# Prognostic implications of [18F]FDG PET and metabolic changes in patients with advanced metastatic neuroendocrine tumors undergoing rechallenge PRRT: final results from a multicenter 10-year survival WARMTH study

### Supplementary materials

Giulia Santo<sup>1,2,#</sup>, Margarida Rodrigues<sup>1,#</sup>, Diana Paez<sup>3</sup>, Olga Morozova<sup>3</sup>, Levent Kabasakal<sup>4</sup>, Kalevi Kairemo<sup>5</sup>, Chiara Maria Grana<sup>6</sup>, Richard P. Baum<sup>7,8</sup>, Gianpaolo di Santo<sup>1</sup>, Irene J. Virgolini<sup>1,\*</sup>

- <sup>1</sup> Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- <sup>3</sup> Nuclear Medicine and Diagnostic Imaging Section, Division of Human Health, International Atomic Energy Agency (IAEA), Vienna, Austria
- Department of Nuclear Medicine, İstanbul University-Cerrahpasa Medical Faculty, İstanbul, Türkiye
- <sup>5</sup> Nuclear Medicine and Theragnostics, Docrates Cancer Center, Helsinki, Finland
- Radiometabolic Therapy Unit, Division of Nuclear Medicine, IRCCS IEO European Institute of Oncology, Milano, Italy
- <sup>7</sup> Molecular Radiotherapy, Curanosticum Wiesbaden-Frankfurt, Germany
- <sup>8</sup> Theranostics Center for Molecular Radiotherapy and Precision Oncology, ENETS Center of Excellence, Zentralklinik Bad Berka, Bad Berka, Germany

#### Corresponding author:

Irene J. Virgolini

Department of Nuclear Medicine, Medical University of Innsbruck,

Anichstrasse 35, 6020 Innsbruck, Austria

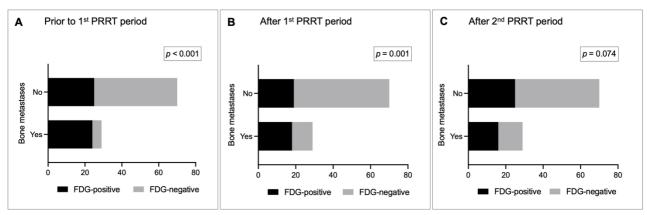
Tel: +43-512-504-22651, fax: +43-512-504-22659

e-mail: irene.virgolini@tirol-kliniken.at

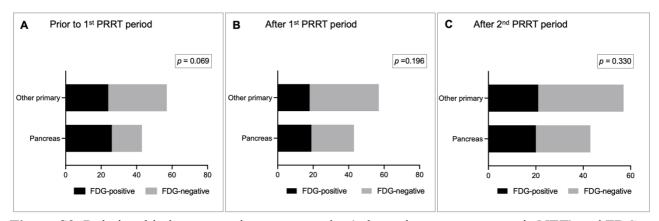
#### First authors:

Giulia Santo and Margarida Rodrigues share the first authorship

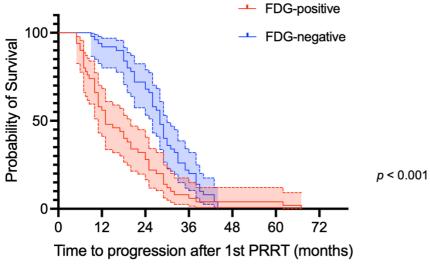
Department of Nuclear Medicine, Medical University of Innsbruck,


Anichstrasse 35, 6020 Innsbruck, Austria

# **Supplementary Table**


**Table S1.** Information on PET/CT scanners, the administered activity of radiopharmaceuticals, the main acquisition parameters and the software used for imaging review at each center.

