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Figure S1. GBM were stratified into distinct subgroups base on the expression profiles of
prognostic transcription factors (TFs).

A and B, Cox regression analysis was performed to identify prognostic genes using
mRNA expression profiles from the TCGA and CGGA GBM datasets. Red dots indicate
genes with a hazard ratio (HR) > 1, while blue dots represent genes with HR < 1; both were
considered statistically significant with P-values (Likelihood P-value and Wald P-value) <
0.05. Grey dots denote genes without statistical significance. C, A Venn diagram was used to
intersect the human TFs gene list with the prognostic genes to identify prognostic TFs. D and
E, NMF clustering algorithm was applied to analyze the expression matrices of the 20
prognostic TFs in the TCGA and CGGA GBM datasets. F and G, Kaplan-Meier analysis was
performed to compare survival outcomes between Cluster 1 and Cluster 2 in TCGA and
CGGA GBM datasets, derived from the NMF clustering algorithm. All comparisons showed
statistically significant differences (P < 0.05, log-rank test). H and I, PCA analysis were
conducted to evaluate the effectiveness of the subgroup classification in the TCGA and
CGGA GBM datasets, where Dim1 and Dim2 represent the first and second principal
components, respectively.
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Figure S2. FOSLI overexpression defined a molecular signature in GBM.

A and B, Identification of differentially expressed genes (DEGs) between Cluster 1 and
Cluster 2 subgroups through comparative analysis of TCGA and CGGA datasets. C,
Integration of DEGs with transcription factor profiles using Venn diagram analysis. D and E,

Prognostic significance evaluation of candidate transcription factors through multivariate Cox

regression analysis, presented as forest plots.
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Figure S3. Elevated expression of FOSL1 was associated with poor prognosis in GBM
patient.

A and B, the mRNA expression levels of FOSLI in gliomas were stratified according to
the WHO classification using the GlioVis database (***P < 0.001, HSD test). C, immunoblot
analysis was performed to assess FOSL1 expression in GBM tumor tissues compared to non-
tumor tissues. D and E, qRT-PCR and immunoblot analysis were conducted to evaluate
FOSL1 expression in GBM cell lines and human astrocyte cell line (SVGp12) cells. (**P <
0.01, n = 3, independent sample ¢ test). F, Representative immunohistochemistry (IHC)
staining of FOSL1 in glioma and non-tumor tissues using tissue microarray (TMA) (top:
H&E staining; bottom: THC staining of FOSL1). Quantitative analysis using the H-score
system was performed for IHC evaluation. Scale bars, 100 um. G, Kaplan-Meier analysis was
performed based on the high immunohistochemical score (IHS) of FOSLI expression (P =
0.04). H-K, Kaplan-Meier analysis was conducted for #OSL/ expression in all glioma (H
and I) and GBM patient samples (J and K) using the GlioVis dataset (all P <0.0001, log-
rank test). L-O, Kaplan-Meier survival analysis of GBM patients stratified by FOSLI

expression levels in subgroups defined by IDH status (L and M) and sex (N and O). Analyses
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were performed using the GlioVis database (all log-rank P < 0.0001). GAPDH was used as
the loading control for normalization. Data shown as mean + SD. The immunoblotting
experiments were repeated three times with similar results.
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Figure S4. Overexpression of FOXL1 enhanced the malignancies of GBM cells.

A, FOSL1 overexpression efficiency was confirmed by qPCR (n = 3, with independent
sample ¢ test) and immunoblot analysis in U373 and U251 cells. B-D, the effect of FOSL1
overexpression on cell proliferation was evaluated by CCK-8 assays (n = 3, with one-way
ANOVA test, B), EDU assays (n = 3, with independent sample ¢ test, Scale bars, 50 pm C),
colony formation assays (n = 3, with independent sample ¢ test, D). E, Cell Matrigel invasion
assays was performed to evaluate cell invasion in GBM cells following FOSL1
overexpression (n = 3, with independent sample ¢ test). Scale bars, 100 pm. F, Wound-healing
assays was performed to assess cell migration in GBM cells following FOSL1 overexpression
(n = 3, with independent sample # test). Scale bars, 200 um. G, Flow cytometry-based
apoptosis analysis was used to evaluate cell apoptosis in GBM cells following FOSL1
overexpression (with independent sample ¢ test). H and I, Representative bioluminescent
images (H), H&E staining and Kaplan-Meier analysis (I) (n = 6 in each group, with log-rank
test) of U373 orthotopic xenograft nude mice following FOSL1 overexpression. GAPDH was
used as the loading control for normalization. * P < 0.05, **P < 0.01, ***P < (0.001, ****P <

0.0001. Data shown as mean + SD. The immunoblotting experiments were repeated three
6



times with similar results.
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Figure S5, related to Figure 2. FOSL1 promoted malignancies of GBM through
activation of NF-kB signaling pathway.

