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Abstract 

Rationale: Synovial fibrosis, driven by myofibroblast activation and extracellular matrix remodelling, is fundamental in 
osteoarthritis (OA) pathogenesis but remains poorly understood due to the spatial heterogeneity of synovial inflammation 
(synovitis). Accurate molecular endotyping of synovial inflammation is essential for effective treatment of OA given its 
multifactorial nature, yet it requires integrating multiple layers of information with spatial context due to the significant 
heterogeneity of the tissue.  
Methods: In this proof-of-concept study, we leveraged MALDI mass spectrometry imaging to achieve spatial metabolomic maps 
that complement high-content proteomic profiles. Microflow liquid chromatography was employed to improve the robustness and 
throughput of spatial proteomics. By coupling these spatially resolved datasets, we establish a pseudo time trajectory of 
heterogeneous synovitis in human knee OA using an integrative framework of spatially resolved proteomics and matrix-assisted 
laser desorption/ionization mass spectrometry imaging.  
Results: Clustering 3534 proteins and 79 energy metabolites from spatial proteomic and metabolomic image datasets reveals four 
distinct functional stages of OA synovitis, i.e., quiescent, microvasculopathic, pre-fibrotic, and post-fibrotic stages, which enables 
construction of a corresponding pseudo time. Network analyses elucidate the functional links among these stages, highlighting an 
immune-metabolic axis from endothelial injury and microvascular thrombosis toward myofibroblast activation.  
Conclusions: This integrative multi-omics imaging approach informs the inflammatory endotype of OA, supporting a vascular 
aetiology of synovial fibrosis and offering mechanistic insights that could inform more targeted therapeutic strategies. Validation in 
larger, stratified patient cohorts will be critical to refine our findings and accelerate their clinical usages. 
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Introduction 
Osteoarthritis (OA) is a leading degenerative 

disease in synovial joints, affecting over 500 million 
people worldwide[1]. Synovial inflammation 

significantly contributes to OA’s radiographic and 
symptomatic progression[2, 3]. The synovium consists 
of an intimal layer rich in macrophages and 

 
Ivyspring  

International Publisher 



Theranostics 2025, Vol. 15, Issue 18 
 

 
https://www.thno.org 

9730 

fibroblasts, and a subintimal layer containing loose 
connective tissue, blood vessels, and various immune 
cells[4]. Complex cell-cell interactions within synovial 
layers produce diverse inflammatory phenotypes, 
creating substantial heterogeneity in OA synovitis[5]. 
The variability undermines our understanding of OA 
pathogenesis and potentially hampers the 
development of effective targeted therapies[6]. 

There is a growing need for spatially resolved 
technologies that capture the complex pathobiology of 
synovium, prompting a surge of interest in novel 
approaches[7, 8]. Recent work combining spatial 
transcriptomics with multiplex protein profiling, 
targeting 132 molecules, has begun to clarify the role 
of synovial innate immunity in knee OA pain[9]. 
However, immunoassay-based methods, while 
powerful, are inherently limited by antibody 
availability, cost, and their limited number of 
targeting antigens, thereby restricting deep, unbiased 
proteome profiling[10]. In contrast, laser capture 
microdissection (LCM)-coupled proteomics can 
provide untargeted, spatially resolved datasets from 
single cells and tissue microenvironments[11-14]. By 
sampling in a raster grid, 2,000 to 4,000 proteins can 
be imaged in a single tissue section[14, 15]. Yet, this 
method remains challenging for synovial tissue due to 
lengthy liquid chromatography (LC) protocols 
requiring hundreds of injections, each often exceeding 
45 minutes per individual injection[4, 10]. 

Environmental and nutritional factors can each 
trigger or exacerbate synovitis through distinct 
mechanisms[4-6, 16], making single-omics approaches 
insufficient for comprehensive molecular endotyping. 
Because protein–metabolite interactions largely 
govern tissue function, an untargeted, in-depth 
method that integrates proteomics and metabolomics 
with histopathological information is essential to 
define the molecular endotypes of OA[17, 18]. 
Matrix-assisted laser desorption/ionization-mass 
spectrometry imaging (MALDI-MSI) uniquely 
provides label-free, unbiased metabolic profiling of 
tissue sections[19-21], but it remains underutilized for 
energy metabolite analysis in synovium. Although 
workflows combining MALDI-MSI and laser capture 
microdissection (LCM)-based proteomics offer a 
potential solution[22-24], the low throughput of 
proteomics continues to pose a major obstacle. 

