Supplementary Materials 1 2 Mechanosensitive snoRNA-like Circular RNA sno-circCNOT1 Drives 3 **Endothelial Dysfunction and Atherosclerosis** 4 5 Lianru Bi^{1,3#}, Yihao Zhu^{2,3#}, Ziqi Chen^{1,3#}, Yiying Yang^{1,3}, Yanlong Leng¹, Huijie Wang^{1,3}, 6 Jiajie Pan^{1,3}, Xiaozhe Zhang^{1,3}, Zekai Zeng^{1,3}, Yunjun Liang^{3,5}, Guifu Wu^{1,3,4*} and Wendong 7 8 Fan^{2,3*} 9 10 * Corresponding author: 11 Wendong Fan (fanwd3@mail.sysu.edu.cn), PhD. Department of Cardiology, the First 12 Affiliated Hospital of Sun Yat-sen University, No.58, Zhongshan 2nd Road, Guangzhou 13 510080, Guangdong Province, P.R. China. 14 Tel: +86 20 87330396; Fax: +86 20 87330396 15 Guifu Wu (wuguifu@mail.sysu.edu.cn), PhD. Department of Cardiology, the Eighth 16 Affiliated Hospital of Sun Yat-sen University, No. 3025 Shennan Zhong Road, Shenzhen, 17 18 518033, Guangdong, P.R. China. Tel: +86 0755-83982222; Fax: +86 0755-83980805 19 20 21 22 This PDF file includes: 23 Materials and Methods Supplementary Figures S1–S23 24 Supplementary Tables S1-S7 25 References 10,17 26

Materials and Methods

29 **Cell culture**

28

37

- 30 Human umbilical vein endothelial cells (HUVECs) and human aortic endothelial cells
- 31 (HAECs) were maintained in endothelial cell medium (ScienCell, 1001) supplemented with
- 32 5% fetal bovine serum (FBS; Gibco). LentiX-293T cells (Clontech, 632180) were cultured in
- high-glucose Dulbecco's Modified Eagle Medium (DMEM; Gibco) containing 10% FBS.
- 34 THP-1 cells (China National Collection of Authenticated Cell Cultures, Shanghai) were
- maintained in RPMI-1640 medium (Gibco, C11875500BT) containing 10% FBS. All cell
- cultures were kept at 37°C in a humidified incubator with 5% CO₂.

Shear stress experiments

- A shear stress system (Naturethink, Shanghai, China; NK110-STD) was employed to apply
- controlled shear stress, as previously described. The system consisted of a peristaltic pump,
- 40 parallel-plate flow chamber, unidirectional flow controller, medium reservoir, and silicone
- 41 tubing (16#, 3.2 mm × 1.6 mm; LONGER). HUVECs or HAECs were seeded onto
- 42 microscope slides and cultured to confluence. Cells were then exposed to either laminar shear
- stress (LSS; 15 dynes/cm²) or oscillatory shear stress (OSS; 0.5 ± 4 dynes/cm²). The flow
- system was kept at 37 °C in a humidified incubator containing 5% CO₂.

45 Plasmid Construction, Lentivirus Production, and siRNA Transfection

- 46 The full-length human sno-circCNOT1 sequence was amplified and cloned into the
- 47 pLO5-ciR vector (Geneseed, Guangzhou, China) to generate the sno-circCNOT1
- 48 overexpression plasmid. Additional constructs, including the sno-circCNOT1-PD,
- 49 sno-circCNOT1-MS2-PD1, sno-circCNOT1-MS2-PD1, Sno-dele, Intron-Dele, and
- 50 Exon-Dele, were similarly generated. For LMNA and METTL14 overexpression, the coding
- sequences of LMNA and METTL14 were inserted into the pLV-mCherry backbone (#36084;
- Addgene) to produce pLV-LMNA and pLV-METTL14, respectively. The METTL14 mutant
- 53 (METTL14-MUT) was generated by polymerase chain reaction (PCR), replacing the native
- 54 sequence in pLV-mCherry to create pLV-METTL14-MUT. Using similar strategy,
- 55 HA-GFP-SNO-CTRL and HA-GFP-SNORA50A plasmids were constructed. The 3'
- untranslated region (3'UTR) of NLRP3, carrying either the wild-type sequence or m⁶A sites
- 57 mutant (A-to-T substitutions), was inserted into the psiCHECK-2 vector (Promega, C8021).

- All plasmids were validated by Sanger sequencing, and the corresponding primer sequences
- are listed in the Table S4.
- 60 For lentiviral production, LentiX-293T cells were transfected with the target plasmids
- 61 together with psPAX2 (Addgene, #12260) and pMD2.G (Addgene, #12259) using the
- 62 Lipo293 reagent (Beyotime Biotechnology, C0521). Viral supernatants were harvested and
- 63 purified for subsequent experiments.
- 64 Small interfering RNAs (siRNAs; RIBOBIO, Guangzhou, China) were transfected into ECs
- using Lipofectamine 2000 (Thermo Fisher, 11668019), following the manufacturer's
- 66 instructions. All siRNA sequences are provided in Table S1- S2.

Quantitative reverse transcriptase polymerase chain reaction (RT-qPCR)

- 68 RT-qPCR analysis was conducted according to our previous study. 17 Total RNA was
- 69 extracted with TRIzol reagent (Sigma-Aldrich, T9424-200ML) following the manufacturer's
- 70 guidelines. First-strand cDNA was generated from total RNA using the RevertAid First
- 71 Strand cDNA Synthesis Kit (Thermo Fisher Scientific, K16225). RT-qPCR was conducted
- using LightCycler 480 SYBR Green I Master Mix (Roche, 4887352001-1) on a CFX96
- 73 Touch Real-Time PCR System (Bio-Rad, Berkeley, CA). Primers sequences are listed in
- 74 Table S4.

Endothelial Cell Treatment

- 76 HUVECs or HAECs were treated for 24 h with one of the following: IL-1β (1 ng/mL;
- 77 PeproTech, 200-01B-10), TNFα (5 ng/mL; Sino Biological, 10602-HNAE), oxidized LDL
- 78 (ox-LDL) (50 μg/mL; Yiyuan Biotech, YB-002), or atorvastatin (ATV) (0.1 μM;
- 79 Sigma-Aldrich, SML3030). Vehicle controls received matched volumes of solvent. After
- 80 treatment, total RNA was isolated from the treated cells and analyzed by quantitative
- 81 real-time PCR (RT-qPCR).

82 Western blot analysis

- 83 Cells or tissues were lysed in RIPA buffer (Thermo Fisher, 89900) containing protease and
- 84 phosphatase inhibitors (Beyotime Biotechnology, P1045). Protein lysates were denatured in
- 85 SDS-PAGE loading buffer (Beyotime Biotechnology, P0015), separated by SDS-PAGE, and
- 86 transferred to polyvinylidene difluoride (PVDF) membranes (Millipore, IPVH00010).
- 87 Following blocking in 5% BSA (Asegene, 43035-500) for 1 h at room temperature,

- 88 membranes were incubated with primary antibodies overnight at 4 °C. After washing,
- 89 membranes were incubated with HRP-conjugated secondary antibodies for 1 h at room
- 90 temperature. Protein signals were detected using ECL reagent (Millipore, WBKLS0100)
- 91 according to the manufacturer's instructions. Band intensity quantification was performed
- 92 using ImageJ software (NIH, Bethesda, MD, USA). Antibodies used are provided in Table
- 93 **S5**.

94 RNase R digestion assay

- 95 Two micrograms of total RNA were incubated with RNase R (3U/µg; Beyotime
- 96 Biotechnology, R7092S) at 37 °C for 15 minutes. Reactions were terminated by heat
- 97 inactivation at 65 °C for 10 minutes. Untreated RNA samples served as negative controls.
- 98 RNA was subsequently purified using TRIzol reagent. Divergent primers spanning the
- 99 back-splice junction were designed to detect sno-circCNOT1, while convergent primers
- targeting exonic regions were used to quantify linear CNOT1 mRNA. Residual levels of
- sno-circCNOT1 and CNOT1 mRNA were measured by RT-qPCR.

102 Actinomycin D assay

- 103 Cells were treated with 5 ng/mL Actinomycin D (Sigma-Aldrich, A9415-2MG) for the
- 104 indicated durations. Total RNA was then extracted, and the expression levels of
- sno-circCNOT1 and CNOT1 mRNA were analyzed by RT-qPCR.