A, Gene Set Enrichment Analysis (GSEA) was used to identify the significantly enriched
signaling pathways in TCGA and CGGA datasets. B, A Venn diagram was used to intersect
the top 5 ranked pathways (|NES| > 2.5 and FDR < 0.05) from the 3 independent GSEA
analyses. C, GSEA plot demonstrating a significant negative enrichment of the NF-xB
signaling pathway gene set in FOSLI-knockdown glioma cells compared to control cells
(NES: -1.79, FDR < 0.001). D, Volcano plot showing differentially expressed genes following
FOSL]I knockdown.
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Figure S6, related to Figure 2. FOSL1 promoted malignancies of GBM through
activation of NF-kB signaling pathway. A, EDU assay was employed to evaluate cell
proliferation in LN229 and U87 cells following FOSL1 knock-down, with or without TNFa
(200 ng/ml, 72h) treatment (n = 3, with independent sample ¢ test). Scale bars, 50 um. B and
C, Cell Matrigel invasion assays were performed to evaluate cell invasion in LN229 and U87
cells following FOSL1 knock-down, with or without TNFa (200 ng/ml, 72 h) treatment (n =
3, with independent sample ¢ test). Scale bars, 100 um. D, Wound-healing assay was
conducted to assess cell migration in LN229 and U87 cells following FOSL1 knock-down,
with or without TNFa (200 ng/ml, 72 h) treatment (n = 3, analyzed by independent sample ¢
test). Scale bars, 200 um. E, Flow cytometry-based apoptosis analysis was used to evaluate
cell apoptosis in LN229 and U87 cells following FOSL1 knock-down, with or without TNFa
(200 ng/ml, 72 h) treatment (n = 3, with independent sample ¢ test). F, immunoblot analysis
was used to detect the expression of NF-kB related biomarkers in LN229 and U87 cells
following FOSL1 knock-down, with or without TNFa (200 ng/ml, 72 h) treatment. GAPDH
was used as the loading control for normalization. *P<0.05, **P<0.01, ***P<0.001,



**%%P<(0,0001. Data shown as mean + SD. The immunoblotting experiments were repeated
three times with similar results.
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Figure S7, related to Figure 2. FOSL1 promoted malignancies of GBM through

activation of NF-kB signaling pathway. A and B, Colony formation (n = 3, analyzed by

independent sample # test) and CCK-8 (n = 3, with one-way ANOVA test) assays were

conducted to assess cell proliferation in LN229 and U87 cells following FOSL1 knock-down,

with or without TNFa (200 ng/ml, 72 h) treatment. C and D, Colony formation (n = 3,

analyzed by independent sample ¢ test) and CCK-8 (n = 3, with one-way ANOVA test) assays

were conducted to assess cell proliferation in LN229 and U87 cells following FOSL1 knock-

down, with or without IKKa overexpression. *P < 0.05, **P < (0.01, ***P < (0.001, ****P <

0.0001. Data shown as mean + SD.
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Figure S8, related to Figure 2. FOSL1 promoted malignancies of GBM through
activation of NF-kB signaling pathway. A, Representative image of the P65 (green) protein
in U373 (Left) and U251 (Right) cells observed by confocal microscope. Scale bars, 40 pm.
B, immunoblot analysis was used to detect the expression of P65 related biomarkers in U373
and U251 cells following FOSL1 overexpression. LaminB was used as the loading control for
normalization. C, qRT-PCR assays for expression of NF-«xB signaling correlated downstream
targets in U373 and U251 cells following FOSL1 overexpression. *P < 0.05, **P < 0.01,