In this proof-of-concept study, we demonstrate 
an integrative framework of spatially resolved 
proteomics and MALDI-MSI in human knee OA 
synovium. By adopting micro-flow LC, we 
substantially reduced proteomics run times, enabling 
seamless integration with imaging and histology. This 
approach captures key vascular dysfunction, 
thrombotic, and fibrotic processes and outlines a 

pseudotime trajectory of OA synovitis. Ultimately, 
our integrated strategy may facilitate personalized 
treatment and patient stratification based on 
individual molecular endotypes, laying the 
groundwork for future, large-scale cohort studies. 

Results 
General overview and strategic design of the 
study 

We established an integrated multi-omics 
imaging strategy composed of histological, 
metabolomics, and proteomics images to effectively 
characterize and categorize the heterogeneous 
microregions (“niches”) within OA synovium (Figure 
1). Two representative synovial samples from a single 
patient undergoing total knee replacement were 
harvested post macroscopic examination, followed by 
serial cryosection and morphological characterization 
using Masson’s trichrome staining (Figure S1). 
Untargeted heatmaps of thousands of proteins were 
then obtained in a raster grid. A micro-flow strategy 
coupling the use of a 5 cm long C18 UHPLC analytic 
column was applied, which identified 4400-4800 
protein groups depending on LC running time 
(Figure S2). Based on the LC optimization results, we 
applied the 15-min LC gradient for actual sample 
analysis, enabling the analysis of ~90 samples per day. 
MALDI-MSI was performed on a consecutive slide, 
focusing on energy metabolites that provide tissue 
functional status. Subsequent integrative analyses 
were performed to enable accurate molecular 
endotyping for OA. 

Distinct spatial heterogeneity was observed in 
OA knee synovium via multimodal imaging 

As proof of concept, we selected regions of the 
same synovium, each showing different degrees of 
fibrosis and angiogenesis, with a total surface area of 
16.2 mm2 for subsequent spatial proteomics analysis 
at 200 µm resolution (Figure 2A-B). This generated 
390 voxel samples and 3534 quantified proteins within 
100 hours of analytic time. A panel of markers related 
to OA or synovitis were found, including interleukins 
(IL-6, IL-1β, IL18, etc.), damage-associated molecular 
pattern (DAMP) markers such as S100, MMP, and 
heat shock (HSP) family proteins, as well as reactive 
oxygen species (ROS) or metabolic regulators (Figure 
S3A), which covering a wide range of biological 
functions and pathways related to OA onset or 
pathogenesis (Figure 2C). The summed and mean 
intensity per voxel were consistent across both ROIs 
(Figure S3), allowing us to compare inter-slide 
quantitatively for clustering analysis of voxels. 
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Figure 1. MS-based multi-omics imaging strategy for OA synovium endotyping. 

 
After filtering and normalization, all sample data 

were projected onto a 2-dimensional space via UMAP 
(2D-UMAP) for clustering without considering their 
spatial coordinates (Figure 2D). The voxels formed 
four clusters on UMAP, as indicated in different 
colours. We then mapped the four identified clusters 
with their spatial locations (Figure 2E-F) and 
generated overlapping images of histology and 
protein clusters (Figure S3E-F). As expected, 
proteomic clusters correlated with histology but did 
not completely overlap, representing an additional 
layer of information. OA functional markers 
heatmaps were plotted based on their intensity with 
spatial coordinates (Figure S4), covering fibrotic, 
myofibroblast activation (MFA), microvasculopathic, 
and thrombotic processes. In short, highly 
heterogeneous images were collected at 
morphological and proteomic levels, enabling the 
comprehensive characterization of OA functional 
niches. 