106 Nuclear and cytoplasmic RNA extraction

- Nuclear and cytoplasmic fractions from endothelial cells were isolated using the PARISTM
- 108 Kit (Thermo Fisher Scientific, AM1921) following the manufacturer's protocol. The
- expression level of sno-circCNOT1 in each fraction was quantified by RT-qPCR, with
- GAPDH and circ-CDR1-AS serving as cytoplasmic controls, and MALAT1 as the nuclear
- 111 control.

112

Fluorescence in situ hybridization (FISH)

- 113 The intracellular distribution of sno-circCNOT1 was determined using the RNASweAMITM
- 114 FISH Kit (Servicebio, GF010-50T) according to the manufacturer's instructions. A
- 115 Cy3-labeled probe specifically targeting the sno-circCNOT1 junction (designed and
- synthesized by Servicebio, Wuhan, China) was hybridized. Probe sequences are provided in
- Tables S3.

RNA pull-down and Mass Spectrometry

118

126

133

145

- Endothelial cells were transfected with lentivirus encoding sno-circCNOT1-PD (control),
- sno-circCNOT1-MS2-PD1, or sno-circCNOT1-MS2-PD1 for 72 h. Cells were lysed in IP
- 121 lysis buffer (Thermo Fisher Scientific, 87787). Lysates were incubated with GSH magnetic
- beads (Sigma-Aldrich, G0924-1ML) overnight at 4 °C with rotation. Proteins bound to RNA
- were eluted and separated using SDS-PAGE, following by detection through silver staining
- 124 (Thermo Scientific, 24612). Selected protein bands were excised for mass spectrometry
- analysis (ProtTech, Inc. Suzhou, China).

Immunofluorescence staining

- 127 After fixed with 4% paraformaldehyde (15 min, room temperature), cells or tissue sections
- were permeabilized using 0.1% Triton X-100 and blocked for 1 h with 5% normal goat serum
- 129 (NGS; BOSTER, AR0009). Primary antibodies were applied overnight at 4 °C, followed by
- secondary antibodies incubation for 1 h at room temperature. Nuclei were stained with DAPI
- (Abcam, ab104139-20ML), and images were acquired using confocal microscopy (LSM 800,
- 132 Carl Zeiss, Germany).

En face fluorescence staining

- Following anesthesia, mouse hearts were exposed via thoracotomy. A 26G needle was
- inserted into the left ventricular apex to sequentially perfuse heparinized saline and 4%
- paraformaldehyde for fixation. Isolated aortas were washed three times with 2.5% TBS-T
- 137 (TBS [AR0031, BOSTER], 40 mL; Tween-20, 1 mL). Tissues samples were blocked in 5%
- normal goat serum (NGS), prepared in 2.5% TBS-T for 1 hour at room temperature with
- gentle agitation. Following this, samples were incubated overnight at 4 °C with primary
- antibodies diluted in 5% NGS. After three washes with 2.5% TBS-T, samples were incubated
- with fluorescent secondary antibodies for 1 hour at room temperature in the dark. Following
- three final washes with 2.5% TBS-T, tissues were counterstained with DAPI (Abcam,
- ab104139), mounted, and imaged using a laser scanning confocal microscopy (LSM 800,
- 144 Carl Zeiss, Germany).

Dual-luciferase reporter assay

- 146 Luciferase activity was assessed 48 h after transfection in LentiX-293T cells using the
- Dual-Luciferase Assay Kit (Promega, E1910) following the manufacturer's protocol. Renilla

- luciferase signals were normalized to Firefly luciferase for data analysis.
- 149 **Cell Adhesion Assay**
- HUVECs were transfected with siRNAs targeting sno-circCNOT1, LMNA, or METTL14 or
- transduced with lentiviruses overexpressing these genes for 72 h. THP-1 cells (5×10^5) were
- labeled with Calcein-AM (Thermo Fisher Scientific, C3100MP) following the manufacturer's
- protocol. After 30 min of incubation, labeled THP-1 cells were centrifuged (300 × g, 5 min),
- washed with PBS, and co-cultured with HUVECs at 37°C in the dark for 1 h. Non-adherent
- cells were removed by PBS washing, and adherent cells were observed under an inverted
- 156 fluorescence microscope (Leica DMi8).
- 157 **Protein Stability Assay**
- 158 Cells were treated with 20 μM cycloheximide (Cell Signaling Technology, 2112S), 20 μM
- MG132 (Beyotime Biotechnology, S1748), or 0.1 μM bafilomycin A1 (MedChemExpress,
- 160 HY-100558) for a specific time. Cells were harvested at each time point for subsequent
- Western blot analysis.
- 162 Coimmunoprecipitation (Co-IP) assay
- HUVECs transduced with FLAG-tagged LMNA or METTL14 lentivirus for 72 h were lysed
- using IP lysis buffer (Thermo Fisher Scientific, 87787). Lysates were incubated overnight at
- 4 °C with anti-FLAG- magnetic beads (Beyotime Biotechnology, P2115). After washed, the
- bound proteins were eluted and analyzed by immunoblotting.
- 167 RNA Immunoprecipitation assay
- 168 Cells were lysed in IP lysis buffer (Thermo Fisher Scientific, 87787) on ice for 30 min. The
- obtained lysates were gently rotated overnight at 4 °C with anti-FLAG magnetic beads
- 170 (Beyotime Biotechnology, P2115) to allow protein binding. RNA was extracted from beads,
- and sno-circCNOT1 levels were quantified by RT-qPCR.
- 172 RNA-protein interaction simulation and analysis
- 173 The full-length human LMNA structure predicted by AlphaFold was retrieved from UniProt.
- 174 The three-dimensional structure of the RNA was built with 3dRNA. Protein–RNA docking
- was performed on the HDOCK server, with LMNA designated as the receptor and the RNA
- as the ligand (default parameters). Candidate complexes were ranked by HDOCK docking
- score (more negative values indicate better fits) and the confidence score (reliable when >0.7;

acceptable at 0.5-0.7). The top-ranked pose was visualized and annotated in PyMOL to

illustrate the interaction interface.

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

Partial ligation of carotid artery

To induce disturbed flow-mediated atherosclerosis, a partial ligation of the left carotid artery was performed. Mice were anesthetized, and a 4–5 mm midline incision was made in the neck. The left carotid artery and its major branches were carefully exposed by blunt dissection. The superior thyroid artery was temporarily clamped. A small arteriotomy was created in the distal segment of the left external carotid artery using Vannas scissors, and a PE tube (outer diameter 0.32 mm, inner diameter 0.20 mm) was inserted 1–3 mm into the lumen. The opposite end of the tube was connected to a 32G (0.23 mm × 13 mm) syringe needle, and the tubing was secured to the artery with 7-0 sutures. The left common carotid artery was then transiently occluded proximal to the aortic arch, and AAV virus was slowly infused through the catheter. Following injection, vascular occlusion was maintained for 45 min to allow effective viral transduction within the arterial wall. After incubation, clamps on the common carotid artery and superior thyroid artery were released to restore blood flow. Hemostasis was confirmed, and the incision was closed. Mice were kept on a warming pad until full recovery and subsequently returned to their cages. All procedures were performed by the same operator to minimize technical variability.

Histopathology

- 197 Hematoxylin-eosin (H&E) staining: Carotid arteries were fixed in 4% paraformaldehyde,
- 198 dehydrated through an ethanol gradient, embedded in paraffin, and sectioned at 5 μm
- thickness. The resulting sections underwent deparaffinization, rehydration, and Hematoxylin
- staining for 4 minutes, followed by counterstaining with eosin for 20 seconds.
- 201 Oil Red O staining: Fresh-frozen sections of carotid arteries were fixed in 4%
- 202 paraformaldehyde for 15 minutes and stained with Oil Red O solution to visualize lipid
- 203 deposits. Sections were afterwards counterstained with hematoxylin for 1 minute. Images
- were acquired using a digital slice scanner (NanoZoomer® S360), and lipid plaque area was
- 205 quantified using Image J (NIH).

