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Figure S1. Successive generations of HUVECs undergo replicative senescence. (A) EdU
assays were conducted to assess the proliferative capacity across four stages of HUVECs. (B)
Tube formation assay was performed on four stages of HUVECs. (C) The correlation was
analyzed using Deeptools for H3K27ac CUT&Tag across four stages of HUVECs. (D)
Distribution patterns of H3K27ac, H3K4mel, H3K4me3, and ATAC peaks across the
genome. Data are presented as means + SD, one-way ANOVA, **P <0.01, ***P <0.001.
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Figure S2. Quality analysis of sequencing data. (A) The correlation was analyzed using
Deeptools for ATAC-seq and CUT&Tag-seq at four stages of HUVECs. (B) The fragment
size distribution plot generated by ATAC-seq. (C) Box plots of ATAC signals after quantile
normalization. Box plots are shown with the center (median), upper, and lower quartile range
per sample, and thick lines indicate the median values. (D) Left: the mapping ratio of
CUT&Tag-related genes to the human reference genome, right: Q30 scores of CUT&Tag. (E)
Left: the mapping ratio of ATAC-seq-related genes to the human reference genome, right:
Q30 score of ATAC-seq. (F) Left: the mapping ratio of RNA-seq reads to the human
reference genome, right: Q30 score of RNA-seq.
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Figure S3. H3K27ac and ATAC landscapes define the active regulatory elements during
endothelial cell senescence. (A-B) Heatmaps of the altered enhancers across four stages of
HUVECs with H3K27ac enrichment signals. Eight groups (E1-E8) of all enhancers (A) or
super-enhancers (B) with H3K27ac enrichment signals and the indicated number of enhancer
elements are presented. (C) Heatmap of the altered accessible chromatin regions across four
stages of HUVECs with ATAC-seq enrichment signals. (D) Venn diagrams illustrating the
number of shared ATAC-seq peaks among MP, M-LP, LP, and EP, respectively. (E) Heatmap

of DEGs from RNA-seq and DARs from ATAC-seq data at four stages of HUVECs.
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Figure S4. Differential enhancers associated with aberrant transcriptional programs. (A)
Fold change of H3K27ac signals for super-enhancer. (B) The expression levels of differential
SE-related genes. (C) Fold change of H3K27ac signals for all-enhancer. (D) The expression
levels of differential AE-related genes. Unaltered SE or AE-related genes were used as
controls. Box plots show the quartile spacing of the data, with bolded black lines indicating
median values that extend to the lowest or highest data point. SE, super-enhancer, AE, all-

enhancer. Data are presented as means + SD, Student's #-test, **P < 0.01, ***P < 0.001.
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Figure S5. Gained SE-related genes of senescent stage are enriched in the basic
senescence pathway. (A) Gene Ontology (GO) analysis of the gained or lost SE-related
genes in the MP, M-LP, and LP compared to EP, respectively. (B) GO analysis of the gained
or lost SE-related genes in the M-LP and LP compared to MP, respectively. (C) GO analysis
of the gained or lost SE-related genes in the M-LP compared to LP. (D) GO analysis of the
gained or lost AE-related genes in the MP, M-LP, and LP compared to EP, respectively. (E)
GO analysis of the gained or lost AE-related genes in the M-LP and LP compared to MP,
respectively. (F) GO analysis of the gained or lost AE-related genes in the M-LP compared to

LP. SE, super-enhancer, AE, all-enhancer.
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Figure S6. The core transcription factor FOXP1 is driven by super-enhancer. (A) The
heatmap displays normalized gene expression across EP, MP, M-LP, and LP. The colors
represent the normalized TPM values. (B) Heatmap of the expression of candidate core
transcription factors in DMIT (distant macroscopically intact tissue) and CP (core of the
plaque) samples from GEO database, GSE43292. The colors represent the normalized TPM
values. (C) RT-qPCR analysis of FOXP1 expression following treatment with varying
concentrations of THZ1 and JQI in HUVECs. (D) Viewable histone CUT&Tag signals,
ATAC-seq, and RNA-seq at the FOXPI gene locus across four stages of HUVECs. (E)
FOXP1 super-enhancer regions were selected within dense regions of H3K27ac binding peaks,
encompassing an average of 2-3 kb of DNA sequence per segment. A negative control (ctrl)
was included, along with a statistical graph depicting enhancer activity on the right. (F)
Western blot and RT-qPCR analyses of FOXP1 expression following inhibition of the major
enhancers' activity. Data are presented as means £+ SD, one-way ANOVA, **P < (0.01, ***P <

