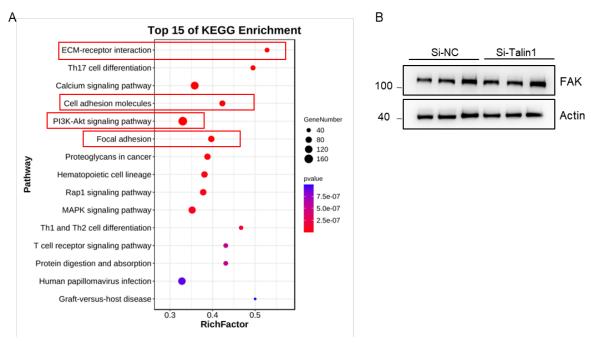
Supplementary data

Table S1: Medical Record Table.

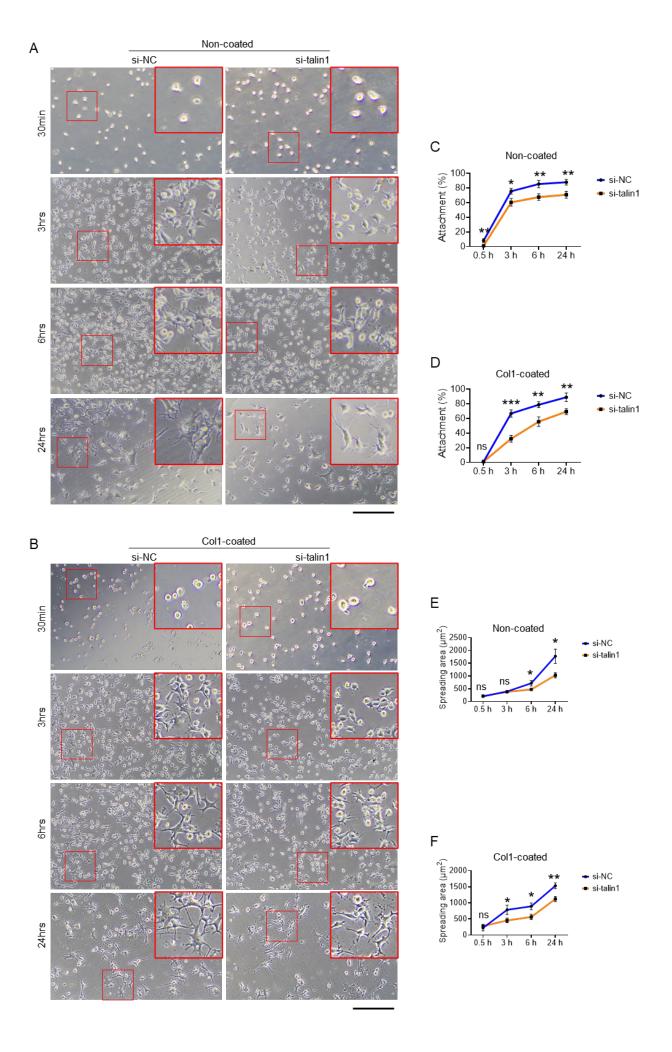
Patient	Sex	Age	Past Medical	Present Illness
Young#1	Male	29	None None	Fracture caused by a traffic accident leading to extensive damage of the articular surface
Young#2	Female	33	Mild fatty liver	Femoral head necrosis caused by long-term excessive alcohol consumption
Young#3	Male	35	None	Irreversible joint destruction caused by rheumatoid arthritis
Aged#1	Male	75	Hypertension for over 5 years, regularly taking antihypertensive medication	Left femoral neck fracture due to hip pain after a fall
Aged#2	Male	79	History of hypertension for more than 10 years, self-medicated	Right hip pain and restricted mobility after a fall
Aged#3	Female	80	Bradycardia for 5 years treated with a pacemaker; history of diabetes for 5 years, untreated systematically	Right hip trauma caused by a fall

Table S2: Primers used for genotyping analysis.

Gene name	Forward	Reverse
Dmp1-Cre	GATCTCCGGTATTGAAACTCCAGC	GCTAAACATGCTTCATCGTCGG
talin1	AGTGGGTGTTGTTGCTCTTCATAA	CTCCACTTTCCCCACTCGGTTGT
p53	GAGCATGGAAGTAAGACCCCTTCT	GACAGGGTTTCTCTATGTAGCCCT


Table S3: primers used for qRT-PCR analysis.