206 Enzyme-linked immunosorbent assay (ELISA)

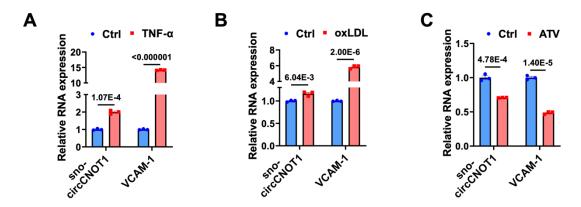
207 Whole blood was subjected to clotting at room temperature for 2 hours, followed by

- 208 centrifugation at 3,000 ×g for 15 minutes. Serum concentrations of IL-1β, IL-18, and MCP-1
- were determined with commercial ELISA kits in accordance with the manufacturer's
- 210 instructions: IL-1β (Invitrogen, 88-7013), IL-18 (MULTISCIENCES, EK218) and MCP-1
- 211 (Servicebio, GEM0017).

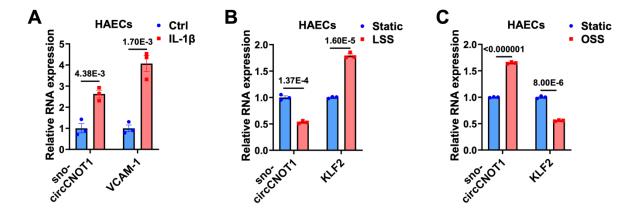
212 **Serum lipid profile**

- Following clot formation, serum separation was achieved by centrifugation at 3,000 × g for
- 214 15 minutes. Quantification of serum triglyceride (TG), total cholesterol (TC), and low-density
- 215 lipoprotein cholesterol (LDL-C) levels was automatically performed using a biochemical
- analyzer (Chemray series, Rayto) following the manufacturer's standardized protocols.

RNA Sequencing

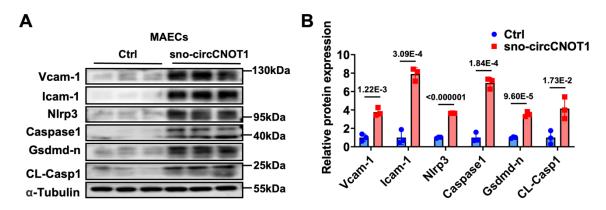

217

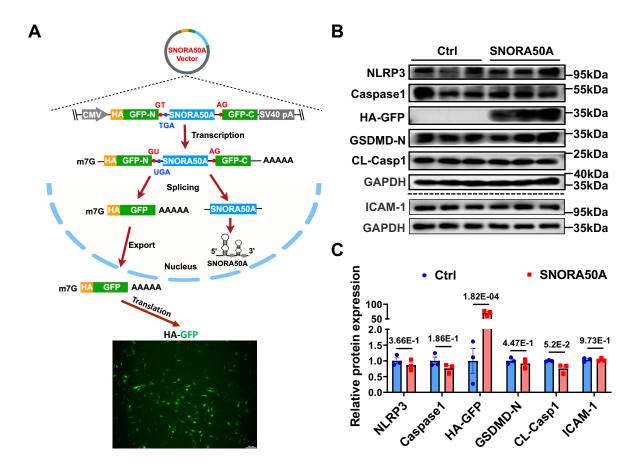
- Total RNA was extracted from HUVECs transduced with sno-circCNOT1 lentivirus for 72
- 219 hours (n = 3) using TRIzol reagent (Invitrogen, CA, USA), following the manufacturer's
- 220 guidelines. Assessment of RNA purity (A260/A280 ratio) and concentration was conducted
- using a NanoDrop 2000 spectrophotometer (Thermo Scientific, USA), while RNA integrity
- was evaluated with an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA,
- 223 USA). For library construction, the VAHTS Universal V6 RNA-seq Library Prep Kit
- 224 (Vazyme, China) was employed, according to the manufacturer's instructions. Paired-end
- 225 sequencing (150bp reads) was performed on an Illumina NovaSeq 6000 platform
- 226 (IlluminaInc., SanDiego, CA, USA) by OE Biotech Co., Ltd. (Shanghai, China), followed by
- 227 bioinformatic analysis including raw read alignment, differential expression quantification,
- and functional enrichment. The raw sequencing data are accessible at the NCBI Sequence
- Read Archive (SRA) database with the accession number PRJNA1246160.


230 Circular RNA microarray Analysis

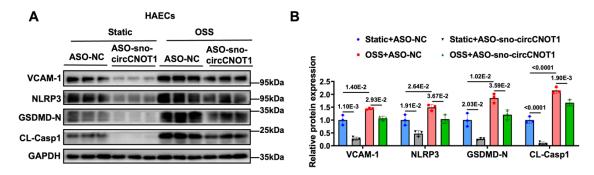
- Total RNA extraction was performed using TRIzol reagent, and ribosomal RNA (rRNA)
- depletion subsequently carried out using the Ribo-ZeroTM rRNA Removal Kit. Digestion of
- 233 linear RNA was conducted with RNase R (Epicentre, Inc.) and residual polyadenylated RNA
- was removed using poly(T)-conjugated magnetic beads. First-and second-strand cDNA
- 235 synthesis was performed using random oligonucleotides and RNA templates. Library
- 236 fragments were purified and size-selected using the AMPure XP system (Beckman Coulter,
- Beverly, CA, USA). Adapter-ligated DNA fragments were enriched using Illumina PCR

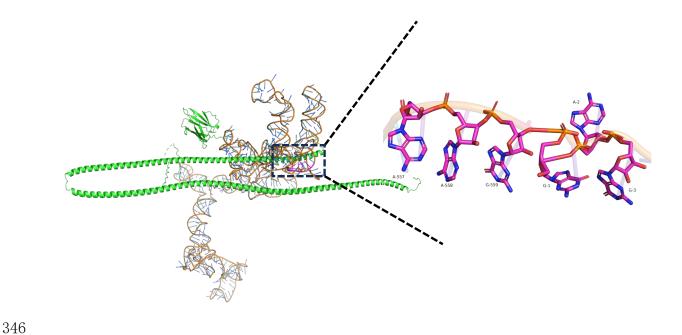
Primer Cocktail with 15 cycles of PCR. Purification and quantification of the final library products were conducted using the Agilent High Sensitivity DNA Assay on a Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, CA, USA). Sequencing performed on Illumina NovaSeq 6000 platform by Shanghai Personal Biotechnology Co., Ltd. The raw sequencing data are accessible at the SRA with the accession number PRJNA1245494. Statistical analysis Data are expressed as the mean \pm standard error of the mean (SEM) from at least three independent experiments. Statistical comparisons between two groups were analyzed using an unpaired two-tailed Student's t test. Multiple group comparisons were conducted using one-way or two-way analysis of variance (ANOVA) followed by Tukey's post hoc test. Statistical evaluations were performed in GraphPad Prism 9.5 (GraphPad Software), and P < 0.05 was considered statistically significant.

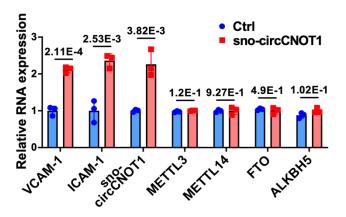

Supplementary Figure S1. Modulation of sno-circCNOT1 by pro- and anti-atherogenic factors. Endothelial cells were treated with TNF α (5 ng/mL; **A**), oxidized LDL (ox-LDL, 50 µg/mL; **B**), or atorvastatin (ATV, 0.1 µM; **C**) for 24 h. sno-circCNOT1 expression was quantified by RT-qPCR and normalized to GAPDH (n = 3). Data are presented as mean SEM. Statistical significance was assessed using an unpaired two-tailed Student's t-test, with P values reported.

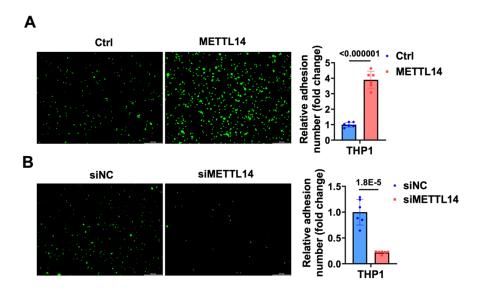

Supplementary Figure S2. Pro-atherosclerotic IL-1 β and oscillatory shear stress (OSS) up-regulate sno-circCNOT1 in human aortic endothelial cells (HAECs), whereas anti-atherosclerotic laminar shear stress (LSS) down-regulates its expression. (A) RT-qPCR quantification of sno-circCNOT1 in HAECs treated with IL-1 β ; (B) exposed to LSS; or (C) exposed to OSS; normalized to GAPDH (n = 3). VCAM-1 (IL-1 β control) and shear-responsive KLF2 (LSS/OSS control) served as validation controls. Data are presented as mean SEM. Statistical significance was assessed using an unpaired two-tailed Student's t-test, with P values reported.

