific genes. Cells with the highest expression level are colored red. 
(C) UMAP plot showing the treatment groups of immune cells from 9 HRLPC patients, colored by treatment groups. (D) The stacked bar chart representing relative abundance 
of three treatment groups in immune subtypes. (E) Boxplot indicating the proportion CD4+ T, CD8+ T and NK cells in three treatment groups (Treatment-naïve, n = 2; 
Treatment-adeno, n = 6; Treatment-NE, n = 1). (F) Dot plot showing representative marker genes across 12 immune cells subtypes. (G) Heatmap indicating the expression of 
selected gene sets in each immune cell subtype, including naïve, resident, exhausted, cytotoxicity, stimulatory, transcription factors, Treg and cell type. (H) H&E and mIHC 
staining showing CD8+ (green), CD4+ (red) and DAPI (blue) in treatment-naïve group (patient 04), treatment-adeno group (patient 02) and treatment-NE group (patient 03). (I) 
The bar plots showing the quantification results, n = 3 (9 view fields in total). The error bar indicates standard error of the mean. (J) The expression levels (Log2 Exp) of T cell 
exhaustion-related genes and inhibitory immune checkpoint receptor genes across the three treatment groups. (K) The expression levels of CTLA-4, FOXP3, IL2RA and IKZF2 
in immune cells. Cells with the highest expression level are colored red. (L) Box plots showing the exhaustion score of all immune cells subtypes. (M) KM analysis showing the 
disease-free survival rate of TCGA-PRAD patients with high levels of the Treg signature genes using the two-sided log-rank test. 
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PDOs display epithelial subpopulation 
characteristics that correspond to those 
observed in tissue samples 

Our HRLPC cohort data indicated that the 
five-year BCR rate approached 60% for HRLPC 
patients who did not achieve pCR after hormonal 
therapy. However, existing cell lines poorly model the 
remaining tumor epithelial cells diversity under 
hormonal therapy. To elucidate the intratumoral and 
intertumoral heterogeneity following hormonal 
therapy in HRLPC patients and explore subsequent 
treatment strategies, we optimized an established 
protocol to culture patient-derived prostate cancer 
organoids from primary lesions obtained from three 
HRLPC patients (Patient 01, 03, 08) who underwent 
RP. ScRNA-seq was performed on three organoids 
(ORG 01, 03, 08) (Figure 6A), representing an 
untreated CSPC patient at initial diagnosis, a 
non-pCR CSPC patient post-hormonal therapy, and a 
non-pCR CRPC patient post-hormonal therapy, 
respectively (Figure 6B-C). Comprehensive analysis of 
36,748 cells from the three pairs of matched primary 
tumor tissues and organoids via uniform manifold 
approximation and projection (UMAP) 
dimensionality reduction revealed 17 subclusters 
(Figure 6D). The matched tissues and organoids 
exhibited high distributional concordance, with 
epithelial cells showing a relatively high 
TCGA-PRAD signature score (Figure 6E-F). Prostate 
cancer PDOs were primarily composed of epithelial 
cells (Figure 6G). Further analysis of the cluster 
composition of epithelial cell subsets in matched 
tissue-organoid pairs showed good consistency. 
Epithelial cells in CSPC tissues and organoids were 
primarily composed of Clusters 1, 7, 9, and 11, while 
those in the CRPC tissue and organoid were mainly 
composed of Clusters 3, 8, and 14 (Figure 6H). The 
results of high correlation analysis of epithelial cell 
clusters between tissue and organoid pairs also 
demonstrated the consistency of the matched samples 
(Figure 6I-K). Additionally, we conducted inferCNV 
analysis on immune cells and epithelial cells from the 
three matched tissue-organoid pairs and determined 
the CNV landscape (Figure 6L). We found that 
epithelial cells from organoids showed higher CNV 
levels than those from tissues (Figure 6M), suggesting 
competitive survival of different types of malignant 
epithelium during organoid culture. Overall, 
organoids derived from residual primary samples of 
both treatment-naïve and post-hormonal therapy 
accurately reflect the malignant epithelial 
characteristics of their parental tissues. 