Pseudo-temporal trajectory analysis revealed 
typical OA-associated functional stages 

We further characterized and catalogued 
different clusters into functional stages using 
expression profiles of key OA markers in combination 
with histological staining evaluation (Figure 3). A set 
of representative staining images from each functional 
niche is shown in Figure 3B, with known OA-related 

markers for parallel stage assessment (Figure 3C, S5). 
Three functional clusters were instantly identified: 
Cluster 1 (Quiescent), which is metabolic silence (low 
expression of Pyruvate Dehydrogenase E1 Subunit 
Alpha 1, PDHA1) and little inflammatory cytokine 
(IL6 and CRP) expression, representing a relatively 
quiescent state of synovium. Cluster 2 
(Microvasculopathic) is marked by elevated 
expression of two well-known markers, Von 
Willebrand factor (vWF) and Endoglin (ENG), which 
are indicative of endothelial and microvascular 
dysfunction. We also observed microvascular 
formation in corresponding regions via Masson’s 
trichrome staining (Figure 3B), confirming active 
angiogenic events on-going in the microenvironments 
of cluster 2. Cluster 3 represents fibrotic tissue with 
the highest expression of collagens, indicated by both 
elevated expression of collagen and blue colour in 
histochemical staining. Accumulation of extracellular 
matrix remodeling activators such as MMP3 and 
HSPA1A, as well as myofibroblast markers (POSTN, 
VIM) further confirmed fibrotic stage (Figure 3B). A 
non-progressive Cluster 4 was characterized with an 
overall similar expression pattern of C1 but with 
elevated IL6 and IL10 levels, while no repairing 
process-related protein (such as TGF-β related 
proteins) was found in c4, and was therefore excluded 
from the trajectory analysis.      
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Figure 2. Distinct spatial heterogeneity of protein expression identified in OA synovium. A-B LCM sampling grid for two selected representative regions with 
histological imaging reference. The samples were Masson Trichrome stained. Scale bar 200 uM. C Selective GO enrichment terms of proteins identified in the study, relevant to 
OA onset or pathogenesis; BP biological pathways; CC cellular components. D Two-dimensional (2D) UMAP projection for all 390 voxel samples generated using k-means 
clustering. Four clusters were identified and are represented by different colours. Each dot represents a single voxel. E-F Stand-alone spatial mapping of cluster assignments of 
two distinct regions. 

 
Intriguingly, when examining using histological 

information, we unexpectedly revealed two 
subclusters within cluster 3: cluster 3a (pre-fibrotic), 
stained red and associated with blood vessels, and 
cluster 3b (post-fibrotic or active fibrotic), generally 
stained blue, indicative of high collagen content 
(Figure 3B). This observation indicated that cluster 3a 
may represent a transitional stage where 
microvasculopathy and fibrosis co-exist and interplay, 
demonstrating a pseudo-temporal trajectory of OA 
development (Figure 3A) and encouraging us to 
explore the underlying molecular events. 

Immuno-metabolic dysregulation was 
identified during microvasculopathy to fibrosis 
conversion 

To explore the metabolic status between 
different functional niches, metabolomic imaging was 
performed by MALDI-MSI on consecutive slides of 
sample sections at a resolution of 20 μm in parallel. A 
total of 2618 molecular features were identified, 
among which a comprehensive coverage of 79 energy 
metabolites was achieved (Table S1). MSI images of 
key energy metabolites, including hexose, pyruvate, 



Theranostics 2025, Vol. 15, Issue 18 
 

 
https://www.thno.org 

9733 

TCA intermediates, and fatty acids, were acquired for 
the entire cryosection slide, broadly incorporating and 
encompassing the spatial proteomics sampling 
regions and adjacent tissues (Figure 4A, Figure S6). 

Significant metabolic alterations in glycolysis and 
beta-oxidation were observed across and within two 
specimens.  

 

