Supplementary Materials

Table S1. Sequences of four DNA strands used for construction of TFNAs

Strands	Sequences (5'-3')
S1	ATTTATCACCCGCCATAGTAGACGTATCACCAGGCAGTTGAGACGAACATTCCTAAGTCTGAA
S2	ACATGCGAGGGTCCAATACCGACGATTACAGCTTGCTACACGATTCAGACTTAGGAATGTTCG
S3	ACTACTATGGCGGGTGATAAAACGTGTAGCAAGCTGTAATCGACGGGAAGAGCATGCCCATCC
S4	ACGGTATTGGACCCTCGCATGACTCAACTGCCTGGTGATACGAGGATGGGCATGCTCTTCCCG

Figure S1. Tubular injury scoring (TIS) was carried out to quantify the impairment and therapeutic effects of TFNAs and TFNAs@PLT on kidney injury. The injuries were observed from 10 independent fields, and the data were presented as mean \pm SD, *** Sham group vs. NS group, P < 0.001; # NS group vs. TFNAs group, P < 0.05; ††† NS group vs. TFNAs@PLT group, P < 0.001.

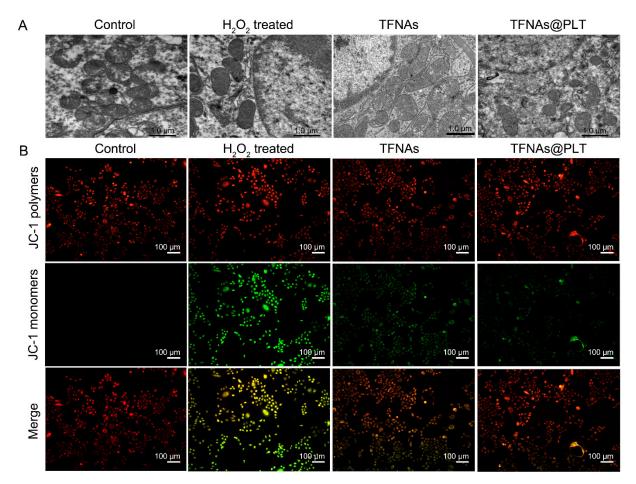


Figure S2: Effects of TFNAs@PLT on H₂O₂-induced ROS in the mitochondria (A) Morphology of the mitochondria was observed by TEM after HK-2 cells were treated with H₂O₂, TFNAs, and TFNAs@PLT. (B) Mitochondrial membrane potentials were revealed by JC-1 after the HK-2 cells were treated with H₂O₂, TFNAs, and TFNAs@PLT. JC-1 polymers and monomers are denoted as red and green, respectively.

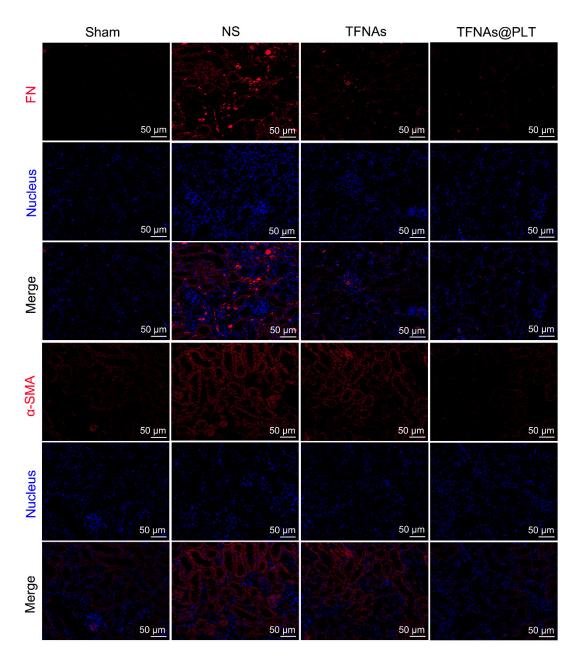


Figure S3: Effects of TFNAs@PLT on key markers of kidney fibrosis. The expression levels of fibronectin (FN) and α -smooth muscle actin (α -SMA) were examined by immunofluorescence. FN and α -SMA were stained red with CY5-conjugated secondary antibody, and the nucleus was stained blue with DAPI.