Molecular characteristics at single-cell 
resolution suggest that platinum-based 
chemotherapy is the treatment direction for 
Lum stem-like dominated patients 

Our previous analysis of primary tumor 
epithelial cells indicated that the main components of 
residual tumors following hormonal therapy were 
Lum stem-like and Lum NE+ cells, both of which 
showed molecular characteristics associated with 
treatment resistance and recurrence in prostate 
cancer. To explore further treatment options for 
non-pCR patients, we performed dimensionality 
reduction on 21,095 epithelial cells from three 
matched tissue and organoid pairs (Figure 7A; Figure 
S5A-C). Based on basal, luminal, stemness and NE 
signature scores, we redefined these cells into five 
subtypes (Basal, Lum DPP4+, Lum stem-like 1, Lum 
stem-like 2, Lum NE+) (Figure 7B-C). 
Immunofluorescence (IF) staining of organoids 
showed that they primarily consisted of luminal 
epithelial cells expressing CK8, with absent CK5 
expression (Figure 7D). Consistent with findings from 
the nine tissue samples, a population of Lum 
stem-like cells was present in both pre- and 
post-treatment CSPC samples, and continued to 
persist in residual lesions despite the decrease in Lum 
DPP4+ cells under hormonal therapy pressure (Figure 
7A-B). We found that ADT combined with 
enzalutamide (ENZA) (10 μM) still showed good 
efficacy for initially untreated CSPC PDOs (Figure 
7E), whereas neither non-pCR CSPC nor CRPC PDOs 
post-treatment achieved half-maximal inhibition, 
indicating a shift in dominant subclones of epithelial 
cells in post-treatment samples. Specifically, Lum 
stem-like and Lum NE+ cells exhibited resistance to 
ADT and ENZA (Figure 7F-H). Cell cycle analysis of 
three organoid samples revealed a high proportion of 
S/G2M phase cells in ORG 01 and ORG 03, while 
ORG 08 composed mainly of Lum stem-like 1 and 
Lum stem-like 2 cells, also retained a high proportion 
of S phase cells (Figure S5D-G). These results 
indicated that most cells in PDOs from both 
treatment-naïve and post-treatment patients were in a 
dividing phase, and a portion of cells in 
post-treatment CSPC patients also remained in this 
period. We conducted drug screening on ORG 03 and 
ORG 08, using hormonal therapy in combination with 
other treatment regimens such as chemotherapy and 
several classes of drugs commonly used in phase II-III 
clinical trials. We found that ORG 01 and ORG 08 
were more sensitive to cisplatin and carboplatin, and 
ORG 03 showed sensitivity to carboplatin (a first-line 
medication for small cell lung cancer) (Figure 7I-L; 
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Figure S5H-I). The combined analysis of single-cell 
transcriptomics data and organoid drug screening 
results indicated that residual tumors in non-pCR 
patients after hormonal treatment had been shaped by 
treatment pressure. Many potentially resistant cells, 
like Lum stem-like and Lum NE+ cells, survived and 

exhibited significant heterogeneity, which limited the 
effectiveness of ADT combined with AR signaling 
inhibitors. Platinum-based chemotherapy like 
cisplatin and carboplatin may be effective for patients 
predominantly composed of Lum stem-like cells and 
Lum NE+ cells dominant tumors. 