 
Figure 3. Pseudo-time trajectory analysis revealed typical OA-associated functional stages. A Functional stage identified by 2D-UMAP analysis of spatially resolved 
proteomic data. Stages were assigned based on protein expression profiles and subjective evaluation of corresponding histological staining. B Representative histological images 
corresponding to the identified functional stages. The proposed “Fibrotic” cluster was subdivided based on histological staining (blueness): 3a, Pre-fibrotic; 3b, Post/Active 
Fibrotic. C Boxplots of selected OA-related functional markers. The median and standard deviation of signal intensities are shown for all voxels within each functional stage. 
Abbreviations: FGA/FGB fibrinogen alpha/beta chain; COL15A1 Collagen Type XV Alpha 1 Chain; TGFBI Transforming growth factor beta induced; VWF Von Willebrand Factor; 
ENG Endoglin; VIM Vimentin; VCAM1 Vascular cell adhesion protein 1; CRP C-Reactive Protein; IL6 Interleukin 6; IL18 Interleukin 18; C3 Complement C3; MMP3 Matrix 
Metallopeptidase 3; HMGB1 High Mobility Group Box 1; S100A9 S100 Calcium Binding Protein A9; HSPA1A Heat Shock Protein Family A (Hsp70) Member 1A; SERPINA1 Serpin 
Family A Member 1.  
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We focused on comparing the perturbed energy 
metabolism pathways between the microvasculo-
pathic and fibrotic stages, given the identified 
pseudo-time trajectory in Figure 3A. Based on the 
quantitative analysis of metabolites’ intensities from 
MSI in regions of c3 and c2. A significant increase in 
energy metabolism in cluster 3 compared to cluster 2, 
particularly on fatty acid regulation, was revealed 
(Figure 4B). MALDI-TOF MS/MS analysis of the 
metabolite standard was carried out using timsTOF 
flex to validate the key identified energy metabolites 
(Figure S7). Citrate, malate, and PA were confirmed 
based on their unique MS2 fragment ions. The 
observation was further echoed by the abundance of 
key metabolic enzymes (Figure 4C) and GSEA 
enrichment of relevant biological pathways using 
quantitative proteomics data (Figure S8). The 
significant dysregulation in fatty acid metabolism and 
inflammation revealed the involvement of metabolic 
inflammation during the microvasculopathy-fibrosis 
conversion and agreed with metabolic dysregulation 
as a known OA risk factor[4, 25-27]. 

Co-expression analysis across functional stages 
revealed potential physio-pathological events 
and interplays in OA 

To investigate underlying molecular events 
during the observed pseudo-time trajectory 
conversion, we grouped all the identified proteins 
into modules based on Z-score normalized expression 
patterns across different functional stages using the 
mfuzz algorithm[28]. Four co-expression modules 
stood out due to their stage-associated patterns, 
which included 2060 proteins, as shown in the 
heatmap (Figure 5A). We then performed functional 
enrichment analysis within co-expression modules by 
Gene Ontology Biological Process (GOBP) (Figure 
5B). Critically, the TGF-β pathway and fibroblast 
activation were enriched significantly in module 3, of 
which module proteins topped their expression in 
pre-fibrotic niches. The TGF-β pathway was a 
well-known driving factor for myofibroblast 
activation in rheumatoid tissues[29, 30], which further 
supported the existence of a transition stage as we 
proposed. Intriguingly, microvascular thrombosis 
hallmarks, such as platelet aggregation and 
coagulation, were significantly enriched in modules 
associated with microvasculopathy and fibrosis 
(Figure 5). Our observation underscored a link 
between microvascular pathology (such as 
microthrombosis) and fibrosis, echoing the recent 
revisit to the vascular aetiology with OA[16].  

Correlation analysis revealed crosstalk among 
platelet activity, inflammatory, and fibrotic 
markers 

To further clarify the interplay among the 
observed OA-related events, we performed Pearson 
correlation analysis on a panel of markers spanning 
microvasculopathy, fibrosis, and platelet activity. 
Two functional stages (microvasculopathic and 
fibrotic) were chosen, and strikingly different 
stage-specific correlations were observed. Only 
scattered correlations between marker pairs were 
identified during the microvasculopathic stage, such 
as blood vessel marker vWF and fibroblast marker 
MYH9, or platelet marker THBS4 and fibrotic 
regulator TGFBI (Figure 6A). In contrast, significant 
correlation groups could be identified among blood 
vessel markers (vWF, VCAN) and myofibroblasts 
(POSTN, THY1, etc.) or inflammatory markers 
(APOA1, CRP, etc.) during the fibrotic stage (Figure 
6B). By further studying the correlation patterns in 
pre-fibrotic stage and active/post-fibrotic stages, a 
clear trajectory of correlation between the 
representative platelet-activating, inflammatory, and 
fibrotic markers was demonstrated in Figure 6C-E. 
These results confirmed our discoveries in 
stage-specific functional niches, indicating their utility 
in accurate molecular endotyping for OA. 

Discussion 
In this study, we present the first integrative 

spatial multi-omics imaging of OA-associated 
synovium, generated through integrated profiling of 
3,534 proteins and 79 energy metabolites. Clustering 
of these molecular signatures identified four distinct 
functional endotypes, representing progressive stages 
of synovial pathobiology. Pseudotime trajectory 
analysis revealed a dynamic continuum of synovitis, 
beginning with endothelial dysfunction and 
microvascular thrombosis and advancing toward 
stromal expansion and myofibroblast activation. Our 
findings highlight the synergistic value of spatially 
resolved proteomics and matrix-assisted laser 
desorption/ionization mass spectrometry imaging 
(MALDI-MSI) for high-dimensional tissue 
phenotyping. This integrative approach establishes a 
molecular framework for synovial endotyping in OA 
and lays the groundwork for the development of 
personalized, endotype-targeted interventions. 