Gene name	5' primer	3' primer	
Runx2	AACGATCTGAGATTTGTGGGC	CCTGCGTGGGATTTCTTGGTT	
Osx	ATGGC GTCCTCTCTGCTTG	TGAAAGGTCAGCGTATGGCTT	
Collal	GCTCCTCTTAGGGGCCACT	CCACGTCTCACCATTGGGG	
Alp	CCAACTCTTTTGTGCCAGAGA	GGCTACATTGGTGTTGAGCTTTT	
Ocn	AGGGAGGATCAAGTCCCG	GAACAGACTCCGGCGCTA	
Ap2	GGGGCCAGGCTTCTATTCC	GGAGCTGGGTTAGGTATGGG	
Pref-1	CCCAGGTGAGCTTCGAGTG	GGAGAGGGGTACTCTTGTTGAG	
Cebp/α	CAAGAACAGCAACGAGTACCG	GTCACTGGTCAACTCCAGCAC	
Ppar-y	TCGCTGATGCACTGCCTATG	GAGAGGTCCACAGAGCTGATT	
Adiponectin	TGTTCCTCTTAATCCTGCCCA	CCAACCTGCACAAGTTCCCTT	
talin1	GGCCCTCCCAACGACTTT	AGCCTCTAGCCAGATGCCTTT	
Gapdh	AGGTCGGTGTGAACGGATTTG	TGTAGACCATGTAGTTGAGGTCA	
p53	CTCTCCCCGCAAAAGAAAAA	CGGAACATCTCGAAGCGTTTA	


Table S4: antibody information.

Antibody	Company	Catalog #	Application/Dilution
talin-1	Proteintech 14168-1-AP WB	14168-1-AP	WB (1:1000) IF (1:200)
Gapdh	ZSGB-BIO	TA-08	WB (1:1000)
p-FAK	Abcam	ab81298	WB (1:1000) IF (1:100)
Piezo1	Proteintech	15939-1-AP	WB (1:500)
Integrin β1	Abcam	ab95623	WB (1:1000)
Integrin β3	Cell Signaling Technology	13166	WB (1:1000)
Actin	TransGene	HC201	WB (1:2000)
Kindlin2	Millipore	MAB2167	WB (1:1000)
Runx2	Cell Signaling Technology	12556	WB (1:1000)
Osx	Abcam	ab22552	WB (1:1000) IF (1:300)
Ocn	Proteintech	23418-1-AP	IF (1:200)
p53	CST	2524S	WB (1:1000) IF (1:200)
p21	Abcam	ab188224	WB (1:1000) IF (1:200)
P16	Abcam	ab211542	WB (1:1000) IHC/IF (1:200)
Histone	Proteintech	68345-1-Ig	WB (1:1000)
phalloidin-488	Invitrogen TM	A12379	IF (1:500)

Supplementary Figures and Figure Legends

Figure S1. KEGG enrichment. (A) The KEGG enrichment analysis of young and aged mice cortical bone samples. The ECM-receptor interaction, cell adhesion, PI3K-Akt signaling pathway and focal adhesion signaling pathways are highlighted in red boxes. **(B)** Western blot (WB) analysis for FAK protein treated with si-NC (negative control) or si-talin1in MLO-Y4 cells.

Figure S2. Osteocyte attachment assay. (**A**, **B**) Representative images of si-NC and *si-talin1* MLO-Y4 cells spreading and attachment on non-coated glass surface (**A**) and Col-1 coated surface (**B**) at 0.5, 3, 6, and 24 h after seeding. Scale bar, 100 μm. Statistical analysis of percentage of spreading cells for si-NC and *si-talin1* MLO-Y4 cells on glass surface (**C**, **E**) and Col-1 coated surface (**D**, **F**) at 0.5, 3, 6 and 24 h after seeding. All results were expressed as mean \pm s.d., n. s. P > 0.05, *P < 0.05, *P < 0.05, *P < 0.01, ***P < 0.01 versus controls, unpaired two-tailed Student's P < 0.01 test.

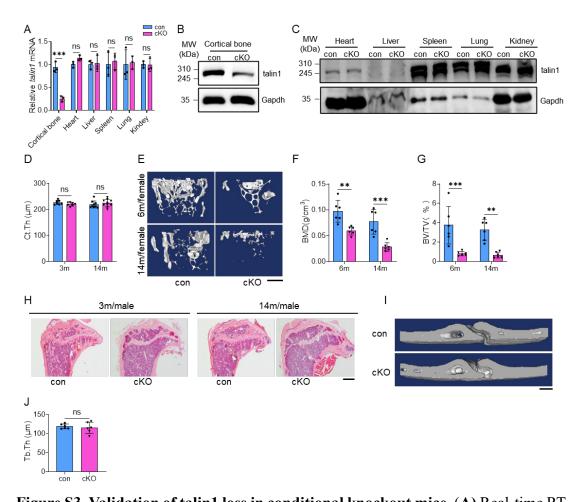


Figure S3. Validation of talin1 loss in conditional knockout mice. (A) Real-time RT-PCR (qPCR) analyses of *talin1* expression in different types of tissues isolated from 6-mo-old male control (con) and cKO mice. Data was normalized to *Gapdh* mRNA. N = 3 per group. (B, C) Western blot (WB) analysis of talin1 protein expression from the cortical bone and other tissues of 6-mo-old control and cKO mice. Gapdh was used for loading control. (D) Quantitative analyses of cortical thickness (Ct.Th) of distal femurs from male con and cKO mice with the indicated ages. N = 7, 3-mo-old male mice; N = 9, 14-mo-old male control mice; N = 10, 14-mo-old male cKO mice. (E) 3D reconstruction from μCT scans of tibia from female control and cKO mice. (F-G) Quantitative analyses of the bone mineral density (BMD) and bone volume/tissue volume (BV/TV) of distal femurs from female control and cKO mice with the indicated ages. N = 6 per group, biological replicates. (H) H/E staining of tibial sections of control and cKO male mice with the indicated ages. Scale bar, 500 μm. (I) 3D reconstruction from μCT scans of skull from male control and cKO mice. Scale bars, 1 mm. (J) Quantitative analyses of the skull from male control and cKO mice. N = 6 per group,