 

 
Figure 6. Single-cell transcriptomic landscape of primary lesions and matched PDOs from HRLPC patients. (A) Workflow of sample collection, PDOs 
development, data analysis, and drug screening in this study. (B) H&E and IHC staining of tissues from three subgroups: treatment-naïve (patient 01), treatment-adeno (patient 
08), and treatment-NE (patient 03). (C) Bright-field images of PDOs from treatment-naïve (patient 01) and treatment-adeno (patient 08) groups. (D-F) UMAP plots showing the 
distribution of major cell types, sample names and TCGA signature score of 3 pairs of tissues and PDOs. (G) The stacked bar chart representing relative abundance of 6 samples 
in cell types. (H) UMAP plots (top) of 3 pairs of tissues and PDOs. Bar plots (bottom) showing the number of cells in each cluster within each sample. (I-K) Heatmap depicting 
pairwise correlations among epithelial cell clusters derived from 3 pairs of tissues and PDOs. (L) inferCNV heatmap with hierarchical clustering from 3 pairs of tissues and PDOs. 
The top panel indicates a lack of CNV events in reference cells. The bottom panel is the epithelial cells. (M) Violin plot of the median and distribution densities of CNV levels in 
3 pairs of tissues and PDOs (****p < 0.0001).  
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Figure 7. Single-cell transcriptomic features of epithelial cells in tissues and PDOs, along with organoid drug testing results. (A-B) UMAP plot showing the 
subtypes of epithelial cells from 3 pairs of tissues and PDOs, colored by samples and subtypes. (C) UMAP plot of single-cell transcriptomic profiles colored by AR, luminal, 
stem-like, NE-like, basal and EMT gene signature score (z score) for each cell (dot). (D) IF staining showing CK5 (green), CK8 (red), Phalloidin (yellow) and DAPI (blue) in 
treatment-adeno group (patient 08). (E-G) Bar plot showing the relative 3D cell viability after treatment with dihydrotestosterone (DHT) + DMSO, ADT, and ADT + ENZA (10 
μM) across the three organoid groups: treatment-naïve (patient 01), treatment-adeno (patient 08), and treatment-NE (patient 03). Bars represent mean ± s.e.m. for at least three 
independent experiments. * P < 0.05, ** P < 0.01, *** P < 0.001. (H) PDOs after treatment with DHT + DMSO, ADT, and ADT + ENZA (10 μM). (I-L) Bar plot and organoids 
bright-field images showing the relative 3D cell viability after treatments in treatment-adeno (I-J, patient 08), and treatment-NE (K-L, patient 03). 

 

Discussion 
HRLPC patients have a high prevalence and 

poor prognosis in China [35]. Hormonal therapy as 
the cornerstone has been recommended as the 

treatment regimen for HRLPC patients, while 
approximately 50% patients experience recurrence 
within five years [36]. For non-pCR patients after 
hormonal therapy, exploring the changes in 
malignant epithelial cells and the TME post-treatment 
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could provide key insights for further treatment 
strategies. Currently, numerous studies on localized 
prostate cancer and CRPC have widely utilized bulk 
transcriptomics, scRNA-seq and proteomics, and 
these multi-omics data results provide significant 
insights into the molecular characteristics of prostate 
cancer at these stages [37-39]. However, for HRLPC 
patients, there is a scarcity of single-cell resolution 
studies focused on this specific sample type, 
especially regarding intra- and inter-tumoral 
heterogeneity in residual tumors and changes in the 
TME after hormonal therapy. In this study, we aimed 
to use radical resection samples from HRLPC patients 
pre- and post-hormonal therapy to provide a 
comprehensive single-cell transcriptomic landscape, 
characterizing the epithelial cells and TME in 
non-pCR patients. This study details the cellular 
diversity and heterogeneity of tumor, stromal and 
immune components in post-treatment HRLPC 
tissues, as well as in matched PDOs. The results reveal 
the molecular characteristics of various cell 
subpopulations at single-cell resolution that 
contribute to the high recurrence rate in non-pCR 
patients. 

