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Abstract 

Background: Glucose is a central substrate in cellular metabolism and serves as a non-invasive biomarker for pathological 
processes. Dynamic glucose-enhanced (DGE) MRI based on chemical exchange saturation transfer (CEST) offers a promising tool 
for mapping glucose uptake, but its quantification is confounded by glucose-induced changes in T2 relaxation in addition to glucose 
concentration.  
Methods: We developed a single-shot multiparametric CEST (MP-CEST) MRI sequence based on multi-echo spatiotemporal 
encoding (SPEN), enabling the simultaneous acquisition of T2 and saturation-weighted proton density (PD) maps within a single 
scan. To correct for T2-related confounding effects in glucoCEST quantification, a two-step correction strategy was employed. 
First, the saturation-weighted PD maps, which mitigate T2-dependent signal attenuation during image acquisition, were used to 
reconstruct the Z-spectrum, thereby providing a more accurate representation of the true saturation signal amplitude. Second, 
calibration curves derived from Bloch–McConnell simulations were applied in combination with the simultaneously acquired T2 
maps to compensate for spillover effects in the Z-spectrum, thereby improving glucose-specific CEST contrast. The full framework 
was validated through phantom experiments and in vivo studies in rat brain and tumor xenograft models. Quantitative performance 
was evaluated by computing the Pearson correlation between DGE signals and T2 values before and after correction, as well as by 
comparing fitted T2 and PD values with reference maps. 

Results: Phantom experiments demonstrated high accuracy in PD and T2 quantification (R2 > 0.99). In vivo studies in rat brain and 
tumor xenografts showed that the proposed correction method significantly reduced the correlation between DGE signals and T2 
values, improving the specificity of glucose-related contrast. In addition, T2 maps provided complementary structural and 
physiological information relevant to tumor heterogeneity and tissue microstructure. 
Conclusions: The proposed MP-CEST approach improves the robustness and accuracy of DGE quantification, offering a more 
comprehensive metabolic imaging framework applicable to both oncological and neurological research. 
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Introduction 
Glucose is the primary source of energy in most 

organisms [1], and abnormal glucose metabolism is a 
hallmark of numerous diseases, such as cancer [2, 3], 
diabetes [4, 5], and Alzheimer’s disease [6, 7]. 
Monitoring glucose dynamics is not only critical for 
maintaining metabolic homeostasis and 
understanding physiological processes but also serves 
as a key biomarker for disease diagnosis, progression 
tracking, and therapeutic response assessment [8, 9]. 

Given its clinical significance, developing sensitive 
and non-invasive glucose imaging techniques is 
valuable for improving the detection and 
management of glucose-related disorders [10]. 

For several decades, glucose uptake and 
metabolism have been assessed non-invasively using 
[18F]-fluorodeoxyglucose positron emission 
tomography (FDG-PET) [11]. Despite its great 
detection sensitivity, the high cost of FDG-PET limits 
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its widespread clinical application. In addition, the 
use of a radioactive tracer is not ideal for repeated 
measurements, especially when combined with CT 
for anatomical referencing [12]. Alternative methods 
for assessing glucose uptake and utilization include 
13C, 2H and 1H in vivo magnetic resonance 
spectroscopy (MRS) [13-15], along with a novel 
deuterium metabolic imaging approach [16]. 
Although MRS techniques have been successful in 
studying basic metabolic processes during glucose 
infusion, their limited detection sensitivity and spatial 
resolution pose challenges for clinical 
implementation. 

Recently, glucose chemical exchange saturation 
transfer (glucoCEST) MRI has been well-established 
for detecting unlabeled glucose at physiologically 
relevant concentrations by exploiting the interaction 
between hydroxyl protons and water [1, 17, 18]. The 
time-resolved variant, known as Dynamic 
Glucose-Enhanced (DGE) MRI, measures dynamic 
changes in MR signals induced by variations in 
glucose concentration following administration. This 
approach was developed to study glucose dynamics 
with high temporal resolution by omitting the 
time-consuming acquisition of full spectra [19, 20]. As 
research progressed, it became evident that 
fluctuations in glucose concentration also modulate 
tissue T2, as reported in previous studies [21]. This 
newly recognized T2-dependent effect introduces a 
confounding influence on the interpretation of DGE 
signals via two primary mechanisms. First, the 
glucoCEST resonance lies in close spectral proximity 
to the bulk water signal (~1 ppm), making it highly 
vulnerable to spillover artifacts. The extent of this 
spillover is known to depend on tissue T2 relaxation, 
implying that variations in T2 can indirectly alter the 
observed glucoCEST contrast by modulating the 
degree of signal contamination [22, 23]. Second, T2 
decay during image acquisition can influence the 
measured CEST signal [24]; thus, variations in T2 may 
induce glucoCEST signal changes that reflect glucose 
concentration in a confounded or more complex 
manner [21]. Despite the potential for these T2-related 
effects to bias both the sensitivity and specificity of 
DGE measurements, they have received limited 
systematic investigation. To date, few studies have 
quantitatively assessed the impact of T2 variability or 
developed correction strategies to mitigate its 
confounding influence, leaving a critical 
methodological gap in the accurate interpretation of 
glucose-enhanced MRI data. 

In this study, we address the confounding 
impact of T2 variability on DGE signal quantification 
by proposing a novel single-shot multiparametric 
CEST (MP-CEST) technique based on multi-echo 

spatiotemporal encoding (SPEN). This approach 
enables the simultaneous acquisition of T2 and 
saturation-weighted proton density (PD) maps 
through numerical fitting of multiple T2-weighted 
images acquired at different echo times [25, 26]. By 
leveraging the saturation-weighted PD signal for DGE 
quantification, our method minimizes T2 
decay-related modulation effects during image 
readout. In addition, we derived T2 calibration curves 
based on Bloch-McConnell simulations and T2 maps 
to retrospectively correct for T2-induced changes 
occurring during CEST saturation. The feasibility and 
efficacy of this correction strategy were validated 
through both phantom experiments and in vivo 
imaging in rat brain and subcutaneous tumor 
xenograft models. Statistical evaluation demonstrated 
the potential of the proposed MP-CEST approach to 
improve the reliability of DGE measurements under 
varying T2 conditions. 