Biochemical alterations often precede the onset 
of overt morphological changes[18, 31], highlighting 
the need for multi-layered data to achieve accurate 
molecular classification[32]. By integrating morpho-
logical and molecular information, we delineated a 
transitional, pre-fibrotic stage that would otherwise 
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be mislabelled as purely microvasculopathic or 
fibrotic through single-modality analyses. This more 
nuanced classification captures key transitional states 

in the microvasculopathic-to-fibrotic continuum 
driven by TGF–β–mediated fibroblast activation, in 
alignment with previous mechanistic evidence[33, 34]. 

 

 
Figure 4. Immunometabolic dysregulation during microvasculopathy-fibrosis conversion. A Paired MS image of key energy metabolites of two synovium samples 
from adjacent section slides of the LCM-spatial proteomics sampling slides. MALDI-MSI was performed at a resolution of 20 uM. Scale bar: 1mm. Relative ion intensity is 
represented using a colour bar, with bright gold colour as the 100% intensity. B Integrated analysis of key energy metabolic pathways (beta-oxidation, glycolysis, TCA) comparing 
microvasculopathic and fibrotic stages. Statistical analyses for metabolites between the two stages using MSI intensity retrieved from A are shown in bar plots. Y-axis stands for 
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relative intensities normalized to total ion count. X-axis: left C2 (microvasculopathy), right C3 (fibrosis). ***: p < 0.001. Red dots represent outliers. Rate-limiting enzymes 
up-regulated in C3 compared to C2 were marked in red. C Boxplots for selected metabolic regulators. The median and standard deviation of signal intensities are shown for all 
voxels within each functional stage. Abbreviations: HK1 Hexokinase 1; GPI Glucose-6-Phosphate Isomerase; PFKL Phosphofructokinase, Liver Type; PKM Pyruvate Kinase M1/2; 
HADHA/B Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Alpha/Beta; ACADVL Acyl-CoA Dehydrogenase Very Long Chain; CPT2 Carnitine 
Palmitoyltransferase 2; PDHA1 Pyruvate Dehydrogenase E1 Subunit Alpha 1; CS Citrate Synthase; IDH2 Isocitrate Dehydrogenase 2; FH Fumarate Hydratase; MDH2 Malate 
Dehydrogenase 2.  

 
Figure 5. Co-expression analysis across functional stages revealed potential physio-pathological events and interplay in OA progression. A Four selected 
co-expression modules across functional stages. The heatmap displays z-score normalized protein expression levels in representative voxels (n = 8 per stage). Selected OA 
hallmark functional terms from Gene Ontology Biological Process (GOBP) enrichment analysis are shown. B Bubble plot showing GOBP enrichment analysis results for the four 
identified co-expression modules. Enrichment p-values were corrected using the Benjamini-Hochberg method (q < 0.01).  
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Figure 6. Correlation analysis revealed crosstalk among platelet activity, inflammatory, and fibrotic markers. A-B Correlation bubble maps of selected marker 
proteins in the Microvasculopathic (A) and Fibrotic (B) stages, respectively. Bubble size represents the magnitude of the correlation, and colour indicates the direction (positive 
or negative). C-E Scatter plots of representative marker pairs demonstrate fibrotic, microvasculopathic, or inflammatory relationships. Linear regression models with 95% 
confidence intervals are shown, along with R and p-values. 

 
Our findings highlight immunometabolic 

dysregulation, particularly in lipid metabolism, as a 
key amplifier of the microvasculopathy-to-fibrosis 
transition, reinforcing the idea that OA is a metabolic 
syndrome[16, 26, 35]. Consistent with the 
microvascular aetiology hypothesis[36], we also 
implicate coagulation-driven microvascular 
dysfunction as a critical upstream event. 
Hypoxia-induced activation of NF-κB and nitric oxide 
signalling pathways appear central in linking 
microthrombosis and altered energy metabolism[16, 
35], opening potential avenues for developing 
therapeutic strategies aimed at halting progression 
toward irreversible fibrosis[37, 38]. 