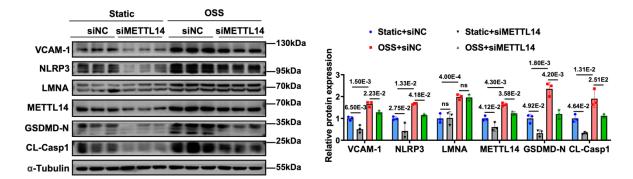
NW Sco 584	ore	Identities 459/562(82%)	Gaps 30/562(5%)	Strand Plus/P	lus
Human	1	GAGTGTTTCTCAGGAGCTATCAGAAACTA	ATCCTCACCATGGTAGCCAATTGCAGT	AATGT 60	
Mouse	1	GAGTGTTTCTCAAGAGTTATCAGAGACCA	ATCCTCACCATGGTAGCCAATTGCAGT	AATGT 60	
Human	61	TATGAATAAGGCCAGACAACCACCACCTC	GGAGTTATGCCAAAAGGACGTCCTCCT	AGTGC 12	0
Mouse	61	AATGAATAAGGCCAGACAGCCACCACCTC	GGAGTTATGCCAAAAGGTCGCCCTCCT	AGTGC 12	0
Human	121	TAGCAGCTTAGATGCCATTTCTCCTGTTC	CAGGTAAATGAGTGCTACATTTGATAC	CATCTT 18	0
Mouse	121	TAGCAGCTTAGATGCCATTTCTCCTGTTC	CAGGTAACAGTTTCTTC	TTATT 17	0
Human	181	CATTTGC-CATAGATTTGGAATAGAATA	AGCTCCTATGTCATTAATAAATTGTCT	GAATT 23	9
Mouse	171	TTTGTTCATAGATTGAGAATAGACCAA	AACACCTGCATCTTTAGTAACAGCT-T	GAGTT 22	7
Human	240	TATTACATTTTAGATAACTGCATGTCTAC	GCATCCACTTATTTTAAAGGAGATATG	TAAAT 29	9
Mouse	228	TATTTTACTTCAGATACCTGCATGTGTAA	ACATATTTGAAAGAAGATCCT	TCCAT 28	1
Human	300	AGGCATTGTAGTTAACAATAGATTTTA-7	rcatcaaatagaacgtgactctaagag	GAAAT 35	8
Mouse	282	AGGCAGTATAACTGAGAATAGACTTTAAT	TAATCACAAAGAACATGACTGAGAG	AAAAG 33	9
Human	359	ATACAGACAATTTATTTAGGTAAATGAAC	GAGGGTTTCTTTTTAAAATATGAATTA	CGTAG 41	8
Mouse	340	ATAAAATCA-TTTCTATAGGTAAATGAAC	GAGGGTTTCTTTTTAAAATTAGAGTTA	.c 39	4
Human	419	ACTCTTGAGACA-TAAGCACTGCCTTTGA	AACCTGATGTGTCTTGTTTGTAGCTTC	ACGGG 47	7
Mouse	395	ACTCTTGGGAGACTAAGCACTGCCTTTGA	AATCTGATGTGTCTTGTTTGTAGCTTC	ACGGG 45	4
Human	478	<u>CCAAGCAACAGTGCTAGAGCATAACGACT</u>	TTGTTATAACTGGGGCTCTTCAGCTCT	CAACT 53	7
Mouse	455	CCAAGCAACAGTACTAGAGCATAAGGACT	TTGTTATAACTGGG-CTCTTCAGCTCG	CAACT 51	3
Human	538	GAACTGCTCTTTTAAAAACAAG 559			
Mouse	514	GAACTGCTCTTTTAAAAACAAG 535			

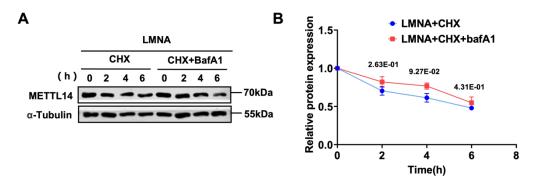

Supplementary Figure S3. Genomic alignment of human and mouse sno-circCNOT1 regions. The alignment spans exon 17 (red underline) and the adjacent intron 17 sequence containing the embedded SNORA50A snoRNA (green underline). Unmarked portions represent additional intron 17 sequences.

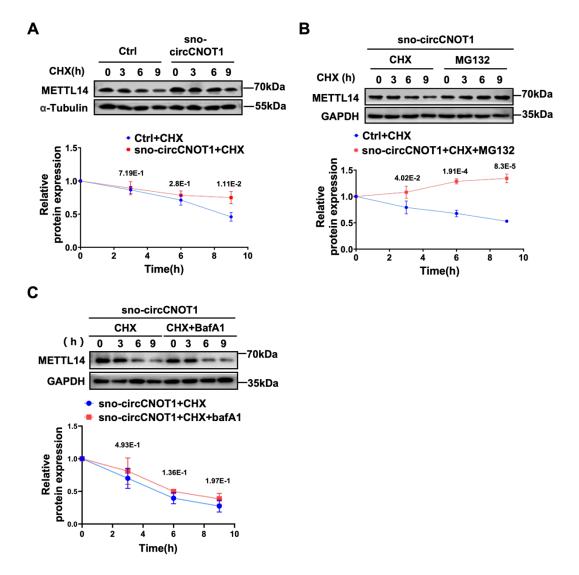

Supplementary Figure S4. Human sno-circCNOT1 promotes pyroptosis and inflammation in mouse aortic endothelial cells (MAECs). (A) MAECs were transduced with human sno-circCNOT1 or PLO5-ciR (control, Ctrl) lentivirus for 72 hours. Protein levels of Vcam-1, Icam-1, Nlrp3, Caspase-1, Gsdmd-n and CL-Casp1 were analyzed by western blot. (B) Quantification of proteins expression normalized to α -tubulin. n = 3. Data are presented as mean \pm SEM. Statistical significance was assessed using an unpaired two-tailed Student's t-test, with P values reported.

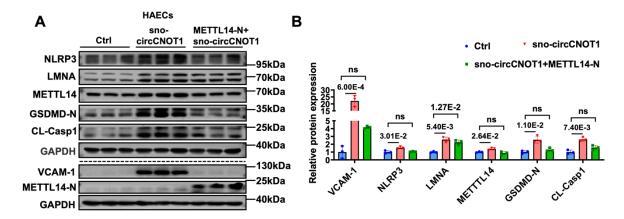

Supplementary Figure S5. SNORA50A does not regulate endothelial pyroptosis or inflammation. (A) Schematic of the snoRNA overexpression vectors. Green fluorescence protein (GFP) signals confirm successful snoRNA overexpression. Scale bar: 200 μ m. Panel A was created using Figdraw. (B-C) HUVECs were transduced with SNORA50A or Ctrl lentivirus for 72 hours. Western blot analysis was performed to determine the protein levels of NLRP3, Caspase1, GSDMD-N, CL-Casp1 and ICAM-1. Quantification of protein expression normalized to GAPDH. Data are presented as mean \pm SEM. Statistical significance was assessed using an unpaired two-tailed Student's t-test, with P values reported.

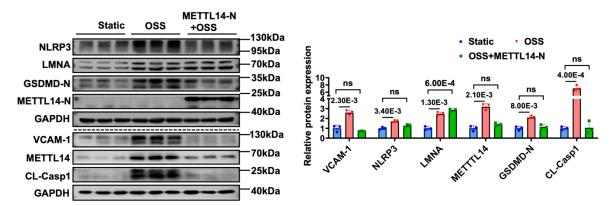

Supplementary Figure S6. Knockdown of sno-circCNOT1 attenuates oscillatory shear stress (OSS)-induced upregulation of pyroptotic and inflammatory markers in primary human aortic endothelial cells (HAECs). (A–B) Western blot analysis (A) and densitometric quantification (B) of the indicated proteins in HAECs transfected with control antisense oligonucleotide ASO-NC (Ctrl) or ASO-sno-circCNOT1, followed by OSS exposure $(0.5 \pm 4 \text{ dyn/cm}^2, 1 \text{ Hz}, 24 \text{ h}; n = 3)$. Data are shown as mean \pm SEM. Statistical significance was assessed using a two-way analysis of variance (ANOVA) with Tukey's post hoc test, with P values reported.