Methods 
MP-CEST MRI sequence 

The MP-CEST MRI sequence proposed in this 
study is illustrated in Figure 1A. It involves a long 
rectangular pulse to induce saturation transfer effects, 
consisting of a presaturation period with duration tsat 
and an irradiation field with amplitude B1, tuned to a 
frequency offset ∆ω from the water proton resonance. 
The CEST image was acquired using SPEN imaging 
module with multi-echo train acquisitions. The 
encoding phase following the application of chirp 
pulses in SPEN MRI can be expressed as [25, 26]: 

  
 (1) 

where γ represents the gyromagnetic ratio, Gey 
and Tey are the amplitude and duration of the 
encoding gradient along the y dimension, 
respectively. Ly is FOV along the y dimension. The 
phase variation during the acquisition period t can be 
expressed as  

 (2) 

where Gacq is the acquisition gradient, for 
simplicity, we assume Gacq to be constant.  

A multi-echo train is generated by interleaving 
180° sinc pulses with signal acquisition modules, and 
the phase modulation of the odd and even echo trains 
can be described as follows: 
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where Ta represents the acquisition period for 
each echo train, and tt is the evolution time during 
each decoding segment of the echo train. 
Representative multi-echo images acquired at 
different frequency offsets in an in vivo rat brain using 
this sequence are shown in Figure 1B. Based on the 
characteristics of the SPEN approach [27-29], the main 
contribution to the acquired signal energy comes from 
the spin density around the stationary point of the 
quadratic phase profile. Therefore, each sampled 
signal is modulated by both spatial encoding and T2 

decay, as described below: 

   (4) 

where TEeff refers to the nominal echo time. 
Based on Eq. 4 and TEeff, voxel-wise 
mono-exponential fitting of the multi-echo images 
was performed to estimate both T2 and 
saturated-weighted PD. The complete data processing 
workflow and a representative fitting result are 
illustrated in Supplementary Section 1 (Figures S1-2). 
The characteristic signal modulation behavior of 
SPEN MRI enables simultaneous quantification of 
saturation-weighted PD and T2 relaxation through 
numerical fitting of multiple T2-weighted images 
acquired at different echo times [25, 26], as illustrated 
in Figure 1D-E. 

 

 
Figure 1. Schematic overview of single-shot multiparametric CEST (MP-CEST) MRI framework. (A) Timing diagram of the MP-CEST sequence. A long rectangular 
saturation pulse with duration tsat and amplitude B1, tuned to a frequency offset Δω from the water resonance, is applied prior to data acquisition using a hybrid SPEN readout 
followed by a multi-echo echo train. (B) Representative T2-weighted images acquired at multiple echo times and frequency offsets in an in vivo rat brain. (C) DGE signal curves 
before and after T2 correction, along with a conceptual diagram of dynamic T2 changes over time. (D) Illustration of signal decay over time across multiple echo times, showing 
T2-dependent signal attenuation. (E) Simultaneous T2 and saturation-weighted PD maps obtained using a model-based fitting approach applied to the multi-echo SPEN data. 
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Theoretical Derivation 
According to previous studies [30, 31], the 

normalized saturation signal S can be well described 
by the R1ρ relaxation theory, which is formulated as 
follows [32, 33]: 

 (5) 

 (6) 

where Sss refers to the Z-spectral intensity at 
steady-state, R1 is the longitudinal relaxation rate of 
water, tsat is the saturation time, and θ = tan-1ω1/∆ is 
the tilt angle of the effective magnetization with 
respect to the Z-axis induced by a saturation pulse 
with nutation frequency ω1 at an offset ∆, R1ρ 
represents the water relaxation rate under a saturation 
pulse, incorporating both the effective water 
relaxation (Reff) and an apparent saturation 
transfer-related term (RST) reflecting all exchange 
processes in tissue [22]: 

  (7) 

where Reff = cos2θ∙R1 + sin2θ∙R2 represents the 
effective longitudinal relaxation rate of water in the 
rotating frame in the absence of additional solute or 
exchange components. Based on the R1ρ theory, the 
contributions from multiple CEST effects can be 
linearly combined, as R1ρ exhibits an approximately 
additive response to different exchanging pools [33, 
34]. In this study, we employed a two-pool model 
comprising a glucose pool and a background pool 
representing all other exchanging protons to analyze 
the CEST signal, as described below: 

 (8) 

By combining Eqs. 6 and 7, the Sss can be derived 
as follows: 

  (9) 

For in vivo glucoCEST experiments, the glucose 
pool resonates close to water, and the effect of R₂ 
cannot be neglected. When R2 is much greater than 
cos2θ∙R1 + RST, (where R2 > 14 s-1 within the 
physiological range and cos2θ∙R1 + RST is 
approximately 1 s⁻¹), the Sss in Eq. 6 can be 
approximated as follows: 

  (10) 

The MTRasym, which isolates the glucoCEST 
effect by subtracting the background signal, is defined 
as:  

 
(11) 

For in vivo glucoCEST experiments at a B1 of 
2 μT, the glucose-related relaxation rate (Rglucose) is 
much smaller than the background relaxation rate 
(Rbackground) due to strong MTC effects and spillover 
effect (i.e., Rglucose ≪ Rbackground). Under this condition, 
the MTRasym in Eq. 11 can be approximated as follows: 

  (12) 

where dS/dR1ρ can be calculated from Eq. 5, and 
is given by: 

 
(13) 

By combining Eqs. 12 and 13, the MTRasym can be 
derived as follows: 

 
(14) 

Under steady-state saturation, the MTRasym can 
be simplified as follows [30]: 

 
(15) 

where Sbackground and Sglucose represent the 
normalized saturation signal at steady-state when 
only the background or glucose pool is present, 
respectively. This indicates that the MTRasym can be 

significantly attenuated by a factor of  in the 
presence of a strong background signal, a 
phenomenon referred to as the “scaled-down effect” 
in our previous studies [30, 31]. 

In this study, we propose a correction algorithm 
to remove the T2 effect, thereby improving the 
correlation between DGE signal changes and glucose 
concentration toward a more linear relationship. 
According to Eq. 10, the relationship between 
Sbackground and the change in T2 can be expressed as 
follows: 
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where  denotes the baseline transverse 
relaxation time, ∆T2 represents the change of 
transverse relaxation time during the DGE 
experiment, k characterizes the linear sensitivity of the 
background signal to T2 variations. Therefore, a linear 
correction model was applied to mitigate T2-induced 
variations in the background signal of the 
single-offset DGE measurement. 

