Supplementary Materials:

Table S1: Real-time PCR primer sequences used in this study

Gene	Forward primer (5' to 3')	Reverse primer (3' to 5')
RAT-TNF-α	CCGAGATGTGGAACTGGCAGAG	CCACGAGCAGGAATGAGAAGAGG
RAT-IL-1β	TCTCACAGCAGCATCTCGACAAG	CCACGGGCAAGACATAGGTAGC
RAT-GM-CSF	GATGCCGCTTGTCAGTGCTAAC	GGTCGTAATGCTGCCTATTG
RAT-GAPDH	ACGGCAAGTTCAACGGCACAG	CGACATACTCAGCACCAGCATCAC
MOU- GAPDH	GGCAAATTCAACGGCACAGTCAAG	TCGCTCCTGGAAGATGGTGATGG
MOU-COL2A1	ACGAGGCAGACAGTACCTTGAG	TGGTTGTTCAGTGACTTGAGTGTAG
MOU-COLX	GATGCCGCTTGTCAGTGCTAAC	GGTCGTAATGCTGCTGCCTATTG
MOU-MMP13	CAGTTGACAGGCTCCGAGAAATG	CACATCAGGCACTCCACATCTTG
MOU-ACAN	TCCGACATAGACACAGGCACTTC	GCTGATGGCAACATTCACCTCTG
MOU-ADAMTS5	GCTCCTCTTGGTGGCTGACTC	GGCGGATGTGGTTCTCAATGC
MOU- IL-6	GGCTAAGGACCAAGACCATCC	GCACTAGGTTTGCCGAGTAGA
MOU-STAT1	GCCTCTCATTGTCACCGAAGAAC	TGGCTGACGTTGGAGATCACCA
MOU- CCL2	GCTACAAGAGGATCACCAGCAG	GTCTGGACCCATTCCTTCTGG
MOU- CCL24	ATTCCAGAAAACCGAGTGGTTAGC	GCATCCAGTTTTTGTATGTGCCTC
MOU- CCL8	GGGTGCTGAAAAGCTACGAGAG	GGATCTCCATGTACTCACTGACC

Figure S1: The cumulative release curve of FITC-labeled BSA from PVP MNs following immersion in water.

Figure S2: The drug diffusion of MNs@De in the skin surface of the knee joint.

(A) Negative control group for confocal fluorescence imaging. (B) Fluorescence images of the blank microneedle group and the MNs@De group on the skin surface of the knee joint, with blue representing DAPI and red representing Cy5.5-labelled denosumab. Scale bars, 100 μm.

Figure S3:Examples of Safranin O and H&E staining in SHAM, DMM, DMM+MNs@veh, DMM+MNs@De mice. Scar bar,200um.

Figure S4: Microneedle toxicity testing on major organs of mice.

(A) H&E staining of organs(heart, liver, spleen, lung, kidney) in sham,dmm,SC De, IA De and MNs@De mice. Scar bar, 100um. (B) Detection of liver and kidney function indicators (ALT, AST, Urea, Crea) in Veh and MNs mice. (n = 5 per group).

Figure S5: Immunohistochemical staining images and quantification for CD3, CD4, CD8 and CD20 in sham, DMM, SC De, IA De and MNs@De mice bone marrow; scale bar = $200 \mu m$.

Figure S6: RT-qPCR was performed to assess the mRNA levels of MMP13,

ADAMTS5,COLII and COLX in chondrocyte from the Veh, De, IL- 1β +veh, and IL- 1β +De groups (n = 5 per group). Statistical analyses were conducted using one-way ANOVA followed by the by Dunnett multiple comparisons test. Error bars are mean \pm SD, * P < 0.05, **P < 0.01, ****P < 0.001, ****P < 0.0001.

Figure S7: Denosumab reduces macrophage migration and proliferation, and polarizes them towards the M2 phenotype.

(A) Representative transwell migration assay of macrophages.

Macrophages were seeded on the upper chamber at 2,000 cells/mL, then IL-1β or denosumab was added to the lower chamber. After 12 hours, migrated cells on the lower surface of the TranswellTM membrane were stained with crystal violet. Scar bar, 100um. (B) Semi-quantitative analysis of macrophage migration numbers. (n = 3 per group). (C) The CCK-8 assay measures absorbance at 450 nm to reflect the proliferation of macrophages.*, Veh vs IL-1β;#,IL-1β VS IL-1β+De;\$,IL-1β+De vs De. (n = 5 per group). (D) Western blot analysis of CD86, TNF-a, ARG1,P16,P21in vehicle, IL-1 β , IL-1 β + De and De treated Macrophages(n = 3 per group).(E) SA- β -gal staining of macrophages induced to inflammation by IL-1β and semi-quantitative analysis, scar bar,200um.(n = 3 per group). Statistical analyses were conducted using one-way ANOVA followed by the by Dunnett multiple comparisons test.Error bars represent mean \pm SD, * P < 0.05, **/##P < 0.01, ***/##/\$\$\$*P*<0.001,****/\$\$\$*P* < 0.0001.

Figure S8: (A) RT-qPCR was performed to assess the mRNA levels of CCL2, CCL8, CCL24, IL6, STAT1, MMP19, PASP, and FN1 in macrophages from the Veh, De, IL-1 β +veh, and IL-1 β +De groups (n = 5 per group). (B) The concentrations of MMP13, MMP9, IL-6, IL-1 β , and ADAMTS5 in macrophages from the Veh, De, Tbhp, and Tbhp+De groups were assessed by enzyme-linked immunosorbent assay (n = 8 per group).

Statistical analyses were conducted using one-way ANOVA followed by the by Dunnett multiple comparisons test. Error bars are mean \pm SD, * P < 0.05, **P < 0.01, ****P < 0.001, ****P < 0.0001.

Figure S9: quantification of P16/P21-positive cells in synovial tissues from mice in the Sham, DMM+Veh, DMM+SC De, DMM+IA De, and DMM+MNs@De groups.(n=5) Statistical analyses were conducted using one-way ANOVA followed by the by Dunnett multiple comparisons test. Error bars are mean \pm SD, * P < 0.05, **P < 0.01, ****P < 0.001, *****P < 0.0001.

Figure S10: Characterization of MN patch for large animal (dog) Applications.

(A,B) Dimensional analysis of MN patch length and width (3 cm \times 3 cm).

(C) Morphological characterization and height measurement of microneedle tips (805-905 μm). (D) Quantitative assessment of base dimensions (404-435 μm) and (E) Tip apex width for individual MN measurement (30-44 μm). (F) Inter-needle spacing analysis between adjacent MN (819-844 μm). (G) Penetration capability evaluation through the five-layer parafilm M barriers of MN. (H) In vitro dissolution of MN patch in aqueous medium. (I) Photograph of MN patch application on the

dog joint anatomy.

Figure S11: Microneedle toxicity testing on major organs of beagles.

H&E staining of organs (heart, liver, spleen, lung, kidney) in SHAM, ACLT, SC De, IA De and MNs@De beagles. Scar bar, 100um