ScRNA-seq results of transgenic mice prostate 
cancer offer certain reference effect on human prostate 
cancer. Recent scRNA-seq studies in mice have shown 
that normal prostate luminal epithelial cells exhibit a 
degree of adaptability after castration surgery, and a 
stem cell-like luminal subpopulation has been 
identified [40], which has also been observed in 
human benign prostatic hyperplasia tissues [41]. Our 
study identified a population of Lum stem-like cells in 
HRLPC patients, which became the dominant 
subpopulation in non-pCR patients after treatment. 
Unlike the extremely rare CRPC-like cells that existed 
in pre-treatment samples proposed by Cheng et al. 
[42], Lum stem-like cells expressed stemness 
transcription regulators with high transcriptional 
activity, such as SOX9 and stem cell-like genes (e.g., 
Ly6d and Tacstd2/Trop2), which were closer to the 
Luminal-C cells in mouse models [43]. Our data 
suggested that this cell population responded poorly 
to hormonal therapy, exhibited low AR and NE 
pathway scores, and was predominantly in the early 
and middle stages of the pseudotemporal trajectory, 
prior to the NEPC phase, which may be one of the 
main reasons for the high recurrence rate in non-pCR 
HRLPC patients after hormonal therapy. 
Additionally, we identified a population of Vim+ 
epithelial cells that increased in proportion after 
hormonal therapy. Pseudotime analysis suggested 
that these cells emerged in the middle and late stages 
of treatment and gradually lost epithelial markers. 
This subpopulation displayed high transcriptional 

activity of EMT-related regulons such as ETS1, 
MEF2C and KLF2 [44]. ETS1, a member of the ETS TFs 
family, has been shown to promote the acquisition of 
invasiveness, EMT, angiogenesis and drug resistance 
in cancer cells. In prostate cancer, ETS1 can promote 
EMT processes through TGF-β signaling pathway in 
cancer cells, involving in cancer progression [45, 46]. 
NEPC, as the terminal state of CRPC, represents a 
subset of patients who are completely resistant to 
hormonal therapy. In our study, Lum NE+ cells were 
predominantly present in the patient 03, and a portion 
of Lum NE+ cells was identified in the non-pCR CSPC 
patient post-treatment (patient 06), indicating 
treatment-induced NEPC (tNEPC) differentiation [47, 
48]. In the epithelial cell pseudotime trajectory, both 
Lum NE1 and Lum NE2 cells appeared at the 
pseudotime terminal stage of luminal epithelial cells 
yet displayed distinct molecular characteristics. Lum 
NE1 cells exhibited dual-positive (AR+ and NE+) cells 
with sustained activation of the AR signaling axis, 
while Lum NE2 cells demonstrated features of 
metabolic reprogramming, with upregulation of 
genes related to oxidative phosphorylation. Our 
findings suggest that tNEPC exhibit significantly 
intra- and inter-tumoral heterogeneity, which may be 
a critical factor in the limited survival benefit of 
current therapies for NEPC patients. 

Fibroblasts and ECs, as crucial components of 
the TME, have been shown to play a significant role in 
prostate cancer recurrence, metastasis and therapeutic 
resistance [49-52]. In our samples, these two cell types 
were markedly increased in samples following 
hormonal therapy, and a significant increase in 
stromal components post-treatment was also 
confirmed by H&E and mIHC staining of matched 
tissue samples. The high recurrence rate in non-pCR 
patients drew our attention to the interactions 
between stromal components and their impact on 
residual tumor cells. High expression of THY1 in ECs 
is associated with poor prognosis across various 
cancers [53], and the increase in vascular ECs 
post-treatment likely provides essential blood supply 
to residual tumors, which may contribute to prostate 
cancer recurrence following hormonal therapy. 
Fibroblasts have become central members of the TME, 
acting as fertile "soil" that supports tumor cell "seeds" 
in multiple ways [54]. Our findings indicated a 
significant increase in fibroblasts promoting tissue 
remodeling post-hormonal therapy. Two subtypes, 
Fibro_CXCL14 and Fibro_SFRP4 at the end of 
pseudotime trajectory 1, with significant enrichment 
in pathways related to extracellular matrix 
remodeling, cell migration and adhesion were 
defined. These findings suggested that fibroblasts 
underwent reprogramming after hormonal therapy, 
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creating a stromal environment more conducive to 
tumor survival. The fibroblasts gene set we 
constructed achieved a good predictive value for 
recurrence in prostate cancer and other solid tumors. 
Intercellular communication analysis revealed that 
fibroblasts exhibited extensive signaling interactions 
with epithelial cells and other stromal components. 
Fibroblasts highly expressed type I collagen genes 
such as COL1A1 and COL1A2, and secreted collagen 
into the TME after hormonal therapy. These proteins 
have been demonstrated in previous studies to be 
associated with tumor progression and reduced 
immune infiltration in various cancers [55, 56]. For 
example, the network structure formed by collagen 
and integrins facilitates the migration of stromal cells 
towards the glands and encapsulates the glands [57]. 
The accumulation of fibroblasts and ECs in residual 
tumor lesions post-hormonal therapy forms a barrier, 
reducing immune cell infiltration around glands and 
contributing to an hormonal therapy-induced 
immune-desert state in prostate cancer [58]. 