From Eq. 15, the background signal induces a 
scaled-down effect on the observed MTRasym. The 
contribution to the observed MTRasym due to 
background fluctuations can be formulated as: 

 

 (17) 

By combining Eqs. 16 and 17, the 

 can be formulated as: 

 

 (18) 

Eq. 18 represents the analytical expression for 
the background-induced variation in MTRasym as a 
function of ΔT2. To facilitate fitting and correction, this 
relationship was approximated by a second-order 
polynomial, as described below: 

 (19) 

where a and b are the coefficients of a 
second-order polynomial that describe the 
relationship between ΔT2 and the 
background-induced contribution to observed 
MTRasym change, the constant term c is included to 
account for residual baseline shifts and other 
unmodeled systematic variations that may arise in 
experimental data. The corrected MTRasym signal was 
obtained by subtracting the fitted background 

contribution  from the original 
MTRasym signal. 

 Correction parameters (k, a, b, and c) were 
derived from Bloch–McConnell simulations based on 
experimental and literature-informed parameters for 
the phantom [21], in vivo mouse brain [35, 36], and 
tumor [37, 38], respectively. For the phantom 
experiment, the background consisted solely of water, 
whereas in the in vivo setting, an additional 
magnetization transfer contrast (MTC) component 
was included, as detailed in Table S1. Validation of 
the model’s robustness and generalizability is 
presented in Supplementary Section 2 (Figures S3-6). 
All simulations and voxel-wise fittings were 

implemented using custom MATLAB scripts (R2019b, 
MathWorks), with corrections applied according to 
Eqs. 16 and 19. A schematic overview of the DGE 
signal dynamics before and after T2 correction, along 
with a conceptual illustration of temporal T2 changes, 
is presented in Figure 1C. 

Numerical simulation validation 
Numerical simulations were conducted to 

evaluate the effectiveness of spillover correction 
under varying T2 conditions. According to the 
previous study [21], changes in glucose concentration 
will alter the tissue T2 value, which can be described 
as follows: 

   (20) 

where R2,water refers to the tissue R2 value without 
glucose change and R2,glc refers to the tissue R₂ value 
after a change in glucose concentration [Glc]. r2ex, glc 
represents the transverse relaxivity of glucose, which 
was set to 0.053 s-1 mM-1 under 7 T conditions, based 
on the previous study. Z-spectra were simulated to 
model glucose exchangeable protons at 1.2 ppm, with 
concentrations ranging from 0 to 500 mM in 10 mM 
increments. Frequency offsets were sampled from –5 
to 5 ppm in 0.1 ppm steps. Saturation power and 
duration were set to 2 µT and 2 s, respectively. 
Additional simulation parameters are detailed in 
Supplementary Table S2. 

Phantom experiments 
D-glucose solutions (10–310 mM; 10, 50, 100, 150, 

230, and 310 mM) were prepared in 
phosphate-buffered saline (PBS) containing 2 mM 
Gd-DTPA, with pH adjusted to 7.2, and experiments 
were conducted at 22 °C. Experiments were 
conducted on a 7 T Varian MRI system (Varian 
Associates, Palo Alto, CA) equipped with a 
horizontal-bore Magnex magnet and 10 cm-bore 
imaging gradient coils. The MP-CEST sequence was 
implemented in the VNMRJ 4.0 environment. 
Imaging parameters were: saturation power = 2 µT, 
saturation duration = 2000 ms, FOV = 50 × 50 mm2, 
slice thickness = 2 mm, chirp time-bandwidth product 
= 120, 5-echo train with 25 ms echo spacing, and TR = 
5000 ms. Frequency offsets ranged from –5 to 5 ppm 
with 0.2 ppm steps. Reference T2 and PD maps were 
acquired using spin-echo imaging with multiple echo 
times (TE = 12, 20, 32, 50, 70, 100, 150 ms; TR = 2000 
ms), and the total scan time was 22 min 24 s. Details of 
the optimization process for echo spacing and the 
number of echoes are provided in Supplementary 
Section 4 (Figure S7 and Table S3). 
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Animal preparations 
All animal procedures were approved by the 

Animal Experimental Center of Xiamen University. In 
this study, six female Sprague-Dawley (SD) rats (aged 
9–11 weeks, weighing 190–220 g) and three female 
BALB/c mice were used. All animals were purchased 
from Shanghai SLAC Laboratory Animal Co., Ltd. 
(Shanghai, China). 

Tumor-bearing mice were established by 
subcutaneous injection of 5 × 106 4T1 cells into the 
right hind limb of 6-week-old BALB/c mice (∼20 g). 
MRI was performed when tumor volumes reached 
~100 mm³. Prior to imaging, animals were 
anesthetized with 4% isoflurane (rats) or 2% 
isoflurane (mice) for induction, followed by 
maintenance at 2% and 1%, respectively, during 
scanning. A tail vein catheter was placed for 
intravenous glucose administration. Dynamic 
imaging was performed continuously, starting before 
and continuing through the 1-minute intravenous 
injection of filtered D-glucose solution (50% w/w, 0.5 
g/mL, ~2.78 M; 1.5 mL for rats; 0.1 mL for mice). 
Several baseline images were acquired prior to 
injection and used as references for subsequent 
normalization of the DGE signal. 