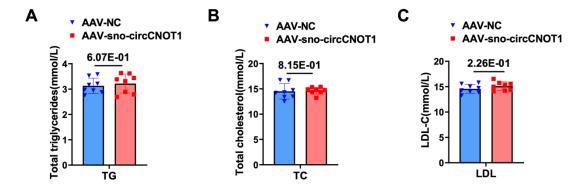

Supplementary Figure S7. Computational model of the LMNA–sno-circCNOT1 interaction. Full-length LMNA (green; AlphaFold) is docked to sno-circCNOT1 (orange/blue; 3dRNA), with the back-splice junction highlighted (magenta). HDOCK predicted a high-confidence binding pose (Docking score –218.83; Confidence 0.7984) where the LMNA intermediate filament rod (IF-ROD) domain interfaces with the sno-circCNOT1 splice-junction region. Visualization: PyMOL.

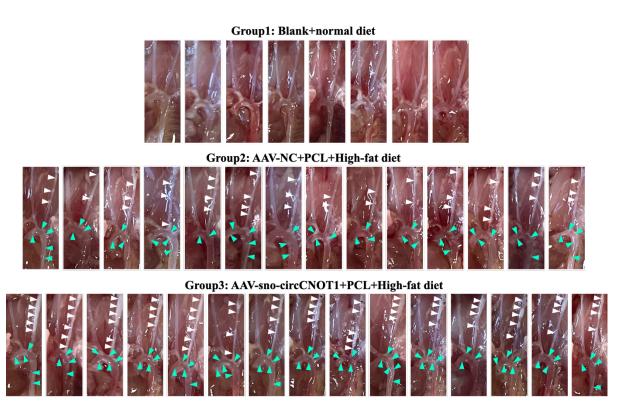

Supplementary Figure S8. Sno-circCNOT1 does not alter mRNA levels of m6A regulators. RNA levels of sno-circCNOT1, VCAM-1, ICAM-1, METTL3, METTL14, FTO and ALKBH5 in HUVECs transduced with control (Ctrl) or sno-circCNOT1 lentivirus were measured by RT-qPCR. GAPDH served as an internal reference. Data are presented as mean \pm SEM. Statistical significance was assessed using an unpaired two-tailed Student's *t*-test, with *P* values reported.

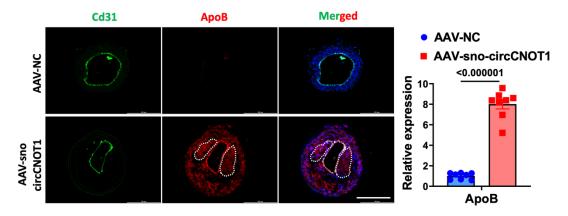

Supplementary Figure S9. METTL14 promotes monocyte adhesion to endothelial cells. Monocyte adhesion assays were performed by incubating METTL14-overexpressing (A) or METTL14-knockdown (B) HUVECs with fluorescently labeled THP-1 cells (n = 6). Scale bar: 200 µm. Data are presented as mean \pm SEM. Statistical significance was assessed using an unpaired two-tailed Student's t-test, with P values reported.


Supplementary Figure S10. METTL14 knockdown reverses OSS-induced endothelial pyroptosis and inflammatory activation. HUVECs were transduced with METTL14 siRNA (siMETTL14) or control siRNA (siNC) for 48 hours subsequently exposed to oscillatory shear stress (OSS) ($0.5 \pm 4 \, \text{dyne/cm}^2 \, \text{at 1 Hz}$) for an additional 24 hours. Protein levels of VCAM-1, NLRP3, LMNA, METTL14, GSDMD-N and CL-Casp1 were analyzed by western blotting. Data are shown as mean \pm SEM. Statistical significance was assessed using a two-way analysis of variance (ANOVA) with Tukey's post hoc test, with P values reported.

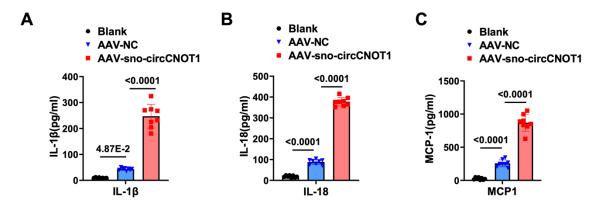

Supplementary Figure S11. LMNA stabilizes METTL14 independently of the autophagy-lysosome pathway. HUVECs transduced with LMNA-overexpressing lentivirus were treated with 0.1 μ M lysosome inhibitor Bafilomycin A1 (BafA1) for the indicated durations. Western blot analysis was performed to determine the protein expression of METTL14 (n = 3). Data are presented as mean \pm SEM. Statistical significance was assessed using an unpaired two-tailed Student's t-test, with P values reported.


Supplementary Figure S12. sno-circCNOT1 enhances METTL14 protein stability. Western blot analysis of METTL14 protein levels in sno-circCNOT1-overexpressing HUVECs treated with: cycloheximide (CHX, 20μ M) (A); CHX with or without proteasome inhibitor MG132 (20μ M) (B); or CHX with or without 0.1 μ M lysosome inhibitor BafA1 (C) for the indicated durations. Data are presented as mean \pm SEM. Statistical analyses were assessed using an unpaired two-tailed Student's *t*-test, with *P* values reported.

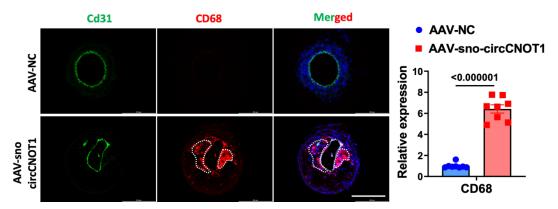

Supplementary Figure S13. Overexpression of the N-terminal domain of METTL14 (METTL14-N) attenuated OSS-induced endothelial pyroptosis and inflammatory activation in human aortic endothelial cells (HAECs). Western blot analysis (A) and densitometric quantification (B) of the indicated proteins in HAECs transduced for 72 h with either lentivirus expressing sno-circCNOT1 or lentiviruses co-expressing sno-circCNOT1 and METTL14-N. Data are shown as mean \pm SEM. Statistical significance was assessed using a two-way analysis of variance (ANOVA) with Tukey's post hoc test, with P values reported.

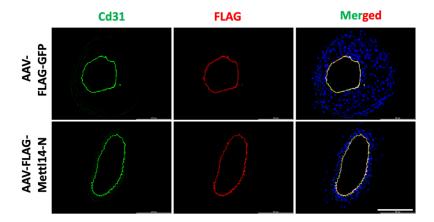

Supplementary Figure S14. METTL14-N domain overexpression to disrupt the sno-circCNOT1/LMNA/METTL14 axis attenuates OSS-induced endothelial pyroptosis and inflammation. HUVECs transduced with PLO5-ciR (Ctrl), or METTL14-N lentivirus for 48 hours were exposed to oscillatory shear stress (OSS; 0.5 ± 4 dyne/cm² at 1 Hz) or maintained under static (ST) conditions for an additional 24 hours. Western blotting assessed protein levels of VCAM-1, NLRP3, LMNA, METTL14, METTL14-N, GSDMD-N and cleaved caspase-1 (CL-Casp1) were analyzed by. Data are shown as mean \pm SEM. Statistical significance was assessed using a two-way analysis of variance (ANOVA) with Tukey's post hoc test, with P values reported.

Supplementary Figure S15. Serum lipid profiles are unaffected by AAV-sno-circCNOT1. Serum levels of (A) triglycerides (TG), (B) total cholesterol (TC), and (C) low-density lipoprotein cholesterol (LDL-C) in mice treated with AAV-sno-circCNOT1 or AAV-NC control (n = 8). Statistical significance was assessed using a two-tailed Student's t-test. Data are presented as mean SEM, with P values reported.

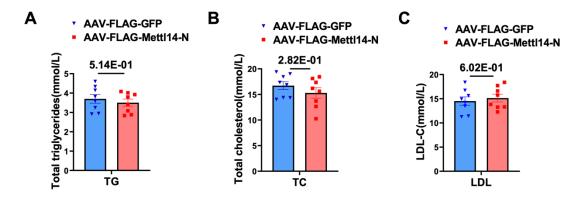

Supplementary Figure S16. sno-circCNOT1 promotes atherosclerosis in vivo. Atherosclerotic lesions in isolated carotid arteries and the aortic arch are shown. White arrows indicate plaque lesions in the left carotid artery (LCA); the green arrow indicates plaque lesions in the aortic arch (n = 8-15). PCL: partial left carotid artery ligation.