Numerous phase II and III clinical trials have 
attempted immunotherapy for metastatic CRPC 
patients, but the efficacy has been generally 
disappointing [59-61]. Single-cell transcriptomic 
studies of the primary sites of prostate cancer have 
indicated that the TME is relatively immune-depleted, 
which may explain the poor efficacy of 
immunotherapy in prostate cancer [12, 40, 62]. This 
study revealed the changes in the immune 
microenvironment of the primary prostate cancer 
lesion in HRLPC patients after hormonal therapy. In 
the pre-treatment samples, immune cell proportions 
were significantly higher than previously reported 
sparse immune infiltration in primary prostate cancer 
lesions [12, 63]. However, we found that the 
proportion of immune cells, particularly T cells, 
reduced significantly in seven HRLPC patients 
post-hormonal therapy compared with pre-treatment 
patients, with some non-pCR cases (e.g., patient 03, 
06) showing an “immune-desert” phenotype. This 
contrasted with previous findings of substantial T-cell 
infiltration in the TME following ADT treatment [64, 
65]. Additionally, similar to previous studies, a 
population of KLK3-expressing CD4+ and CD8+ T cells 
was also identified in our study [12]. These cells 
exhibited high levels of Golgi vesicle transport and 
were associated with immune responses mediated by 
myeloid cells and mast cells, while the proportion of 
these cells significantly decreased post-hormonal 
therapy, potentially due to the suppression of the AR 
signaling pathway. On the other hand, cell 
populations that increased post-treatment included 
immunosuppressive Treg_FOXP3 cells and senescent 
CD8_GZMK cells, which highly expressed 

immunosuppressive related molecules such as TIGIT, 
CTLA-4 and LAG3. This suggests that reduced 
immune infiltration and the emergence of 
immune-privileged state after hormonal therapy may 
contribute to the failure of immunotherapy. Previous 
studies have shown that there is also a high level of 
immune infiltration in metastases of treatment-naïve 
metastatic CSPC patients, and T-cell infiltration could 
be induced and maintained in these lesions when 
treated with ADT combined with immunotherapy 
[66]. Collectively, these findings suggest that there is a 
subset of prostate cancer patients with initially high 
immune infiltration, while who transition to an 
immune-desert or immunosuppressive state after 
hormonal therapy. Identifying these patients at initial 
treatment could help determine those who may 
benefit from combined immunotherapy strategies. 