0.001.
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Figure S7. FOXP1 delays endothelial cell senescence and alleviates endothelial
dysfunction. (A) Western blot analysis of FOXP1, eNOS, and pl6 protein expression in
HUVEC:s following the inhibition of E4 activity. (B-C) Representative images of SA-B-gal
staining (B) and tubule formation (C) in HUVECs after the inhibition of E4 activity. (D-E)
The experiments assessing endothelial cell permeability (D) and the proportion of
proliferating cells (E) were conducted following the inhibition of E4 activity. (F) Western blot
analysis of FOXP1, eNOS, and p16 protein expression in HUVECs following the knockdown
of FOXP1. (G-H) Representative images of SA-B-gal staining (G) and tubule formation (H)
by HUVEC: after the knockdown of FOXP1. (I-J) The experiments assessing endothelial cell

permeability (I) and the proportion of proliferating cells (J) were conducted following the
9
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knockdown of FOXPI1. (K) Western blot analysis of FOXP1, eNOS, and pl6 protein
expression in HUVECs following the overexpression of FOXPI. (L-M) Representative
images of SA-B-gal staining (L) and tubule formation (M) by HUVECs after the
overexpression of FOXP1. (N-O) The experiments assessing endothelial cell permeability (N)
and the proportion of proliferating cells (O) were conducted following the overexpression of
FOXPI1. EV, empty vector, lv, lentivirus. Data are presented as the mean + SD. In G-J, the
statistical significance was calculated by one-way ANOVA. In B-E and L-O, the statistical
significance was calculated by Student's #-test, *P < 0.05, **P < 0.01, ***P < (0.001.
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Figure S8. Endothelial cell-specific overexpression of FOXP1 can delay endothelial cell
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senescence. (A) Immunofluorescence staining of p21 and CD31 in the intima of ApoE KO
mice following injection of AAV9-Con or AAV9-FOXP1. (B) Immunofluorescence staining
of p53 and CD31 in the intima of ApoE KO mice following injection of AAV9-Con or
AAV9-FOXPI.
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Figure S9. Physicochemical factors affecting phase separation of FOXP1. (A) Phase
separation was observed after transient transfection of the pcDNA3.1-EGFP-FOXP1 plasmid
in HEK293T cells. (B) The disruptive effect of 10% 1,6-hexanediol on EGFP-FOXP1-IDR1
protein droplets. (C) FRAP analysis of EGFP-FOXP1-IDR1 protein droplets. Time-lapse
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images (left); quantification of fluorescence intensity during FRAP assay (right). (D) Images
of the formation of EGFP-FOXP1-IDR1 proteins at different concentrations of PEG 4000 and
NaCl. (E) Schematic illustration of the effect of D. (F) The impact of varying concentrations
of PEG 4000 on the turbidity of EGFP-FOXP1-IDR1 protein, with turbidity measured as
0OD600. (G) Images depicting the spontaneous fusion of EGFP-FOXP1-IDR1 protein droplets.
(H) EGFP-FOXPI1-IDR1 protein droplets display a spherical, shell-like structure.

Full length AIDR1 AIDR1-FUSPR  AIDR1-hnRNPA1'°R

Figure S10. The fusion of IDR1-deficient variants with an IDR from FUS or hnRNPAI
fragments restores the LLPS.

12



143

FOXP1-flag

¥

FOXP1-flag

FOXP1-flag

FOXP1-flag

FOXP1-flag

FOXP1-flag

RNA pol Il

BRD4

H3K4me1

H3K4me3

H3K27ac

H3K9me3

DAPI

DAPI

DAPI

DAPI

DAPI

DAPI

4 L p* ” . o 0 ¢ :
¢ & ' v ~ S i
= 3 ¥ q p 2 e

200

-

(4]

o
L

100

50!

Relative indensity

Yy s
‘ ' ‘

o W
| WL | A M|
1, H“ il ,'\\ f”, ”H\ H,n“ 1 “"M‘ I

"R

Relative indensity

|
il

5 10 15
Distance (um)

t

|

J

| [ ‘ H

I
I L&! ~ I A

|

50

Relative indensity

5 10 15
Distance (um)

ity

Relative indens
-
o
o
|

o
o o
!

T
5 10 15
Distance (um)

i
‘ﬂﬁw /M\ [ A
\\“\,‘\‘,‘ ! %M‘“t"“ WAl 'm

"

o

200 -

- -
o o
(=] o
1 L

50

Relative indensity

T T

5
Distance (um)

Relative indensity
2 a
o o
1 1

|
/M
] U LUR & m
50 | \“H ‘VM [
0 : — .
: 0 5 0 15
FOXP1-flag CTCF DAPI 300~ Distance (um)
>
2 i TN |
§ 200 A
:g "f bl
.%100— | ald
] Al 4
3 J
o T T 1
0 5 10 15
FOXP1-flag MEDA1 DAPI 300- Distance (1m)
A = ‘
S 200 |
T \
£ ,
2 100- LA | BdR. |
& ! ul
T
“ o : .
0 5 10

Distance (um)

144 Figure S11. FOXPI1 colocalizes with epigenetic factors. Immunofluorescence analysis was
145 conducted to assess the colocalization of FOXP1 with other epigenetic factors. FOXP1 was
146 expressed in fusion with flag tags, and colocalization analysis was performed along the white

147 line using Image].
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Supplementary Movie 1. The EGFP-FOXP1 droplets underwent spontaneous fusion.

L)

Movie 1.mp4

Supplementary Movie 2. Fluorescence recovery after photobleaching (FRAP) assays of the
EGFP-FOXP1 droplets.

o

Movie 2.mp4

Supplementary Movie 3. The recombinant EGFP-FOXP1 protein underwent spontaneous

fusion.

o

Movie 3.mp4
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