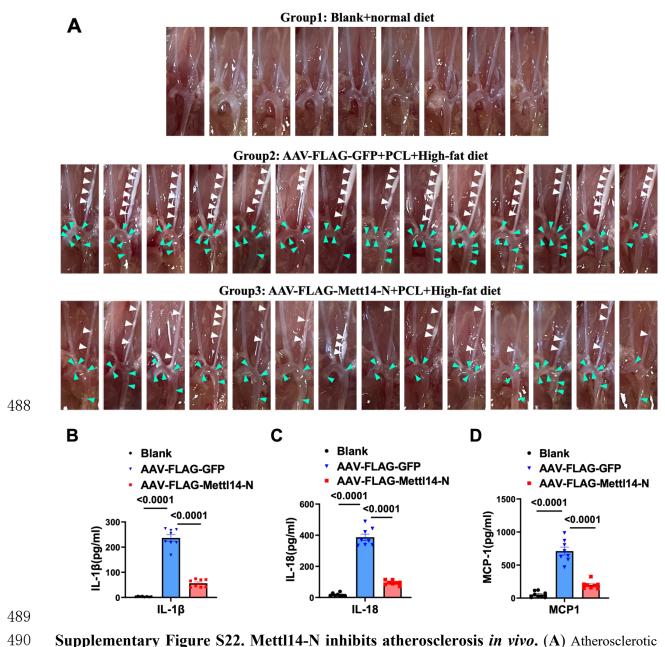
Supplementary Figure S17. sno-circCNOT1 overexpression increases lipid deposition.

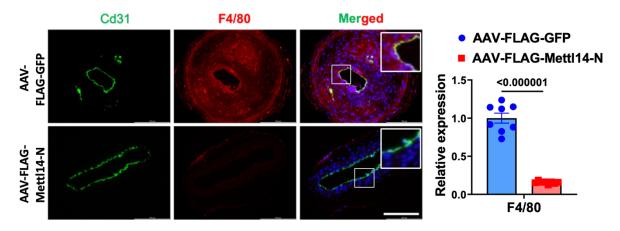

Representative immunofluorescence staining of ApoB (lesion lipid burden) and Cd31 (endothelial marker) in the left carotid artery sections; nuclei stained with DAPI (blue). Quantification data are shown on the right (Scale bar: 200 μ m; n = 8). Region within dotted line indicates lipid core-like region. Statistical significance was assessed using an unpaired two-tailed Student's t-test. Data are presented as mean SEM, with P values reported.



Supplementary Figure S18. sno-circCNOT1 promotes atherosclerosis in vivo. Plasma


levels of interleukin (IL)-1 β (A), IL-18 (B) and monocyte chemoattractant protein 1 (MCP1) (C) were detected by ELISA (n = 8). Data are presented as mean \pm SEM. Statistical significance was assessed using an unpaired two-tailed Student's *t*-test, with *P* values reported.


Supplementary Figure S19. sno-circCNOT1 overexpression increases macrophage accumulation. Representative immunofluorescence staining of CD68 (monocyte/macrophage marker) and Cd31 (endothelial marker) in the left carotid artery sections; nuclei stained with DAPI (blue). Quantification data are shown on the right (Scale bar: 200 μm; n = 8). Region within dotted line indicates macrophage accumulation zone. The dotted-line regions in Supplementary Figures S17 and S19 illustrate partial colocalization of ApoB deposits with macrophage accumulation, indicating the initiation of a lipid-driven inflammatory loop that promotes atherosclerotic plaque progression. Statistical significance was assessed using an unpaired two-tailed Student's t-test. Data are presented as mean SEM, with *P* values reported.


supplementary Figure S20. AAV-FLAG-METTL14-N achieved efficient and specific endothelial expression in mice. Representative immunofluorescence staining showing endothelial overexpression of FLAG (red) in the LCA. CD31 (green) marks endothelial cells. Scale bar: 200 μm.

Supplementary Figure S21. Serum lipid profiles are unaffected by AAV-FLAG-Mettl14-N. Serum levels of (A) triglycerides (TG), (B) total cholesterol (TC), and (C) low-density lipoprotein cholesterol (LDL-C) in mice treated with AAV-FLAG-Mettl14-N or AAV-FLAG-GFP control (n = 8). Statistical significance was assessed using an unpaired two-tailed Student's t-test. Data are presented as mean SEM, with P values reported.

Supplementary Figure S22. Mettl14-N inhibits atherosclerosis *in vivo*. (A) Atherosclerotic lesions in isolated carotid arteries and the aortic arch are shown. White arrows indicate plaque lesions in the left common carotid artery (LCA); the green arrow indicates plaque lesions in the aortic arch (n = 8-15). PCL: partial left carotid artery ligation. (B to D) Plasma levels of IL-1 β , IL-18 and monocyte chemoattractant protein 1 (MCP1) were detected by ELISA (n = 8). Data are presented as mean \pm SEM. Statistical significance was assessed using an unpaired two-tailed Student's *t*-test, with *P* values reported.

Supplementary Figure S23. Mettl14-N inhibits atherosclerosis in vivo. Representative immunofluorescence staining of F4/80 (macrophage marker) and Cd31 (endothelial marker) in ligated LCA sections. Nuclei were counterstained with DAPI (blue). Quantification data are shown on the right. Scale bar: 200 μ m. n = 8. Statistical significance was assessed using an unpaired two-tailed Student's t-test. Data are presented as mean SEM, with P values reported.

Supplementary Tables

522 Supplementary Table S1. siRNAs sequences

Name	Sense Strand (5' -3')	Antisense Strand (5' -3')
LMNA siRNA	A.G.G.A.C.C.A.G.G.U.G.G.	U.A.C.U.G.C.U.C.C.A.C.C.U.G.G.
	A.G.C.A.G.U.A. dTdT	U.C.C.U. dTdT
Control siRNA	U.C.U.C.U.C.U.U.C.G.C.G.	A.U.A.G.G.U.G.C.G.C.G.A.A.G.A.
	C.A.C.C.U.A.U.dTdT	G.A.G.A.dTdT
METTL14 siRNA	G.C.A.A.A.G.A.U.G.A.G.C.	U.C.U.C.U.C.U.G.C.U.C.A.U.C.U.
	A.G.AG.A.G.A. dTdT	U.U.G.C. dTdT
NLRP3 siRNA	C.G.U.A.A.G.A.A.G.U.A.C.	A.C.U.U.C.U.G.U.A.C.U.U.C.U.
	A.G.A.A.A.G.U. dTdT	U.A.C.G. dTdT

523

524 Supplementary Table S2. ASO-sno-circCNOT1 target sequences

Name	sequences		
ASO-sno-circCNOT1 target	AACAAGGAGUGUUUCUCAGG		
sequences			

525

526 Supplementary Table S3. sno-circCNOT1 probe sequences

Name	sequences (5' -3')
sno-circCNOT1	5'-Cy3-CTGAGAAACACTCCTTGTTTTTAAAAGAGC-CY3-3'

527

528 **Supplementary Table S4. Primers**

Name	Sense Primer (5' -3')	Antisense Primer (5' -3')			
Primers used to construct plasmids					
3XFLAG-V AATCCAGAGGTTGATTGT		GACCTCCATAGAAGACACCGACTC			

ector	CGACTTAGGATCCGCCGC	
	CTCCACCCTTA	
3XFLAG-L	ATCCAGAGGTTGATTGTC	GACACCGACTCTAGAGCCGCCACCA
MNA	GACTTACATGATGCTGCA	TGGCTAGcGATTACAAAGACGATGA
	GTTCTGGGGGCT	CGA
3XFLAG-I	TAATCCAGAGGTTGATTG	GACCTCCATAGAAGACACCGACTC
F-ROD	TCGACTTACTCCAGTTTGC	
	GCTTTTTGGT	
3XFLAG-L	TAATCCAGAGGTTGATTG	TGGAGGCGGCGGATCCAAAAAGCG
TD	TCGACTTAGCGCACCAGC	CAAACTGGAGTCCA
	TTGCGCA	
3XFLAG-C	TGGAGGCGGCGGATCCTC	ATCCAGAGGTTGATTGTCGACTTAC
-Terminal	AGTGACTGTGGTTGAGGA	ATGATGCTGCAGTTCTGGGGGCT
	CGA	
3XFLAG-I	ATCCAGAGGTTGATTGTC	TggAggCggcGGATCCAAAAAGCGCAA
F-ROD-Del	GACTTACATGATGCTGCA	ACTGGAGTCCA
	GTTCTGGGGGCT	
3XFLAG-	ATCCAGAGGTTGATTGTC	GACCTCCATAGAAGACACCGACTC
LTD-Del	GACTTACATGATGCTGCA	
	GTTCTGGGGGCT	
3XFLAG-	TAATCCAGAGGTTGATTG	GACCTCCATAGAAGACACCGACTC
C-Terminal-	TCGACTTAGCGCACCAGC	
Del	TTGCGCA	
pLO5-ciR	GACATTAATATTTCTTCTT	GTATGGAGTTGTTAGCTAGGATCCA
	TCGAATTCTAATACTTTCA	GT
	G	