| Institution                                                                                                                           | Manufacturer                                             | Model                                   | Administered activity                                                                                                 | Acquisition parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Software for imaging revision                          |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Medical University<br>of Innsbruck,<br>Innsbruck, Austria                                                                             | GE HealthCare                                            | MS-Advance or MS-<br>Discovery 450      | 100–150 MBq of [68Ga]Ga-<br>DOTATOC;<br>200–300 MBq of [18F]FDG                                                       | Images were acquired from the skull to the mid-thigh. Attenuation correction was performed using transmission data obtained with a <sup>67</sup> Ge pin source at 3 min per bed position (MS-Advance) or a CT scan (MS-Discovery 450). Ordered-subsets expectation maximization was used for image reconstruction.                                                                                                                                                                                                                                                   | eNTEGRA, GE<br>HealthCare                              |
| İstanbul University-<br>Cerrahpasa Medical<br>Faculty, İstanbul,<br>Türkiye                                                           | Siemens,<br>Knoxville, TN,<br>USA                        | Biograph LSO HI-REZ<br>PET/CT           | 110–200 MBq (mean<br>143.19±34.04 MBq) of [ <sup>68</sup> Ga]Ga-<br>DOTATATE;<br>370–703 MBq of [ <sup>18</sup> F]FDG | A CT topogram was first acquired to define the axial range of the PET/CT study, covering the area from the skull to the mid-thighs. After that, a CT transmission scan without i.v. contrast enhancement was acquired with low tube current (130 kVp, 48–76 mAs), a slice thickness of 4.0 mm, 0.6 s gantry rotation, and a collimator width of 6×3 mm. Then PET emission scanning with a duration of 3 min per bed position was performed. For attenuation correction, CT transmission images were used, and an iterative method was used for image reconstruction. | advantageWorkstation<br>version: 4.6; GE<br>Healthcare |
| Docrates Cancer<br>Center, Helsinki,<br>Finland                                                                                       | Siemens<br>Healthineers,<br>Erlangen,<br>Germany         | TruePoint PET-CT<br>Siemens Biograph 6  | 120–170 MBq of [68Ga]Ga-<br>DOTATOC;<br>210–310 MBq of [18F]FDG                                                       | Whole body imaging covered the area from the calvarium to the mid-thighs. Standard vendor-provided reconstruction algorithms were used to reconstruct PET images. CT images were taken using 3.75 mm slice thickness. Attenuation- and nonattenuation-corrected datasets were reconstructed, and the images were analyzed using syngo.via software (later with MIM software).                                                                                                                                                                                        | syngo.via, Siemens<br>Healthineers                     |
| IRCCS IEO<br>European Institute of<br>Oncology, Milano,<br>Italy                                                                      | GE HealthCare                                            | Discovery STE scanner                   | 3.0 MBq/kg of [ <sup>68</sup> Ga]Ga-<br>DOTATOC;<br>2.5 MBq/Kg of [ <sup>18</sup> F]FDG                               | Approximately 60 minutes after injection, static PET/CT imaging in 3D covering the upper torso from eyebrows to midthighs (3-minute emission scan/position) started. Attenuation correction was performed using a low-dose ultra-fast CT protocol (80 mAs, 140 kV, 0.3 mSv/FOV). Images were reconstructed using 3D OSEM iterative reconstruction algorithm (2 iterations, 28 subsets) with a 6.0 mm FWHM postfilter.                                                                                                                                                | Xeleris GEHC                                           |
| Theranostics Center<br>for Molecular<br>Radiotherapy and<br>Precision Oncology,<br>Zentralklinik Bad<br>Berka, Bad Berka,<br>Germany. | Siemens Medical<br>Solutions AG,<br>Erlangen,<br>Germany | Biograph Duo or<br>Biograph mCT Flow 64 | 46–260 MBq of [68Ga]Ga-<br>DOTANOC, [68Ga]Ga-<br>DOTATOC, or [68Ga]Ga-<br>DOTATATE;<br>350–600 MBq of [18F]FDG        | Approximately 45–90 min after the intravenous injection of <sup>68</sup> Ga-DOTA-NOC, <sup>68</sup> Ga-DOTATOC, or <sup>68</sup> Ga-DOTATATE and 45–90 min after the intravenous injection of 350–600 MBq of <sup>18</sup> F-FDG, respectively, PET/CT images were acquired from the skull to the middle part of the thigh. Contrast-enhanced CT (spiral CT using a Biograph mCT Flow 64) was acquired after the intravenous administration of 60–100 mL of nonionic iodinated contrast agent.                                                                       | syngo.via, Siemens<br>Healthineers                     |


## **Supplementary Figures**



**Figure S1.** Relationship between the presence of bone metastases and FDG status (A) prior to the 1<sup>st</sup> PRRT period, (B) after the 1<sup>st</sup> PRRT period, and (C) after the 2<sup>nd</sup> PRRT period



**Figure S2**. Relationship between primary tumor site (other primary vs. pancreatic NET) and FDG status (A) prior to the 1<sup>st</sup> PRRT period, (B) after the 1<sup>st</sup> PRRT period, and (C) after the 2<sup>nd</sup> PRRT period



#### **Median TTP**

FDG positive: 13 months (95% CI: 7.2 – 18.8 months) FDG negative: 28 months (95% CI: 26.3 – 29.7 months)

**Figure S3.** Kaplan-Meier curve for time to progression (TTP) stratified by a) [18F]fluorodeoxyglucose (FDG) status before the first peptide receptor radionuclide therapy (PRRT) period