**%P <0.001. Data shown as mean = SD. The immunoblotting experiments were repeated

three times with similar results.
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Figure S9. JUNB transcriptionally up-regulated /KKa expression in GBM. A and B,
Biotin-labeled DNA fragments containing either wild-type or mutant /KKa promoter
sequences were immobilized on streptavidin-coated magnetic beads and incubated with
nuclear extracts from glioblastoma (GBM) cells. The captured protein complexes were
subsequently analyzed by immunoblot. C, the direct activation of /JKKa by JUNB was
validated by the luciferase activity assay (n = 3, analyzed by independent sample ¢ test). D
and E, ChIP PCR and qRT-PCR (n = 3, analyzed by independent sample ¢ test) analysis of
JUNB binding to the /KKa promoter in LN229 and U87 cells. F, Representative image of the
co-localization of FOSLI1 (red) and JUNB (green) protein in LN229 (upper) and U87
(bottom) cells observed by confocal microscope. GAPDH was used as the loading control for
normalization. Scale bars, 100 pm. Ns = not significant, *P < 0.05, **P < 0.01, ***P < (.001,
*#%%P <0.0001. Data shown as mean + SD. The immunoblotting experiments were repeated

three times with similar results.
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Figure S10, related to Figure 4. IKKa phosphorated FOSL1 thus enhanced the stability
of FOSL1.

A, qRT-PCR (n = 3, with independent sample 7 test) was used to detect the expression of
FOSL1 in LN229 and U87 cells following FOSL1 knock-down, with or without TNFa (200
ng/ml, 72 h) treatment. B and C, qRT-PCR (n = 3, with independent sample ¢ test) and
immunoblot analysis was used to detect the expression of FOSL1 in LN229 and U87 cells
following IKKa knock-down. D and E, the expression of FOSL1 was confirmed by qPCR (n
= 3, with independent sample ¢ test) and Immunoblot analysis in U373 and U251 following
IKKa overexpression. F and G, ChIP-PCR and qPCR (n = 3, analyzed by independent
sample ¢ test) analysis of P65 binding to the FOSL1 promoter in LN229 and U87 cells. H,
immunoblot analysis was used to detect the expression of FOSL1 in LN229 and U87 cells
following IKKp knock-down. I, immunoblot analysis of endogenous FOSL1 and IKKa
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expression in a co-IP assay performed in LN229 and U87 cells with protein A/G magnetic
beads and anti-FOSL1 (H) or anti-IKKa (I) primary antibody. J, the physical interaction
between FOSL1 and IKKa was confirmed by GST pull-down assays. GST protein alone
served as the negative control. K, immunoblot analysis was used to detect the
phosphorylation status of FOSL1 in LN229 and U87 cells following IKKa knock-down. L,
the phosphorylation status of FOSL1 was confirmed immunoblot analysis in U373 and U251
following IKKa overexpression. M, The expression and phosphorylation status of FOSL1
was confirmed immunoblot analysis in U373 and U251 following IKKa overexpression with
or without an ERK?2 inhibitor, ulixertinib (10 uM, 24 h). N, LN229 and U87 cells with or
without IKKa knock-down, followed by immunoprecipitation with anti-FOSL1 primary
antibody. GAPDH was used as the loading control for normalization. Ns = not significant,
**P <0.01, ***P <0.001. Data shown as mean + SD. The immunoblotting experiments were
repeated three times with similar results.
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Figure S11, related to Figure 5. UCHL3 was essential for IKKo-mediated
stabilization of FOSL1. A and B, Co-IP assays were performed in LN229 (A) and U87 (B)
cells using Protein A/G Magnetic Beads with anti-UCHL3 (left) or anti-FOSL1 (right)
primary antibodies, follow by immunoblot analysis. C and D, qRT-PCR (n = 3, analyzed by
independent sample # test) and immunoblot analysis was used to detect the expression of
FOSLI and IKKa in LN229 and U87 cells following UCHL3 knock-down. E, Immunoblot
analysis was used to detect the expression of FOSL1 and IKKa in LN229 and U87 cells
treated with or without UCHL3 inhibitor TCID (10 uM, 24 h). F and G, qRT-PCR (n=3,
analyzed by independent sample ¢ test) and immunoblot analysis was used to detect the
expression of UCHL3 in LN229 and U87 cells following IKKa knock-down. H, LN229 and
U87 cells with or without IKKa knock-down and UCHL3 inhibitor TCID (10 uM, 24 h),
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followed by cycloheximide (CHX; 100 uM) for 0, 3, 6 h were used for immunoblot analysis
to measure the protein levels of FOSL1. Density of FOSL1 expression was quantified by
Imagel. I, LN229 and U87 cells with or without UCHL3 knock-down were treated with the
proteasome inhibitor MG132 (25 uM, 8 h), autophagy inhibitor bafilomycin A1 (BAFA1; 30
nM, 2 h), or chloroquine (CQ; 30 uM, 30 min). FOSL1 and UCHLS3 levels were analyzed by
immunoblot. J, UCHL3 decreases ubiquitination of FOSL1. LN229 and U87 cells with or
without UCHL3 overexpression were treated with a UCHL3 inhibitor TCID (10 uM, 24 h),
followed by immunoprecipitation with anti-Flag primary antibody and immunoblot analysis.
K, Ubiquitination sites predicted by GPS Uber. L, Sequence conservation analysis of relevant
amino acids of FOSL1. GAPDH was used as the loading control for normalization. Ns = not
significant. Data shown as mean + SD. The immunoblotting experiments were repeated three