sno-circCN	TAATATTTCTTCTTTCGAA	TGGAGTTGTTAGCTAGGATCCAGTT
OT1	TTCTAATACTTTCAGGAGT	GTTCTTACCTTGTTTTTAAAAGAGCA
	GTTTCTCAGGAGCTATCA	GTTCAGTTGAG
	GA	
sno-circC	TCCAGAGGTTGATTGTCG	ATAGAAGACACCGACTCTAGAGCCG
NOT1-PD	ACttaTTTTGGAGGATGGTC	CCACCATGGCTTCAAACTTTACTC
	GCCACC	
sno-circC	TCCAGAGGTTGATTGTCG	ATAGAAGACACCGACTCTAGAGCCG
NOT1-MS	ACttaTTTTGGAGGATGGTC	CCACCATGGCTTCAAACTTTACTC
2-PD1	GCCACC	
sno-circCN	TCCAGAGGTTGATTGTCG	AATTCCCGGGCTCGAGCTTTGGACT
OT1-MS2-P	ACttaTTTTGGAGGATGGTC	TCTTTTGAGATGTCATTTTTTGTGAC
D2	GCCACC	
R-deletion	TAATATTTCTTCTTTCGAA	AGATGCATGCACTAGTCTTGTTTTTA
	TTCTAATACTTTCAGGAGT	AAAGAGCAGTTCAGTTGAG
	GTTTCTCAGGAGCTATCA	
	GA	
HA-Ubi	TAATCCAGAGGTTGATTG	AGACACCGACTCTAGAGCCACCATG
	TCGACTCAACCACCACGA	TACCCATACGATGTTCCAGATTACG
	AGTCTCAACACA	CTGGTGGAG
3XFLAG-	TGGAGGCGGCGGATCCAT	TAATCCAGAGGTTGATTGTCGACTT
METTL14	GGATAGCCGCTTGCAGGA	ATCGAGGTGGAAAGCCACCTCTG
	G	
3XFLAG-	ATCCAGAGGTTGATTGTC	TGGAGGCGGCGGATCCATGGATAGC
METTL14-	GACTTATCCCTTAAGAAA	CGCTTGCAGGAG
N-terminal	AGTACTAGAATCTTTGTA	

	AATCT	
3XFLAG-	TAATCCAGAGGTTGATTG	TGGAGGCGGCGGATCCACACAGAG
METTL14-	TCGACTTATCGGTCAGAT	CTTAAATCCCCATAATGAT
MTD	TTAGATTTGGGAGGAGGC	
3XFLAG-	ACTGCCGCCACCGCCTCG	CCTCCATAGAAGACACCGACTCT
METTL14-	A	
MUT		
psiCHECK	ATTCTAGGCGATCGCTCG	AATTCCCGGGCTCGAGGGGATGCAG
2-NLRP3-	AGTGAAGAAATTTAAGAT	CCCTTCTGGGGAGGATAGTCCTCTA
WT	GCACTTAGAGGACTATCC	AGTGCATCT
	TCCC	
psiCHECK	ATTCTAGGCGATCGCTCG	AATTCCCGGGCTCGAGGGGATGCAG
2-NLRP3-m	AGTGAAGAAATTTAAGAT	CCCTTCTGGGGAGGATAGGCCTCTA
ut	GCACTTAGAGGCCTATCC	AGTGCATCT
	TCCC	
sno-circCN	TAATATTTCTTCTTTCGAA	AGTTGTTAGCTAGGATCCAGTTGTT
OT1-sno-de	TTCTAATACTTTCAGGAGT	CTTACCTTGTTTTTAAAAGAGCA
1	GTTTCTCAGGAGCTATCA	
	GA	
sno-circCN	TAATATTTCTTCTTTCGAA	TGGAGTTGTTAGCTAGGATCCAGTT
OT1-Exon-	TTCTAATACTTTCAGGAGT	GTTCTTACCTTGTTTTTAAAAGAGCA
del	GTTTCTCAGGTA	GTTCAGTTGAG
sno-circCN	TAATATTTCTTCTTTCGAA	TGGAGTTGTTAGCTAGGATCCAGTT
OT1-Intron-	TTCTAATACTTTCAGGAGT	GTTCTTACCTTGTTTTTAAAAGAGCA
del	GTTTCTCAGGAGCTATCA	GTTCAGTTGAG
	GA	
HA-GFP-S	GTAATCCAGAGGTTGATT	CCCGAAGGTTATGTACAGGTAAGTC

NO CEDI		
NOCTRL	GTCGACTCATTTGTAGAG	TCGAGTGAAGCGCTTCTCTTTC
	CTCATCCATGCCATGT	
HA-GFP-S	GTAATCCAGAGGTTGATT	GCCCGAAGGTTATGTACAGGTAAGT
NORA50A	GTCGACTCATTTGTAGAG	CTCGAGTGAAGCGCTG
	CTCATCCATGCCATGT	
		<u> </u>
Primers for	DNA agarose gel electrophoresi	S
sno-circCN	CAAATAGAACGTGACTCT	GTGGATGCTAGACATGCAGTT
OT1diverge	AAGAGGA	
nt primers		
sno-circCN	ACATTTGATACATCTTCAT	AGTTGAGAGCTGAAGAGCCC
OT1conver	TTGCCA	
gent		
primers		
printers		
Primers for	RT-qPCR	
GAPDH	TCGGAGTCAACGGATTTG	TTCCCGTTCTCAGCCTTGAC
	GT	
CNOT1	GATGTGGCCCAGGACTTG	AAAAGGCTCCCCATGCTCTC
	AA	
ana sina CNI	ACAACCACTCTTCTCAC	
sno-circCN	ACAAGGAGTGTTTCTCAG	AATGTAGCACTCATTTACCTGAACA
OT1	GAGC	
sno-circCN	TGACCCTTAAGAGTTTTCT	CCTCTTAGAGTCACGTTCTATTTGAT
OT1 linear	TCCTG	GA
circRNA-C	CCAACGTCTCCAGTGTGC	CTTGAAGTCGCTGGAAGACCC
DR1-AS	TG	
NA 1 1 771	A COMOMOMOMOMOMO	THE OTTOGRAM OF A TIME OF
MALAT1	AGGTCTGTCTGTTG	TACTCCAAGCATTGGGGAACA
	GC	

VCAM-1	GGACCACATCTACGCTGA CAA	CTCCAGAGGGCCACTCAAAT
ICAM-1	GGTAGCAGCCGCAGTCAT AA	GATAGGTTCAGGGAGGCGTG
CCL2	TAGCAGCCACCTTCATTC CC	GAACCCACTTCTGCTTGGGG
SELE	GCTCCAGGTGAACCCAAC AA	AAACCAGGCTTCCATGCTCA
NLRP3	GAGGCTGGCATCTGGATG AG	GTGTGTCCTGAGCCATGGAA
Caspase-1	TCGCTTTCTGCTCTTCCAC A	TCTTCACTTCCTGCCCACAG
GSDMD	CCTGCGTCAGGTTGCAGT T	GTCACAGGGATGAACTCCCC
LMNA	CACCGAGTCTGAAGAGGT GG	CTTCTTGGTATTGCGCGCTT
METTL14	AGGGGTTGGACCTTGGAA GA	GAAGTCCCCGTCTGTGCTAC
METTL3	GCGAGTGCCAGGAGATAG TC	ACACTGCTTGGTTGGTGTCA