In vivo experiments 
In vivo imaging was performed on a 7 T Varian 

MRI scanner (Varian Associates, Palo Alto, CA) 
equipped with a horizontal-bore Magnex magnet and 
10 cm-bore gradient coils. B0 field homogeneity over 
the rat brain was optimized using field mapping and 
second-order shimming before DGE acquisition. The 
MP-CEST sequence was applied with the following 
parameters: saturation power = 2 µT, saturation 
duration = 2000 ms, FOV = 45 × 45 mm2, slice 
thickness = 2 mm, chirp time-bandwidth product = 
120, 5-echo train with 25 ms echo spacing, and TR = 
5000 ms. For dynamic DGE imaging, CEST data were 
acquired at ±2.0, ±1.5, ±1.2, ±0.9, and 0 ppm offsets 
relative to water. Signal intensity at 1.2 ppm was 
extracted for DGE quantification, yielding a temporal 
resolution of 45 s per image pair. A total of 2700 
images were acquired over 46 minutes. Each dynamic 
repetition included five echoes across nine frequency 
offsets, resulting in 45 echo–offset combinations per 
time point. Sixty dynamic repetitions were acquired, 
yielding 60 time points for DGE analysis. Every set of 
five echoes was used to generate T2 and 
saturation-weighted PD maps. Dynamic scanning 
began with 10 baseline scans over 7 min 30 s, followed 
by a 1-minute intravenous injection of 50% D-glucose 
and continued acquisition for 37 min 30 s 
post-injection.  

MRS 
To verify glucose uptake, localized proton MRS 

was acquired twice: once immediately before glucose 
injection and once following the completion of the 
MP-CEST scan. This sequential protocol ensured that 
the MRS measurements reflected pre- and 
post-infusion metabolite levels without interrupting 
the dynamic glucoCEST imaging. All MRS scans were 
performed using a point-resolved spectroscopy 
(PRESS) sequence with outer volume suppression 
(OVS). Water suppression was achieved using the 
variable power RF pulses and optimized relaxation 
delays (VAPOR) technique [39]. Second-order 
localized shimming was performed using B0 field 
mapping prior to each acquisition. The MRS protocol 
used the following parameters: TR = 2000 ms, TE1 = 
7.5 ms, TE2 = 6 ms, 4096 complex points, NEX = 128, 
and a total acquisition time of 4 min 16 s. For in vivo 
MRS acquisition, a single voxel (4 × 4 × 4 mm³) was 
placed in the posterior thalamic region of the rat brain 
and the dorsal region of the subcutaneous tumor, 
respectively. These locations were selected to ensure 
inclusion of relatively large and homogeneous tissue 
areas, minimizing partial volume effects and 
susceptibility-induced distortions. 

Data analysis 
A signal normalization process was applied to 

the Z spectrum using saturation-to-baseline ratio 
normalization, defined as the ratio of the water signal 
during saturation to the unsaturated baseline signal: 

 (21) 

where S is the normalized image intensity, Z 
refers to the saturated signal obtained after applying 
the saturation pulse (e.g., saturation-weighted PD or 
T2-weighted images), while Z₀ is the baseline signal 
acquired without saturation and is used for 
normalization. 

DGE MRI is defined as the dynamic changes in 
MR signals induced by variations in glucose 
concentration following administration. For 
single-offset DGE quantification, which measures the 
temporal change of the CEST signal at 1.2 ppm, 
normalization was applied using the pre-injection 
baseline signal S, as formulated below: 

 (22) 

where Sbaseline denotes the average of all 
pre-injection T2-weighted CEST images or PD maps, 
and S(t) is the corresponding signal at time t. 

For MTRasym DGE signal quantification, the 
signal was defined as the temporal difference at 1.2 
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ppm in the MTRasym spectrum relative to the 
pre-injection baseline: 

  (23) 

To correct for motion between CEST images, 
image registration was performed using the Medical 
Imaging Registration Toolbox [40]. The unsaturated 
image was used as the reference target, and all other 
CEST images were aligned to it. The registration 
parameters were as follows: similarity measure set to 
residual complexity, three hierarchical resolution 
levels, mesh window size of 8, regularization weight 
of 0.005, maximum of 200 iterations, tolerance of 
1 × 10⁻⁵, and annealing rate of 0.8. Regions of the rat 
brain were then automatically segmented [41] based 
on the registered standard rat brain atlas 
(http://atlas.brain-map.org/). 

For LCModel analysis, the total creatine (tCr) 
concentration was used as an internal reference to 
quantify D-glucose uptake [42]. Specifically, the 
glucose concentration change (Δ[Glc]) following 
D-glucose administration was estimated using the 
area ratio between the difference spectrum of the 
D-glucose peaks (3.4–4.0 ppm) and the tCr methyl 
peak (3.0 ppm) in the pre-injection reference spectrum 
(RGlc/tCr), according to the following equation: 

  (24) 

where 3/5 represents the proton ratio between 
the methyl peak of total creatine (tCr) at 3.0 ppm 
(three protons) and the combined D-glucose peaks 
between 3.4 and 4.0 ppm (five protons). 

Statistical analysis 
All statistical analyses were performed using 

MATLAB (R2019b, MathWorks). Quantitative data 
are reported as mean ± standard deviation (SD). 
Group comparisons were assessed using unpaired 
two-tailed Student’s t-tests or one-way analysis of 
variance (ANOVA), as appropriate. A P-value < 0.05 
was considered statistically significant. Pearson 
correlation coefficients (R) and corresponding 
P-values were calculated to assess the linear 
association between DGE signals and T2 values before 
and after correction. 

Results 
Validation of MP-CEST-derived PD and T2 
mapping 

Figure 2 summarizes the validation of 
MP-CEST-derived PD and T2 mapping against 
reference measurements in phantom experiments. PD 

and T2 maps acquired using MP-CEST, with and 
without saturation, along with reference maps, are 
shown in Figure 2A and 2C; additional maps are 
provided in Figure S8. Violin plots (Figure 2E-F) 
show that, in the absence of saturation, there was no 
significant difference between MP-CEST–derived PD 
values and the reference PD measurements 
(P = 0.639). Additionally, no correlation was observed 
between PD and T2 values (R² < 0.001). In contrast, T2 
values exhibited strong linear agreement with 
reference measurements (R2 = 0.999 without 
saturation; R2 = 0.998 with saturation; Figure 2H-I). 
Bland-Altman analysis (Figure 2G and 2H) further 
confirmed the agreement, with MP-CEST showing a 
mean bias of –0.24% for PD and +0.13% for T2 
compared to the reference. These results indicate that 
saturation leads to a frequency-dependent reduction 
in PD values. For example, the reduction was 2.61% ± 
1.15% at 3.0 ppm (P = 0.028, effect size = 0.408) and 
20.81% ± 4.36% at 1.2 ppm (P < 0.001, effect size = 
3.117). In contrast, T2 measurements were minimally 
affected, suggesting that the observed changes 
primarily reflect alterations in proton density. 
GlucoCEST signals originating from hydroxyl protons 
were observed as asymmetry in the 0–2 ppm range in 
the tube containing 50 mM glucose (Figure 2B), and 
became more pronounced in the corresponding 
MTRasym plot (Figure 2D). The Z-spectrum derived 
from saturation-weighted PD images exhibited a 
significantly narrower spectral peak compared to that 
from T2-weighted images, with a full width at half 
maximum (FWHM) of 0.947 ± 0.074 ppm versus 
0.973 ± 0.075 ppm (P = 0.028). Similar results were 
observed for the tube containing 10 mM glucose 
(Figure S9). This narrowing enhances the specificity 
for glucose-related exchangeable protons and 
indicates effective mitigation of T2-dependent signal 
broadening during acquisition. 