times with similar results.
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Figure S12, related to Figure 5. UCHL3 was essential for IKKa-mediated stabilization of
FOSLI1. A, Representative image of the co-localization of FOSL1 (red) and UCHL3 (green)
protein in LN229 (upper) and U87 (bottom) cells observed by confocal microscope. Scale
bars, 40 um. B, Representative image of the co-localization of IKKa (red) and UCHL3

(green) protein in LN229 (upper) and U87 (bottom) cells observed by confocal microscope.
C, Subcellular fractionation followed by co-IP assay was performed to investigate FOSL1-
UCHLS3 interactions in LN229 (left) and U87 (right) cells. Tubulin and Lamin B served as
cytoplasmic and nuclear loading controls, respectively, for normalization. The
immunoblotting experiments were repeated three times with similar results. D, Schematic

representation for the UCHL3 targeted the K48-linked polyubiquitin chain of FOSL1.
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Figure S13, CUL3 acts as an E3 ubiquitin ligase for FOSL1. A, FOSL1 protein levels
were assessed in HEK293T cells overexpressing GFP-tagged DUB candidates (CULS3,
TOMI1, and AMFR) alongside Flag-FOSL1. B-E, qRT-PCR (n = 3, with independent sample #
test) and immunoblot analysis was used to detect the expression of FOSL1 in LN229 and U87
cells following CUL3 knock-down or overexpression. F, Co-IP assays were performed in
LN229 and U87 cells using Protein A/G Magnetic Beads with anti-FOSL1 (left) or anti-CUL3
(right) primary antibodies, follow by immunoblot analysis. G, LN229 and U87 cells with or
without CUL3 overexpression, followed by cycloheximide (CHX; 100 uM) for 0, 3, 6 h.
Density of FOSL1 expression was quantified by ImageJ. H, Representative image of the co-
localization of FOSLI1 (red) and CUL3 (green) protein (Left) and IKKa (red) and CUL3

(green) protein (Right) in LN229 (upper) and U87 (bottom) cells observed by confocal
19



microscope. Scale bars, 40 um. I, immunoblot analysis was used to detect the expression of
IKKa in LN229 and U87 cells following CUL3 knock-down. I, HEK293T cells were
transfected with Flag-FOSL1, various HA-ubiquitin mutants, GFP-CUL3 and His-IKKa. O,
HEK293T cells were transfected with or without FOSL1 mutant plasmids, followed by
immunoprecipitation with anti-Flag primary antibody. GAPDH was used as the loading
control for normalization. **P < 0.01, ***P < (0.001, ****P < (.0001. Data shown as mean =+

SD. The immunoblotting experiments were repeated three times with similar results.
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Figure S14, related to Figure 6 Development and evaluation of a nanocapsuled
siRNA delivery system for GBM therapy. A, The stability of plofsome@siFOSLI in PBS
and 10% FBS for 48 h. B, Flow cytometry analysis of the cellular uptake of U87 cells treated
with plofsome@siNC/APC.
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Figure S15, related to Figure 7 In Vivo evaluation of plofsome@siFOSL1 for GBM
therapy. A, Schematic diagram of the BBB model in vitro. B, plofsome@siNC/C6 across the
BBB in an in vitro transwell BBB model. Representative image in different hours of the
plofsome@siNC/C6 in U87 cells observed by confocal microscope. Scale bars, 40 um. C, In
vivo fluorescence images of tumor-bearing nude mice at indicated times post-i.v. injection of
plofsome@siNC/IR780. D, the intensity of intracranial fluorescence was quantified using
IVIS image system (n = 3). E, the fluorescence intensity in major organs of nude mice was
quantified using IVIS image system (n = 3). F, In vivo pharmacokinetics of

plofsome@siNC/IR780 in tumor-free mice.
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Figure S16, Biosafety evaluation of plofsome@siFOSLI. A, Histological analyses of the
major organs (heart, liver, spleen, lung, kidney, and non-tumor brain regions) from tumor-
bearing nude mice following treatment with PBS, plofsome@siNNC and
plofsome@siFOSLI. Scale bars, 50 um. B, Biochemical index analysis of ALT, AST, ALB,
TBIL, BUN, and CREA. Data are shown as the mean = SD (n = 3). C, Immunoblot analysis
of FOSLI1 protein levels in tumor, liver, kidney and lung tissues after plofsome@siFOSL1
treatment. GAPDH was used as the loading control for normalization. Ns = not significant.