Supplementary Table S5. Antibodies

Target	Vender or	Catalog	Working	Lot#	Persistent ID/ URL
antigen	Source	#	concentr	(preferre	
			ation	d but not	
				required)	
	G-11	13662S	WB:		https://www.cellsignal
	Cell		1:1000		.cn/products/primary-a
VCAM-1	Signaling				ntibodies/vcam-1-e1e
	Technology				8x-rabbit-mab/13662
ICAM-1	Cell	67836S	WB:		https://www.cellsignal
ICAWI-I		076303			
	Signaling		1:1000		.cn/products/primary-a
	Technology				ntibodies/cd54-icam-1
					-e3q9n-xp-rabbit-mab/
					67836
NLRP3	Proteintech	27458-1-	WB:		https://www.ptgcn.co
		AP	1:1000		m/products/NLRP3-A ntibody-27458-1-AP.h
					tm
GSDMD	Affinity	DF13758	WB:		https://www.affbiotec
N-Terminal	Biosciences	-100ul	1:1000		h.cn/goods-18193-DF
					13758-GSDMD_N_T erminal Antibody M
					ouse_specifichtml
Cleaved-Ca	Affinity	AF4005-	WB:		https://www.affbiotec
spase 1	Biosciences	50u	1:1000		h.cn/goods-15750-AF
					4005-Cleaved_Caspas
					e_1_Asp296_p20_Ant
Caspase-1	Cell	3866S	WB:		ibody.html https://www.cellsignal
Caspasc-1	Signaling	36003	1:1000		.cn/products/primary-a
	Technology		111000		ntibodies/caspase-1-d
					7f10-rabbit-mab/3866
Lamin A/C	Proteintech	10298-1-	WB:		https://www.ptgcn.co
		AP-100u	1:1000		m/products/lamin-A-
		1			Antibody-10298-1-AP
eNOS	Cell	5880S	WB:		https://www.cellsignal

	Signaling Technology		1:1000	.cn/products/primary-a ntibodies/enos-6h2-m ouse-mab/5880
KLF2	Bioss	bs-2772 R-100ul	WB: 1:1000	http://www.biosschina .com/#/productDetail? goods_id=26440
GAPDH	Proteintech	60004-1- IG-1000 UL	WB:0.1pg/ mL	https://www.ptgcn.co m/products/GAPDH- Antibody-60004-1-Ig. htm
α-Tubulin	Proteintech	66031-1- IG-500U L	WB: 1:20000	https://www.ptgcn.co m/products/tubulin-Al pha-Antibody-66031- 1-Ig.htm
HA-Tag	Cell Signaling Technology	34888S- 100 μl	WB: 1:1000	https://www.cellsignal .cn/products/antibody- conjugates/ha-tag-c29 f4-rabbit-mab-alexa-fl uor-350-conjugate/34 888
DYKDDD DK Tag	Cell Signaling Technology	14793S	WB: 1:1000 IHC: 1:1000	https://www.cellsignal .cn/products/primary-a ntibodies/dykddddk-ta g-d6w5b-rabbit-mab-b inds-to-same-epitope- as-sigma-aldrich-anti- flag-m2-antibody/147
APOB	Proteintech	20578-1- AP-50ul	IHC: 1:100	https://www.ptgcn.co m/results?category=& filter=&q=20578-1-A P-50ul
CD68	Abcam	ab30356 5-40	IHC: 1:100	https://www.abcam.cn /products/primary-anti bodies/cd68-antibody- rm1031-ab303565
NLRP3	Proteintech	68102-1- Ig-100ul	IHC: 1:200	https://www.ptgcn.co m/products/NLRP3-A ntibody-68102-1-Ig.ht m
GSDMD N-Terminal	Affinity Biosciences	DF13758 -100ul	IHC: 1:200	https://www.affbiotec h.cn/goods-18193-DF 13758-GSDMD_N_T erminal_Antibody_M

				ouse_specifichtml
Cleaved-Ca spase 1	Affinity Biosciences	AF4005- 50ul	IHC: 1:200	https://www.affbiotec h.cn/goods-15750-AF 4005-Cleaved_Caspas e_1_Asp296_p20_Ant ibody.html
Lamin A/C	Cell Signaling Technology	4777T	IHC: 1:200	https://www.cellsignal .cn/products/primary-a ntibodies/lamin-a-c-4c 11-mouse-mab/4777
METTL14	Proteintech	26158-1- AP-50U L	IHC: 1:100	https://www.ptgcn.co m/products/METTL14 -Antibody-26158-1-A P.htm
CD31	Abcam	Ab18298 1	IHC: 1:1000	https://www.abcam.cn /products/primary-anti bodies/cd31-antibody- epr17259-ab182981.ht ml
F4/80	Proteintech	29414-1- AP-50ul	IHC: 1:8000	https://www.ptgcn.co m/products/F4-80-Ant ibody-29414-1-AP.ht m
VCAM-1	Abcam	ab13404 7-100	IHC: 1:500	https://www.abcam.cn /products/primary-anti bodies/vcam1-antibod y-epr5047-ab134047.h tml
Goat anti-rat IgG H&L (Alexa Fluor® 594)	Abcam	ab15016 8	IHC: 1:1000	https://www.abcam.cn /products/secondary-a ntibodies/goat-rat-igg- hl-alexa-fluor-594-pre adsorbed-ab150168.ht ml
Goat anti-mouse IgG H&L (Alexa Fluor® 594)	Abcam	ab15011 6	IHC: 1:1000	https://www.abcam.cn /products/secondary-a ntibodies/goat-mouse- igg-hl-alexa-fluor-594 -ab150116.html
Goat Anti-Rabbit IgG H&L	Abcam	ab15007	IHC: 1:1000	https://www.abcam.cn /products/secondary-a ntibodies/goat-rabbit-i

(Alexa				gg-hl-alexa-fluor-488-	
Fluor®				ab150077.html	
488)					
VE-Cadheri	Abcam	ab33168	IHC:	https://www.abcam.cn	
n			1:400	/products/primary-anti	
				bodies/ve-cadherin-an	
				tibody-intercellular-ju	
				nction-marker-ab3316	
				8.html	
VE-Cadheri	Immunowa	YM3762	IHC:	https://www.immuno	
n	у	-50ul	1:400	way.com/products/pri	
				mary-antibodies/YM3	
				762-VE-Cadherin-3G	
				8-Mouse-mAb.html	

Supplementary Table S6. Cultured Cells

Name	Vendor or Source	Sex (F, M, or unknown	Persistent ID / URL	
)		
HUVEC s	ScienCell	unknown	https://www.sciencellonline.com/products- services/primary-cells/human/cell-types/endothelial - cells/human-umbilical-vein-endothelial-cells.html	
HAECs	iCell	unknown	https://www.icellbioscience.com/cellDetail/150	
Lenti-X 293T	Clontech	unknown	https://www.takarabio.com/products/gene- function/viral-transduction/lentivirus/packagi ng-systems-and-cells/lenti-x-293t- cells?catalog=632180	
THP- 1	China National Collection of Authenticate d Cell Cultures	unknown	https://www.cellbank.org.cn/search-detail.php?id=5	
MAECs	BeNa Culture Collection	unknown	https://www.bncc.com/pro/p1/1/p_359881.html	

539

Supplementary Table S7. Overexpression Vectors

Name	Vendor or Source		Lot # (prefer	red but
pLO5-ciR	Guangzhou Geneseed Biotech Co., Ltd	GS0107		
AAV-ENT	Shanghai GeneChemCo., Ltd	AAVENT-CIRCRNA (73140-1)	AAV-ENT	
PsPAX2	addgene	Plasmid #12260	PsPAX2	
pMD2.G	addgene	Plasmid #12259	pMD2.G	

540

541

References

542 Wang R, Zeng Y, Chen Z, Ma D, Zhang X, Wu G, Fan W. Shear-Sensitive 10. 543 circRNA-LONP2 Promotes Endothelial Inflammation and Atherosclerosis Targeting NRF2/HO1 Signaling. JACC Basic Transl Sci. 2024;9:652-670. doi: 544 10.1016/j.jacbts.2024.02.019 545 546 17. Mo W, Chen Z, Zhang X, Dai G, Ma D, Pan J, Zhang X, Wu G, Fan W. 547 N6-Methyladenosine Demethylase FTO (Fat Mass and Obesity-Associated Protein) as 548 a Novel Mediator of Statin Effects in Human Endothelial Cells. Arterioscler Thromb 549 Vasc Biol. 2022; 42:644-658. doi: 10.1161/atvbaha.121.317295