Technological enhancements are pivotal for 
gaining a deeper understanding of the molecular and 
cellular events that occur in OA, but methodological 
optimizations are critical for achieving these insights. 
While common workflows often focus on lipid 
imaging in OA[39, 40], our optimised MALDI-MSI 

platform enabled coverage of energy metabolites in 
the low m/z range, utilizing the satisfactory 
performance of N-(1-naphthyl)ethylenediamine 
dihydrochloride (NEDC) as matrix for energy 
metabolites and small polar compounds[41]. 
Additionally, we implemented a micro-flow LC 
strategy on a short UHPLC column to reduce running 
times to one-third of previous protocols[13, 15], 
substantially enhancing throughput in spatial 
proteomics. This approach, previously associated 
with increased robustness and analytical efficiency in 
proteomic workflows[42, 43], imposed a higher 
sample demand, which we offset by maintaining a 200 
µm spatial resolution. Consequently, we analyzed 
15mm2 tissue areas within 4 days of LC/MS running 
time, aligning with the throughput of MALDI-MSI 
and histopathological processing, and readily 
translatable to arthroscopic biopsy workflows. 
Preliminary data further suggest the feasibility of 
higher spatial resolution down to 50 µm and shorter 
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LC gradients of 7 minutes, enabling over 160 samples 
per day, offering promising avenues for future 
optimization. 

Taken together, our findings reveal the 
coordinated evolution of proteomic and metabolic 
landscapes across distinct synovial pathologies, 
establishing a robust foundation for a precision 
medicine paradigm that integrates spatial multi-omics 
with clinical stratification for enhanced clinical trials 
and better patient care. This integrative framework 
not only enables tailored therapeutic targeting but 
also offers a path to address comorbidities and OA 
disease heterogeneity systematically. With the 
potential to reshape current paradigms in OA 
diagnosis and treatment, this approach represents a 
decisive step toward individualized care and disease 
management. Clearly, due to the proof-of-concept 
nature of the study, validation in larger, stratified 
patient cohorts will be critical to refine these findings 
and accelerate their translation into clinical practice. 

Methods 
Ethics and biosafety 

The investigation complied with the principles 
outlined in the Declaration of Helsinki. Human 
osteoarthritic knee synovium samples were obtained 
as surgical waste from the Queen Mary Hospital. 
Informed consent was obtained before the surgery. 
Clinic ethics approval has been approved by the 
Institutional Review Board of the University of Hong 
Kong/Hospital Authority Hong Kong West Cluster 
(HKU/HA HKW IRB, Ref. No. UW 23-596). 
Non-clinic human research ethics, biological safety, 
and chemical safety approval were approved by 
the Research Ethics Committee of Hong Kong Baptist 
University (REC/24-25/0031). 

Tissue preparation and histological staining 
Sex and gender were not considered in the study 

design due to the case study nature. Two 
representative regions (Figure 2B and 2A, 
respectively), from a single OA patient of the lateral 
proximal side were isolated upon total knee 
replacement surgery and immediately placed in 
ice-cold saline. The surgeon eye-judged the level of 
inflammation based on the degree of tissue 
vasculature (white or pink/red), as we previously 
described[44]. 

Excess adipose tissue was dissected from the 
synovium. The tissue was embedded in 5% 
carboxymethylcellulose (Sigma-Aldrich), snap-frozen 
in liquid nitrogen, and stored at -80°C until 
cryosectioning. 10 μm-thick sections were 
thaw-mounted onto polyethylene naphthalate (PEN) 

membrane slides (Leica). Consecutive sections were 
stained with haematoxylin, aniline blue, and ponceau 
S using a Modified Masson Trichrome Stain kit 
(Solarbio) according to the manufacturer’s 
instructions. Stained sections were imaged at 20X 
magnification using a Zeiss Axioscan 3 slide scanner. 

Laser capture microdissection (LCM) 
Regions of interest (ROIs) for microdissection 

were selected based on Masson’s trichrome-stained 
images. A grid of 300 pre-defined 200 μm x 200 μm 
squares was generated using Aivia AI (Leica) and 
registered to the PEN membrane slide. Using a 20X 
objective (HC PL FL L 20x/0.40 CORR) in middle 
pulse mode, individual voxels were laser 
micro-dissected. The following laser settings were 
used: power 45, aperture 1, speed 11, middle pulse 
count 2, final pulse 1, head current 68%, pulse 
frequency 637, and offset 110. To minimize 
electrostatic interference, slides were rinsed three 
times with pure ethanol before dissection. Dissected 
voxels were collected into 2 μL droplets of dimethyl 
sulfoxide (DMSO) pre-loaded in the caps of 8-well 
PCR strips. Each voxel’s spatial location (row and 
column) was recorded for subsequent image 
reconstruction. Collected samples were freeze-dried 
in a lyophilizer and stored at -80°C until proteolytic 
digestion. 