biological replicates. All results were expressed as mean \pm s.d., n. s. P > 0.05, **P < 0.01, ***P < 0.001 versus controls, unpaired two-tailed Student's t test.

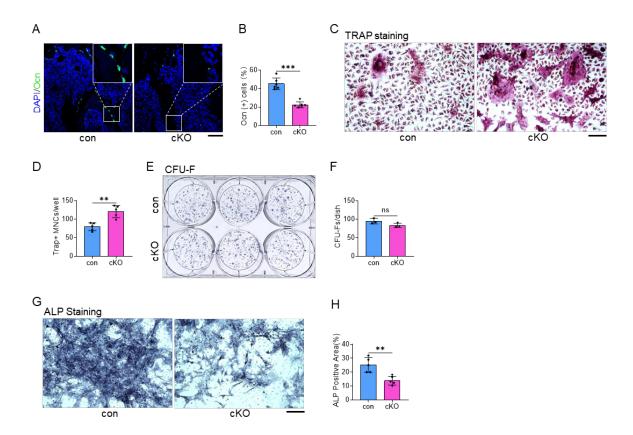


Figure S4. Talin1 loss leads to reduced bone formation and enhanced osteoclast formation in mice. (A) IF staining of osteocalcin (Ocn) from the tibial sections of 3-mo-old control and cKO mice. Scale bar, $50 \,\mu\text{m}$. (B) Quantification analysis of osteocalcin-positive osteocytes in A. N = 6 per group, biological replicates. (C) TRAP staining of bone marrow monocytes (BMMs) derived from 6-mo-old male con and cKO mice. Scale bar, $100 \,\mu\text{m}$. (D) quantitative analyses of TRAP+ multinucleated cells in G. N = 5 per group, biological replicates. (E) Colony forming unit-fibroblast (CFU-F) assays of bone marrow nucleated cells derived from 6-mo-old male control and cKO mice. (F) Quantitative data of C. N = 3 per group, biological replicates. (G) ALP staining for in vitro osteoblastic differentiation of the primary BMSCs derived from 6-mo-old male control and cKO mice. (H) Quantitative data of E. N = 3 per group, biological replicates. All results were expressed as mean \pm s.d., n. s. P > 0.05, **P < 0.01, ***P < 0.001 versus controls, unpaired two-tailed Student's t test.

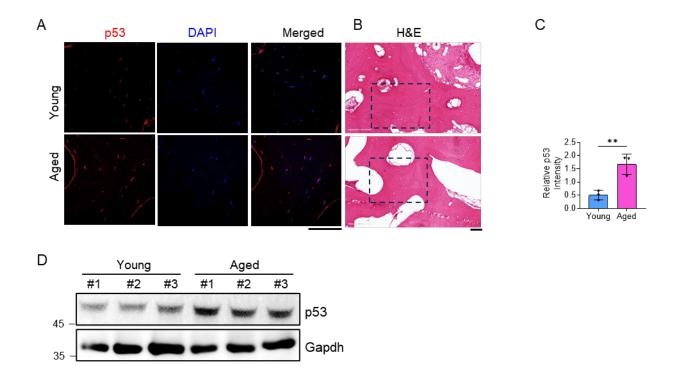


Figure S5. Osteocyte p53 is up-regulated during skeletal aging in humans. (A, B) IF staining ang Hematoxylin and eosin (H/E) staining for p53 expression of young (29 years old) and aged (75 years old) human bone samples. Scale bars, $100 \,\mu\text{m}$. (C) Quantification data of B. N = 3, biological replicates. All results were expressed as mean \pm s.d., n. s. **P < 0.01 versus controls, unpaired two-tailed Student's t test. (D) WB analyses for p53 expression of young and aged human bone samples.

Figure S6. HE and IF staining of tibial sections. (A) H/E staining of tibial sections of 3-mo-old mice of the indicated genotypes. Scale bar, 500 μ m. (B) F-actin cytoskeleton staining with tibia sections from indicated genotype. Scale bar, 30 μ m. (C-E) Quantitative analysis of B. N = 6 per group, biological replicates. All results were expressed as mean \pm s.d., n. s. P > 0.05, *P < 0.05, *P < 0.01, ***P < 0.001 versus controls, ordinary one-way ANOVA.