Evaluation of T2 effects on CEST metrics and 
correction performance 

Figure 3A-D presents the simulation results 
obtained under varying glucose concentrations with a 
fixed T2 value. As glucose concentration increased, the 
normalized signal (S/S0) decreased near the 1.2 ppm 
offset, while MTRasym increased (Figure 3A and 3C). 
These effects were quantified by fitting S/S0 and 
MTRasym to glucose concentration (Figure 3B and 3D), 
revealing a linear negative correlation for S/S0 and a 
linear positive correlation for MTRasym. To evaluate 
the effect of T2 relaxation on CEST metrics, 
simulations were conducted with varying T2 values 
while keeping glucose concentration constant.  

( ) ( ) (0)MTR asym asymDGE t MTR t MTR= −

/
3[ ] [ ]
5 Glc tCrGlc R tCr∆ = ⋅
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Figure 2. GlucoCEST imaging of glucose phantoms at 7 T using the proposed MP-CEST method. (A) PD maps obtained from the reference and proposed 
methods, both with and without saturation. (B) Z-spectra derived from T2-weighted images and saturation-weighted PD images at a glucose concentration of 50 mM. (C) T2 
maps corresponding to the conditions in (A). (D) Corresponding MTRasym plots calculated from the respective Z-spectra. (E) Violin plots comparing PD values versus T2 values 
between the reference and proposed methods. (F) Violin plots showing direct PD value comparisons between the two methods. (G) Bland–Altman plot assessing agreement in 
PD values between the proposed and reference methods. (H, I) Scatter plots of quantitative T2 values from the six glucose tubes, without (H) and with (I) saturation. (J) Bland–
Altman plot comparing T2 values from the proposed and reference methods. 

 
As T2 increased, Z-spectrum intensities rose 

across the entire frequency offset range (–5 to +5 
ppm), accompanied by an increase in MTRasym (Figure 
3E and 3G). Quantitative analysis demonstrated a 
linear positive relationship between T2 and S/S0, 

while MTRasym exhibited a second-order (quadratic) 
dependence on T2 (Figure 3F and 3H). Under 
physiological conditions, increases in glucose 
concentration are typically associated with reductions 
in T2 relaxation times. To account for this coupling, 
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simulations were performed in which glucose 
concentration and the corresponding T2 values were 
varied simultaneously. As shown in the Z-spectrum 
(Figure 3I), increasing glucose concentration, along 
with the associated decrease in T2, resulted in a 
cumulative effect that led to a further reduction in 
S/S0. In contrast, the effect on MTRasym at 1.2 ppm was 
more complex, exhibiting a biphasic response 
characterized by an initial increase followed by a 
subsequent decrease (Figure 3K). To better 
characterize these trends, the relationships between T2 
and CEST metrics were further analyzed. As shown in 
Figure 3G and 3L, S/S0 increased linearly with T2, 
while MTRasym exhibited a second-order (quadratic) 
dependence. These findings support the correction 
model, in which T2 and glucose linearly affect S/S0, 
while their combined effect on MTRasym follows a 
quadratic, scale-down behavior. Additional 
evaluations of which form of transverse relaxation is 
more suitable for correction are shown in Figure S10. 

To evaluate the performance of the proposed 
correction strategy under dynamic conditions, a 
simulated DGE experiment was conducted 
incorporating time-dependent changes in both 

glucose concentration and T2 relaxation. Figure 4 
summarizes the simulation framework and correction 
outcomes. The temporal evolution of glucose 
concentration and corresponding T2 values, 
mimicking physiological uptake dynamics, is shown 
in Figure 4A-B, respectively. As glucose concentration 
increased over time, T2 decreased accordingly, 
consistent with previously reported in vivo 
observations. Based on the modeled relationships 
between ΔT2 and both S/S0 and MTRasym (Eqs. 16 and 
19), correction curves were generated to describe their 
respective T2 dependencies (Figure 4C-D). The 
single-offset DGE signal displayed a linear 
dependence on T2, whereas MTRasym-based DGE 
followed a second-order (quadratic) trend. These 
T2-related effects introduced systematic bias in the 
uncorrected signals: decreasing T2 led to an 
overestimation of the single-offset DGE signal and an 
underestimation of the MTRasym DGE signal (Figure 
4E-F). The application of the correction curves 
effectively compensated for these distortions. The 
corrected signals showed improved temporal 
alignment with the reference dynamics and exhibited 
enhanced correlation with glucose concentration. 

 

 
Figure 3. Simulation of glucoCEST signal under varying glucose concentrations and T2 relaxation times. (A) Simulated Z-spectra at different glucose 
concentrations. (B) Correlation between glucose concentration and normalized saturation signal (S/S0). (C) MTRasym curves corresponding to (A). (D) Correlation between 
glucose concentration and MTRasym. (E) Simulated Z-spectra at varying T2 relaxation times. (F) Correlation between T2 and S/S0. (G) MTRasym curves corresponding to (E). (H) 
Correlation between T2 and MTRasym. (I) Z-spectra under combined variations of T2 and glucose concentration. (J) Correlation between combined T2–glucose variations and S/S0. 
(K) MTRasym under the same combined conditions. (L) Correlation between combined T2–glucose variations and MTRasym. 
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Figure 4. Simulation of DGE CEST imaging and T2 correction. (A) Simulated time-resolved curve of glucose concentration during glucose infusion. (B) Corresponding 
dynamic T2 relaxation curve derived from the glucose concentration profile. (C) Calibration curve showing the dependence of ΔS/S0 on T2 variation. (D) Calibration curve 
showing the dependence of ΔMTRasym on T2 variation. (E) Time-resolved single-shot DGE signal (ΔS/S0) from original, corrected, and reference data. (F) Time-resolved 
MTRasym-based DGE signal from original, corrected, and reference data.  