Spatial proteomic sample preparation and 
LC-MS/MS analysis 

Tryptic digestion for LCM dissected samples 
follows our published method with minor 
adaptations.[22, 45] Briefly, 20 μL of 100 mM 
triethylammonium bicarbonate (TEABC, 
Sigma-Aldrich) was added to each sample-containing 
PCR tube. Samples were vortexed, centrifuged at 4500 
x g for 10 minutes, and heated to 95°C to solubilize 
proteins. As combination of trypsin and Lys-C 
proteases is well-established in proteomics to improve 
digestion efficiency and reduce missed cleavages,[46] 
1 μL of 20 ng/μL trypsin/Lys-C mix (Promega) in 100 
mM TEABC was added, followed by vigorous 
vortexing and centrifugation at 4500 x g for 10 
minutes. Proteolytic digestion was performed at 37°C 
for 12 hours. Digestion was quenched by adding 
formic acid (MS grade, Thermo Fisher Scientific) to a 
final concentration of 1%. Peptides were dried using a 
SpeedVac concentrator and stored at -80°C until 
LC-MS/MS analysis. 

Dried peptides were reconstituted in 3 μL of 2% 
acetonitrile/0.1% formic acid and loaded onto a 5 cm 
(length) x 75 μm (i.d.) column packed with 1.7 μm C18 
modified silica beads (Ionopticks, Australia). Peptides 
were separated using a 15-minute linear gradient of 
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2-25% solvent B (0.1% formic acid in acetonitrile) over 
12 minutes, followed by a 1-minute ramp to 95% 
solvent B, which was held for 2 minutes. A constant 
flow rate of 1 μL/min was maintained, and the 
column temperature was set to 50°C. Mass 
spectrometry analysis was performed on a timsTOF 
flex MALDI2 (Bruker Daltonics) instrument operated 
in DIA-PASEF mode. Data acquisition was done 
using default DIA-PASEF parameters except the 
following: 25 m/z isolation window (400-1200 Da), 3 
ion mobility windows (1/K0 0.6-1.3), 50 ms ramp time, 
and 16 PASEF frames per full MS scan, resulting in a 
cycle time of less than 1 second. 

Proteomic data processing and database 
search 

Spatial proteomics data files of each voxel, 
named according to numeric spatial coordinates, were 
annotated with histological information derived from 
Masson’s trichrome staining, including total collagen 
(blueness), inflammation (redness) within each voxel 
using ImageJ software.  

Database searches for spatial-resolved 
proteomics samples were then performed using 
DIA-NN in spectral library mode with the 
match-between-runs option enabled[47]. Cysteine 
carbamidomethylation was removed from fixed 
modification, with all other settings left as default. To 
construct the spectral library, a pooled synovium 
peptide sample was fractionated using high pH 
reversed-phase fractionation (Thermo Fisher 
Scientific) and analysed using the same LC condition 
(15 min gradient on a 5 cm long column) on the same 
mass spectrometer operated in data-dependent 
acquisition (DDA) mode. The DDA file was searched 
using MS Fragger[48] with default settings against 
Uniprot human database (Homo sapiens, 2024) except 
no cysteine carbamidomethylation allowed. 

Protein spatial imaging 
Protein expression levels were log2 transformed 

and visualized concerning their spatial index 
(numeric spatial coordinates recorded in spatial 
proteomics data) using the pheatmap package in R. 

Data preprocessing and clustering 
A complete input matrix is required for UMAP 

dimension reduction and visualization. Blank voxels 
were excluded and marked as cluster 0, leaving 390 
voxel data from two slides for further analysis. 
Proteins identified in less than 40% (156 out of 390) 
voxels across the experiment were removed from 
further analysis. The remaining missing values of 
signal intensity were arbitrarily imputed as 1. UMAP 
dimensionality reduction was performed on the 

imputed data using the uwot package in 
R/Bioconductor, number of neighbours 
(n_neighbours) was set as 20. Clustering was then 
performed using either the K-means algorithm with 4 
centres.     The Voxel dataset was then visualized on a 
2D-UMAP using ggplot2 (v. 3.5.1).  