Data shown as mean + SD. The immunoblotting experiments were repeated three times with

similar results.
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Supplementary Tables

Table S1 The information of primary antibodies

Antibodies Source Cat#
Anti-FOSL1 Abcam ab124722
Anti-FOSL1 (IP) Santa Cruz sc-28310
Anti-IKKa Proteintech 84372-5-RR
Anti-IKKa (IP) Santa Cruz sc-7606
Anti-P-IKKa (phospho T23) Abcam ab38515
Anti-IkBa Zenbio R23322
Anti-NFxB CellsignalingTechnology #8242
Anti-P-NF«B (Ser536) CellsignalingTechnology #3033
Anti-IKKf Proteintech 15649-1-AP
Anti-Cullin 3 Abways CY7196
Anti-Cullin 3(IP) Abways sc-166110
Anti-H3 CellsignalingTechnology #4620
Anti-Rabbit IgG CellsignalingTechnology #2729
Anti-IgG-R Proteintech B900620
Anti-Flag Proteintech 20543-1-AP
Anti-Flag (IP) Santa Cruz sc-166355
Anti-HA Proteintech 51064-2-AP
Anti-Myc Proteintech 10828-1-AP
Anti-His Proteintech 84814-1-RR
Anti-His (IP) Santa Cruz sc-8036
Anti-Tubulin Zenbio R23452
Anti-Lamin B Santa Cruz sc-56144
Anti-GFP Proteintech 50430-2-AP
Anti-GFP (IP) Santa Cruz sc-9996
Anti-GST Proteintech 81527-1-RR
Anti-GST (IP) Santa Cruz sc-138
Anti-P-FOSL1 (Ser265) CellsignalingTechnology #5841
Anti- Ubiquitin Proteintech 10201-2-AP
Anti-UCHL3 Zenbio R380869
Anti-UCHLS3 (IP) Santa Cruz sc-100340
Anti-GAPDH Proteintech HRP-60004
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Table S2 Primers for qRT PCR

Primers Sequences-F (5° — 37) Sequences-R (5’ — 3°)
FOSLI1 ACTGGAAGATGAGAAATCTGGG | GGGAAAGGGAGATACAAGGTAC
IKKa ATGAAGAAGTTGAACCATGCCA | CCTCCAGAACAGTATTCCATTGC
IKKpB CTGGCCTTTGAGTGCATCAC CGCTAACAACAATGTCCACCT
UCHL3 AGAACGAGCCAGATACCTGGA GCTTCCGCCCATCTAATTCAT
GAPDH AGAAGGCTGGGGCTCATTTG AGGGGCCATCCACAGTCTTC

Table S3 Primers for ChIP PCR and qRT PCR

Primers Sequences-F (5> — 3’) Sequences-R (5’ — 3°)
FOSL1 TCCCCGAAGTCTCGGAACAT | TGGTTCAGCCCGAGAACTTT
IKKa CTCGCGAGAATGAATGCGTC | CATTGTGGTTCCGTTCAGCC
Table S4 Sequences for gene knockdown
SiFOSL1 CCAGCCUGGUCUUCACCUA UAGGUGAAGACCAGGCUGG
siUCHL3 GGAUUGUUGUGAAGACUAAUG | UUAGUCUUCACAACAAUCCCA
shFOSLI#1 CCAAGCATCAACACCATGAGT
shFOSLI#2 CTGTACCTTGTATCTCCCTTT
shIKKa#1 GCAAATGAGGAACAGGGCAAT
shIKK a#2 GCGTGCCATTGATCTATATAA
shIKKf3 GCACTGGGAAAGTATCTGAAA
shUCHL3#1 GCACCAAGTATAGATGAGAAA
shUCHL3#2 CCTGGAGGAATCTGTGTCAAT
ShCUL3#1 CGTGTGCCAAATGGTTTGAAA
ShCUL3#2 CGTAAGAATAACAGTGGTCTT
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