 
In vivo validation of T2 correction in brain and 
tumor imaging 

The single-offset DGE and MTRasym DGE images 
of the rat brain parenchyma before and after 
correction are shown in Figure 5A, 5B, 5D, and 5E. 
MRS spectra acquired before (blue) and after (red) 
D-glucose injection demonstrated clear spectral 
differences (green) within the resonance range of 
glucose H2–H6 protons (3.0–4.0 ppm; Figure 5C). 
Quantitative analysis revealed that glucose 
concentration increased from 1.16 ± 0.29 mM 
pre-injection to 2.33 ± 0.64 mM post-injection, 
corresponding to an increase of 1.17 ± 0.52 mM 
(P = 0.005, effect size = 2.357; Figure S11), confirming 
glucose accumulation in the brain parenchyma. In all 
four experimental groups, both DGE metrics 
exhibited a gradual increase over time, reaching an 

approximate steady state around 20 minutes 
post-injection (Figure 5G-H). Concurrently, dynamic 
T2 mapping (Figure 5I) revealed a slow decrease in T2 
values within the ROI shown in Figure 5F, from 44.3 ± 
0.6 ms to 43.0 ± 0.6 ms, consistent with expected 
physiological changes. Application of the T2 
correction led to notable changes in the signal profiles. 
The peak single-offset DGE signal was significantly 
reduced from 1.62 ± 0.19% to 1.11 ± 0.16% (P = 0.009), 
corresponding to an overestimation of glucose 
concentration by 0.54 ± 0.34 mM (~46%) based on 
LCModel analysis. Conversely, the MTRasym DGE 
signal increased from 1.29 ± 0.20% to 1.84 ± 0.18% 
(P = 0.005), indicating an initial underestimation of 
0.35 ± 0.22 mM (~30%) prior to T2 correction. 
Additional comparisons of fitted uptake parameters 
are presented in Figure S12, and regional 
comparisons of parenchymal DGE signals, quantified 
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by area under the curve (AUC), are presented in 
Figure S13. To further evaluate the influence of T2 on 
CEST signal quantification, correlation analyses were 
performed in the brain parenchyma. For single-offset 
DGE, the uncorrected signal showed a moderate 
negative correlation with T2 (R = –0.476, P < 0.001; 
Figure 5J), which was abolished after correction (R = –
0.007, P = 0.948; Figure 5K). Similarly, MTRasym DGE 

exhibited a weak negative correlation before 
correction (R = –0.292, P = 0.0085; Figure 5L), which 
was also eliminated following correction (R = –0.049, 
P = 0.664; Figure 5M). These results confirm that the 
correction method effectively reduces T2 dependence, 
thereby improving the robustness of glucose uptake 
measurements. 

 
 
 

 
Figure 5. MP-CEST MRI results of brain parenchyma following D-glucose infusion. (A, D) Single-offset DGE images before and after glucose infusion, shown for 
original (A) and T2-corrected (D) data. (B, E) MTRasym-based DGE images for original (B) and corrected (E) datasets. (C) MRS spectrum showing glucose-enhanced signals 
between 3 and 4 ppm after infusion. (F) Dynamic T2 maps before and after glucose infusion, illustrating T2 relaxation changes. (G, H) Time-resolved curves of single-offset DGE 
(G) and MTRasym DGE (H) signals, comparing original and corrected data. (I) Time-resolved T2 value curves derived from dynamic T2 mapping. (J–M) Correlation analysis 
between T2 values and DGE signals: single-offset DGE vs. T2 for original (J) and corrected (K) data; MTRasym DGE vs. T2 for original (L) and corrected (M) data. Significance levels: 
0.001 < **p < 0.01. 
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Figure 6. MP-CEST MRI results of subcutaneous tumor xenograft following D-glucose infusion. (A, D) Single-offset DGE images before and after glucose infusion, 
shown for original (A) and T2-corrected (D) data. (B, E) MTRasym-based DGE images for original (B) and corrected (E) datasets. (C) MRS spectrum indicating glucose-enhanced 
peaks between 3 and 4 ppm following infusion. (F) Dynamic T2 maps before and after glucose infusion, reflecting relaxation changes within the tumor. (G, H) Scatter plots 
showing correlations between single-offset DGE signals and T2 values for original (G) and corrected (H) data. (I, J) Correlation plots between MTRasym DGE signals and T2 values 
for original (I) and corrected (J) data. 

 
Figure 6A, 6B, 6D, and 6E show single-offset 

DGE and MTRasym DGE images of subcutaneous 
tumors before and after T2 correction. Localized MRS 
confirmed glucose uptake, with a marked increase in 
glucose resonance peaks within the 3.0–4.0 ppm range 
following infusion (Figure 6C), consistent with 
elevated intratumoral glucose levels. Compared to 
brain parenchyma, tumor DGE signals exhibited a 
sustained increase over time (Figure S14) and 
significantly higher signal intensities, reflecting 
enhanced uptake. T2 values concurrently decreased in 
tumor regions, from 47.5 ± 0.6 ms to 44.0 ± 0.8 ms in 
the region outlined in Figure 6F, and from 77.1 ± 3.3 
ms to 62.3 ± 2.6 ms in another region shown in the 
supplementary material (Figure S15). Notably, 
greater T2 reductions coincided with more 
pronounced DGE signal increases, suggesting a 
relationship between T2 shortening and elevated 
glucose accumulation. To quantify this relationship, 
pixel-wise correlation analyses were performed. For 
single-offset DGE, the uncorrected signal showed a 
strong positive correlation with T2 (R = 0.674, P < 

0.001; Figure 6G), which was significantly reduced 
following correction (R = 0.234, P = 0.037; Figure 6H). 
Similarly, MTRasym DGE exhibited a moderate 
pre-correction correlation (R = 0.501, P < 0.001; Figure 
6I) that was attenuated post-correction (R = 0.241, P = 
0.031; Figure 6J). These findings demonstrate that the 
proposed correction strategy accounts for T2-related 
contributions in tumor CEST imaging, improving the 
linearity between DGE signal changes and glucose 
concentration. 