Co-expression and pathway analysis 
Fuzzy c-means algorithm (mfuzz v2.6.1)[28] was 

applied to identify proteins with similar expression 
trends across different functional stages with varying 
degrees of association. The fold change (FC) of each 
protein compared to its signal intensity in cluster 1 
(quiescent cluster) was used as the input matrix. A 
default value with 6 centres (modules) was used.   

A total of 2060 proteins belonging to four mfuzz 
modules were then used to construct the expression 
heatmap. Expression patterns in representative voxels 
in each functional cluster (n=8) were visualized by 
co-expression clustering using the pheatmap package 
in R. Expression level was shown in z-score converted 
from the signal intensity.  

Pathway analysis for proteins belonging to each 
module was then conducted by clusterProfiler 
(v.4.12.6) using the Gene Ontology Biological Process 
(GOBP) database (Genome-wide annotation for 
human from org.hs.eg.db, v.3.19.1). The p-values were 
corrected using the Benjamini-Hochberg method with 
a q cut-off value of 0.01. The entire set of proteins 
detected in the experiment was used as the 
background set. The selected enriched terms were 
visualized in a 2D-bubble plot using the enrichplot 
package (v.1.24.4). 

Correlation analysis 
The protein expression matrix in each voxel was 

used for Spearman’s correlation analysis. The 
correlation score between protein markers was 
calculated by the rcorr package based on the signal 
intensity from the dataset. A correlation bubble map 
was then generated to visualize the relationships 
among selected marker proteins using corrplot 
(v.0.95). For the scattered plots representing 
one-to-one correlation between selected marker sets, 
the R was calculated by fitting linear models with a 
95% confidence interval and plotted by ggplot.  

MALDI-mass spectrometry imaging 
(MALDI-MSI) 

Collected synovial tissue was snap-frozen in 
liquid nitrogen and stored at -80°C. Sections of 10 μm 
thickness were thaw-mounted onto indium tin 
oxide-coated glass slides and dried under vacuum for 
at least 15 minutes. Slides were pre-scanned using an 
optical scanner for image registration. A matrix 
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solution of 5 mg/mL N-(1-naphthyl)ethylenediamine 
dihydrochloride (NEDC) in methanol was sonicated 
for 10 minutes and applied to the slides in ten layers 
using an in-house electrospray device.[49] The 
following key instrumental parameters were applied: 
flow rate of 0.05 mL/min; tracking spacing of 2 mm; 
25 s drying time; temperature of the spray head 66 °C. 

Mass spectrometry imaging was conducted on a 
timsTOF flex MALDI 2 instrument (Bruker Daltonics) 
as reported. A spatial resolution of 20 μm was 
achieved. Mass spectra were acquired between m/z 80 
and 2000 in negative ion reflector mode. Key 
parameters were optimized and applied throughout 
the experiment, including averaging of 1000 shots, a 
20.84 kV reflector voltage, 20 kV source voltage, and a 
pulsed ion extraction time of 100 ns. Calibration was 
performed using external standards (Bruker 
Daltonics) as reported. At least three spectra per 
representative region were averaged using 
DataAnalysis software. Peaks were identified by 
searching against the Human Metabolome Database 
with a mass tolerance of 10 ppm. Imaging data and 
metabolite assignments were imported into SCiLSlab 
software for visualization and segmentation using the 
bisecting K-means algorithm. 

Metabolite quantification was performed using 
SCiLS Lab software following our previous 
reports.[22, 49] The metabolite heatmaps were firstly 
normalized based on total ion count. Regions of 
interest (ROIs) corresponding to synovial 
microenvironments characterized as fibrosis or 
angiogenesis were delineated directly on SCiLS Lab 
by overlaying histological and molecular images. For 
each ROI, the intensity values of individual pixels 
(voxels) were extracted and treated as independent 
data points for statistical analysis. Intensity 
distributions were visualized using box plots, and 
statistical significance was assessed with p-values 
adjusted for multiple testing using the 
Benjamini-Hochberg procedure, applying a false 
discovery rate (q) cutoff of 0.01.   

Supplementary Material  
Supplementary figures and tables.  
https://www.thno.org/v15p9729s1.pdf   
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