The application of organoid construction in 
prostate cancer has become increasingly matured, and 
breakthroughs have been made in lineage plasticity 
research using genetically engineered mouse-derived 
prostate organoids [43, 67]. Since Gao et al. 
successfully established PDOs from metastatic 
prostate cancer, the application of prostate cancer 
PDOs has gradually attracted considerable attention 
[15, 68, 69]. However, there remains a lack of in-depth 
single-cell analysis of PDOs. To our knowledge, the 
only study performing scRNA-seq on primary 
prostate cancer organoids contained only a small 
number of tumor cells, with the majority composed of 
normal epithelial cells and exhibiting low 
concordance with the paired parental tissues [62]. In 
our study, we successfully constructed organoids 
from primary lesions of prostate cancer patients 
before and after hormonal therapy and conducted 
scRNA-seq on early-passage organoids and matched 
tissues. Our results provided a comprehensive 
single-cell transcriptomic profile of PDOs and 
matched tissues, demonstrating a high degree of 
concordance. The cell subpopulations within PDOs 
corresponded well to those in the parental tissues, 
effectively reflecting the molecular characteristics of 
epithelial cells within the original tissues. For 
non-pCR patients with high interpatient 
heterogeneity following hormonal therapy, the 
construction of homologous PDOs provides valuable 
guidance for formulating subsequent treatment 
regimens [70, 71]. By integrating single-cell 
transcriptomic analysis with drug screening on 
organoids, we identified potential reasons for the 
persistence of residual tumor in non-pCR patients 
after hormonal therapy. Additionally, alternative 
treatment strategies such as CDK4/6 inhibitors, PARP 
inhibitors, BET inhibitors and platinum-based 
chemotherapy were tested in PDOs. CDK4/6 
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inhibitors, such as Palbociclib, are currently being 
investigated in clinical trials for mCRPC and 
RB-positive metastatic prostate cancer. Although their 
combined efficacy with ADT was suboptimal in 
organoids in this study, CDK4/6 inhibitors have been 
shown to enhance tumor immune response and 
increase tumor-infiltrating lymphocytes. This 
suggests a potential synergistic effect when combined 
with immune checkpoint inhibitors in the 
immunosuppressive microenvironment formed after 
ADT treatment in prostate cancer [72]. In addition, we 
found that platinum-based chemotherapy exhibited 
significant inhibitory and cytotoxic effects on 
organoids predominantly composed of Lum stem-like 
cells and Lum NE+ cells. Currently, platinum plus 
etoposide combination therapy is recommended in 
clinical practice for neuroendocrine-differentiated or 
small cell prostate cancer; however, no phase 3 clinical 
trial data are available to support these 
recommendations [73]. Existing studies suggest that 
platinum-based therapies have shown promising 
preliminary results in mCRPC [74]. Further 
investigation into the efficacy of platinum-based 
therapies in specific CSPC and CRPC subtypes is 
crucial for optimizing their clinical application. The 
results may offer guidance for future clinical decisions 
in HRLPC patients and potentially reduce recurrence 
rates. 

Furthermore, we found that current prostate 
organoid culture conditions predominantly 
supported epithelial cell preservation from parental 
tissues after several passages, yet struggled to retain 
the original TME, such as fibroblasts and immune 
cells. Currently, co-culture with PDOs requires the 
addition of exogenous cells [51, 75], adding 
complexity to the culture process. Therefore, 
exploring primary organoid construction and culture 
paradigms that can directly simulate interactions 
between the TME and organoids from primary lesions 
is of great significance for in-depth analysis of the 
relationship between stroma and tumor cells [76]. 

Since biopsy samples were primarily used for 
pathological diagnosis, paired longitudinal 
scRNA-seq analysis of samples before and after 
hormonal therapy was not conducted. Additionally, 
given the interpatient heterogeneity in prostate 
cancer, the data from seven post-treatment non-pCR 
patients may not fully represent the entire non-pCR 
patient population. However, this remains the largest 
scRNA-seq dataset of non-pCR samples after 
hormonal therapy from HRLPC patients to date. 

Conclusions 
In summary, our study provides a unique 

single-cell transcriptomic dataset of primary tumor 

lesions and matched organoids from non-pCR 
HRLPC patients after hormonal therapy, which 
encompasses diverse cellular components within the 
TME and has been validated at the organoid level. 
This data facilitates a deeper understanding of 
recurrence mechanisms in non-pCR patients 
following hormonal therapy and offers valuable 
resources to guide subsequent precision treatment. 
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