Discussion 
In this study, we present a single-shot 

multiparametric CEST MRI approach that enables 
simultaneous acquisition of saturation-weighted PD 
and T2 maps, along with correction of T2 
variation-induced signal changes in DGE imaging 
arising from both T2 decay and spillover effects. 
Validation in phantom experiments demonstrated 
high agreement between the estimated PD and T2 
maps and reference spin-echo measurements. 
Importantly, we found that dynamic T2 changes 
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during glucose uptake can bias both single-offset DGE 
and MTRasym signals, leading to potential 
overestimation or underestimation of glucose-related 
contrast. By incorporating T2 calibration into the DGE 
processing pipeline, these confounding effects were 
substantially mitigated. The effectiveness of the 
proposed correction strategy was further confirmed 
through in vivo experiments in both the rat brain and 
subcutaneous tumor models. 

Changes in tissue glucose concentration can alter 
T2 relaxation through chemical exchange between 
glucose hydroxyl protons and water protons [21, 43], 
thereby introducing confounding factors in 
glucoCEST signal quantification. A key contributing 
factor is the modulation of spillover in the 
Z-spectrum, which is mediated by changes in T2 
relaxation [44]. Specifically, a decrease in T2 broadens 
the water resonance peak, thereby reducing the 
frequency selectivity of the saturation pulse and 
increasing spectral overlap with glucose hydroxyl 
protons [45, 46]. In addition to its effect on spillover, 
T2 also influences glucoCEST contrast during signal 
acquisition. Following saturation, the transverse 
magnetization decays as a function of T2, and shorter 
T2 values result in greater signal loss prior to readout 
[47]. This decay can alter the observed CEST contrast, 
potentially leading to biased estimates of glucose 
uptake, particularly in regions with short T2 values. A 
schematic is presented in Figure S16 to facilitate 
understanding of how T2 variations affect both 
spillover during saturation and signal attenuation 
during acquisition.  

Different CEST acquisition schemes and 
quantification approaches exhibit varying sensitivity 
to glucose-induced T2 variations. Previous studies 
have shown that even when using the same pulse 
sequence, sequence parameters need to be carefully 
optimized to minimize the confounding effects of T2 
variation [48]. Some advanced CEST techniques, such 
as on-resonance variable delay multi-pulse 
(onVDMP), rely on multiple binomial pulses to 
generate CEST contrast. While this approach 
enhances sensitivity to exchangeable protons, its 
signal formation is inherently more susceptible to T2 
effects, as the cumulative magnetization buildup and 
decay are strongly influenced by transverse relaxation 
throughout the pulse train. Given this heightened T2 
sensitivity, glucose-induced T2 variations may, at least 
in part, account for the unexpectedly elevated signal 
intensities reported in previous studies using 
onVDMP-based acquisitions [49-51]. In addition to 
acquisition schemes, the choice of quantification 
approach also plays a critical role in determining the 
sensitivity of glucoCEST measurements to T2 
variations. Among the most commonly used methods 

are the single-offset DGE approach and 
MTRasym-based quantification, both of which differ in 
their susceptibility to T2-related confounds. The 
single-offset DGE method estimates CEST contrast 
based on signal changes at a single frequency offset, 
typically near the glucose resonance (e.g., +1.2 ppm). 
Owing to its single-point sampling, this approach 
lacks internal mechanisms to separate glucose-specific 
effects from non-specific background contributions 
[52]. Consequently, the measured DGE signal reflects 
a combination of true CEST contrast and 
T2-dependent spillover, making it particularly 
vulnerable to T2 variations. In contrast, MTRasym 
applies an asymmetry analysis by subtracting the 
signal acquired at the symmetric frequency offset, 
which substantially eliminates the symmetric 
spillover contribution [53]. However, the resulting 
CEST contrast remains modulated by T2-induced 
changes in background signal intensity. Specifically, 
variations in T2 alter the amplitude of the background 
signal, introducing a second-order dependence of 
MTRasym, a phenomenon referred to as the 
scaled-down effect [30, 31]. Therefore, despite its 
ability to suppress symmetric artifacts, MTRasym-based 
DGE quantification remains sensitive to T2 
fluctuations through background-driven modulation. 

Glucose‐induced T2 variations can affect the 
sensitivity and specificity of DGE measurements, yet 
their impact has been largely overlooked in previous 
studies. To address this issue, we developed two 
complementary strategies. First, we proposed the use 
of saturation-weighted PD signals to mitigate the 
influence of T2 decay during image acquisition. The 
saturation-weighted PD signal more accurately 
reflects the saturated magnetization state immediately 
following the saturation pulse, and is, in theory, more 
directly related to the intended CEST contrast [22]. 
The feasibility of using saturation-weighted PD 
signals to generate Z-spectra and quantify glucoCEST 
effects is demonstrated in Figure 2. Second, we 
introduced a T2 mapping–based correction 
framework for glucoCEST, in which dynamic T2 maps 
were used to derive correction models for both 
single-offset DGE and MTRasym-based quantification. 
As shown in Figures 5 and 6, the proposed correction 
strategy substantially reduced the correlation between 
the CEST signal and T2, effectively minimizing 
T2-related confounds in both single-offset and 
MTRasym-based DGE quantification. This decoupling 
allows for a more accurate assessment of glucose 
uptake independent of relaxation effects. 

The single-shot MP-CEST sequence, based on 
SPEN MRI, allows simultaneous acquisition of CEST 
contrast, T2, and PD maps within a single scan 
without extending scan time or increasing protocol 
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complexity. SPEN MRI is an ultrafast imaging 
technique with acquisition speed comparable to EPI, 
but offers superior resistance to B0 inhomogeneities 
[28, 54]. Previous studies have combined SPEN with 
CEST to improve robustness against B0 
inhomogeneities in fast imaging settings [55]. Recent 
studies, along with our previous work, have 
demonstrated that the quadratic phase encoding and 
spatially selective decoding intrinsic to SPEN MRI can 
be leveraged for ultrafast quantification of both T2 and 
T2* [26]. Here, SPEN MRI is incorporated into the 
CEST framework to enable ultrafast, multiparametric 
imaging within a single acquisition, offering several 
practical advantages. First, conventional CEST 
protocols typically require additional T1 and T2 
mapping sequences for quantification or correction 
purposes, which increases total scan time and reduces 
temporal resolution [56]. This limitation is 
particularly problematic in DGE imaging, where 
separate acquisitions may introduce temporal 
misalignment, potentially leading to bias due to 
interleaved or non-synchronized parameter 
estimation. Second, inconsistencies in acquisition 
sequences and imaging parameters between 
conventional CEST and T1/T2 mapping can lead to 
spatial misregistration, which may compromise the 
accuracy of voxel-wise quantification and reduce the 
reliability of longitudinal assessments. In contrast, the 
MP-CEST approach provides inherently co-registered 
T2, PD, and CEST maps from a single acquisition, 
ensuring spatial consistency across parameters [57]. 

Beyond T2 correction, T2 mapping itself provides 
complementary physiological and anatomical 
information that enhances the value of glucoCEST 
imaging. Specifically, dynamic T2 changes can serve 
as an independent marker of tissue response to 
glucose administration, reflecting alterations in the 
relaxation time of water as well as 
microenvironmental factors such as edema, 
cellularity, and water content shifts [21]. These T2 
variations may indirectly localize glucose uptake, 
particularly in regions where CEST contrast is weak 
or ambiguous. In addition, baseline T2 maps offer 
structural context that aids image interpretation, 
facilitating the differentiation of tissue types, lesion 
characterization, and discrimination between necrotic 
and viable tumor regions [22, 58]. By combining T2 
mapping with glucoCEST, the resulting 
multiparametric framework improves both 
quantitative robustness and physiological 
interpretability, enabling a more comprehensive 
assessment of tissue status. 

Beyond its technical advancements, the 
proposed MP-CEST approach shows great potential 
for molecular therapy monitoring. By using 

D-glucose, a clinically approved and metabolically 
active probe, MP-CEST enables noninvasive 
assessment of tissue metabolism with improved 
specificity through correction of T2-related 
confounding effects. Altered glucose uptake is a key 
feature of many diseases, including gliomas, 
neurodegenerative disorders, and immune- 
responsive tumors [59-61]. In this context, changes in 
corrected DGE signals may provide early biomarkers 
of therapeutic response, capturing alterations in 
glycolytic activity or perfusion before anatomical 
changes become apparent. Compared to radioactive 
PET, MP-CEST is more suitable for longitudinal 
studies, as it avoids ionizing radiation and permits 
repeated imaging sessions over time [62]. Moreover, 
the simultaneous acquisition of quantitative T2 maps 
offers complementary information related to tissue 
water content, cellularity, and microstructural 
integrity [63], all of which are relevant to treatment 
efficacy. These features support the utility of 
MP-CEST as a valuable imaging technique for 
tracking molecular-targeted therapies, evaluating 
metabolic interventions, and assessing drug responses 
across preclinical studies and potential clinical 
applications. 

While the proposed approach demonstrates 
significant advantages in glucoCEST quantification, 
several methodological considerations should be 
noted. First, although the proposed MP-CEST method 
enables the simultaneous acquisition of multiple 
parametric maps within a single shot, the 
optimization of imaging parameters, particularly the 
number and timing of echo trains, requires careful 
consideration. Short echo trains may compromise 
spatial resolution, introducing partial volume effects 
that can degrade quantification accuracy. Conversely, 
longer echo trains improve T2 sensitivity but suffer 
from lower SNR, especially at extended echo times. 
Parameter selection should therefore be tailored to the 
expected T2 range of the target tissue. In future work, 
spatial resolution may be enhanced using deep 
learning–based super-resolution techniques [64-66], 
while the intrinsic redundancy across multi-echo 
images may be leveraged by advanced denoising 
strategies to further improve image quality and 
glucoCEST accuracy [67, 68]. Second, the T2 correction 
implemented in this study relies on a calibration 
curve derived from numerical simulations that model 
the relationship between CEST signal, glucose 
concentration, and T2 relaxation time under defined 
experimental assumptions. As the calibration is 
inherently dependent on parameters such as magnetic 
field strength, saturation scheme, and tissue 
properties, its applicability must be adjusted for 
different acquisition settings. In this work, simulation 
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parameters were selected based on physiologically 
relevant literature values [69]. However, future 
implementations may require recalibration to 
accommodate changes in field strength or tissue type, 
such as when translating from preclinical to clinical 
MRI. Careful adaptation of these parameters is 
essential to maintain the accuracy, robustness, and 
transferability of the T2 correction strategy across 
diverse imaging contexts. 

Future extensions of this approach may involve 
integrating glucoCEST with additional imaging 
contrasts, such as diffusion-weighted imaging, which 
provides complementary information on perfusion, 
cellularity, and tissue microstructure [25]. 
Multiparametric integration has the potential to 
improve physiological specificity and enable a more 
comprehensive characterization of metabolic 
alterations across a range of healthy and pathological 
conditions. Beyond glucose imaging, the proposed 
acquisition and correction framework may also be 
adapted to other CEST techniques, such as CrCEST 
[66, 70], to monitor phosphocreatine-to-creatine 
conversion during muscle activity. As 
exercise-induced metabolic shifts are often 
accompanied by changes in T2, incorporating dynamic 
T2 mapping could further enhance the accuracy of 
CEST signal interpretation in both neurological and 
neuromuscular applications. 

Conclusion 
In this study, we introduced a single-shot 

multiparametric CEST MRI sequence based on SPEN, 
enabling the concurrent acquisition of CEST contrast, 
T2, and proton density maps within a single scan. This 
framework incorporates two complementary 
correction strategies designed to mitigate T2-related 
confounds affecting both the saturation and 
acquisition phases. Validation in phantom and in vivo 
models demonstrated improved DGE quantification 
and enhanced correspondence between corrected 
signals and glucose concentration dynamics. These 
findings establish a robust and generalizable 
framework for glucoCEST imaging, supporting a 
more specific assessment of in vivo glucose uptake by 
separating T2 effects from DGE contrast. 
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