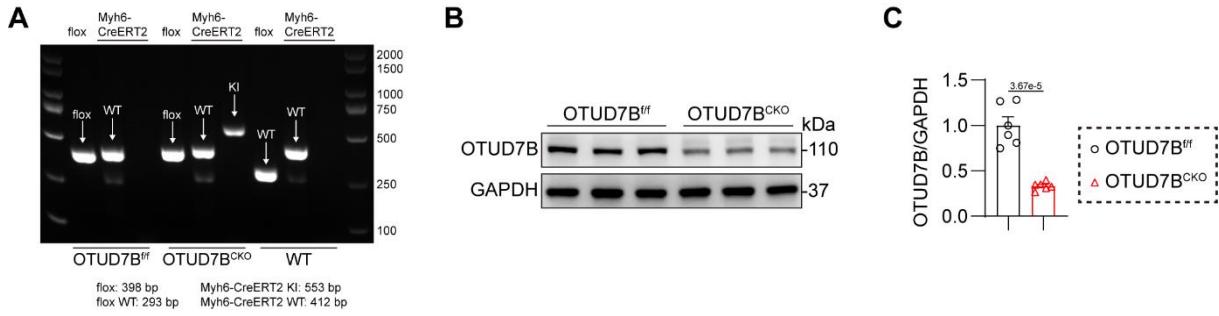


1 *Supplemental Material*

2

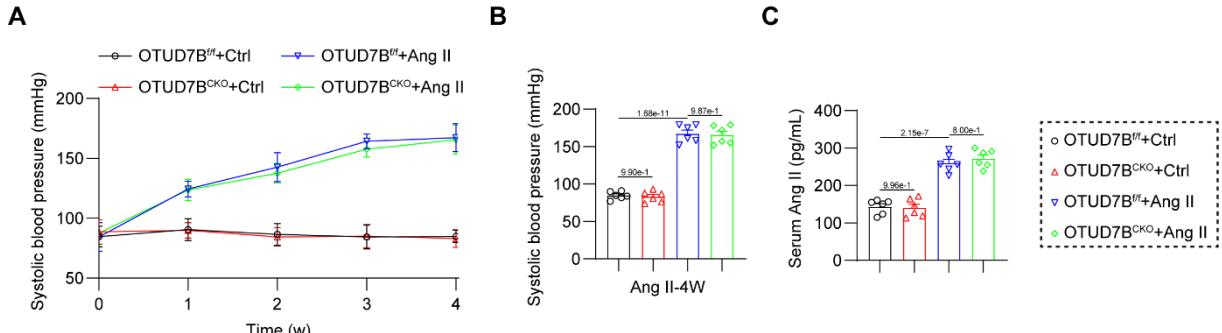

3 **Cardiomyocyte-derived OTUD7B promotes cardiac hypertrophy by**
4 **deubiquitinating SERCA2a**

5

6

7 The Supplemental Material includes 10 figures and 6 tables.

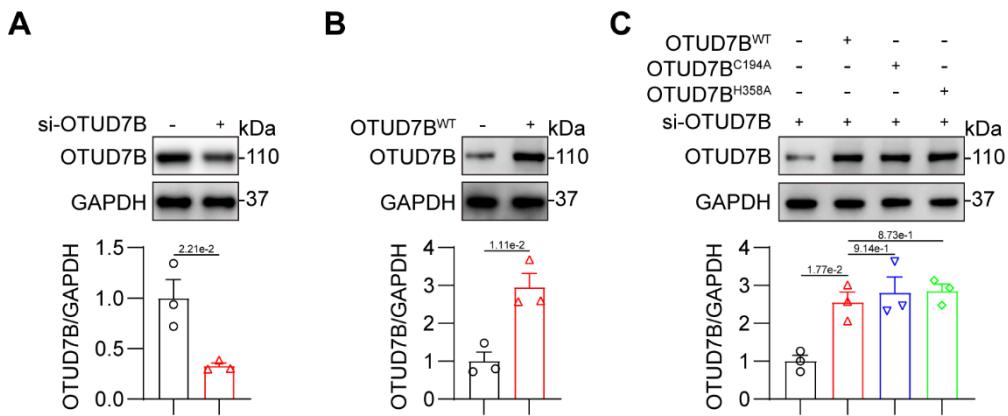
8


9

10 **Supplementary Figure S1. Generation of cardiomyocyte-specific OTUD7B knockout mice**

11 **(OTUD7B^{CKO}).** (A) To identify the genotypes of OTUD7B^{ff} and OTUD7B^{CKO} mice, cDNA
12 was extracted from mouse tail and the primers for identification of OTUD7B^{ff} and
13 OTUD7B^{CKO} mice were used for PCR assay. (B-C) Western blotting detection (B) and
14 quantitative analysis (C) of OTUD7B in heart tissues of OTUD7B^{ff} mice and OTUD7B^{CKO}
15 mice. GAPDH served as the internal loading reference (n = 6). OTUD7B^{ff} mice and
16 OTUD7B^{CKO} mice were intraperitoneally injected with tamoxifen for 1 week. Another week
17 later, mice were euthanized and samples were harvested.

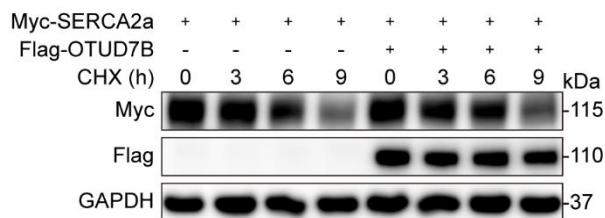
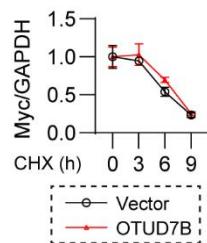
18


19

20 **Supplementary Figure S2. Cardiomyocyte-specific OTUD7B deletion did not affect**
 21 **systolic blood pressure and Ang II level in Ang II-induced mice.** (A) Systolic blood pressure
 22 was recorded during the Ang II-challenged mouse experiments ($n = 6$). (B) Systolic blood
 23 pressure of mice in the fourth week of Ang II treatment ($n = 6$). (C) Serum Ang II level was
 24 analyzed using ELISA ($n = 6$).
 25

26

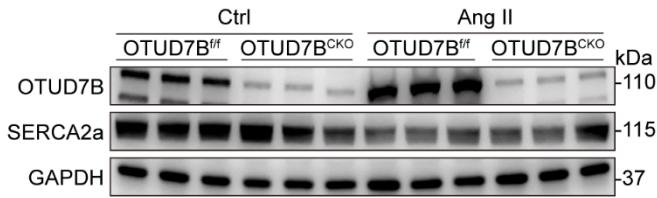
27

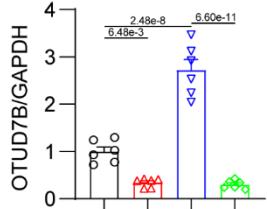
28

29 **Supplementary Figure S3. Effects of OTUD7B knockdown or overexpression in NRCMs.**

30 (A) NRCMs were exposed to OTUD7B-targeting siRNA (si-OTUD7B) for 24 hours, while
 31 control cells received a non-targeting siRNA (NC). OTUD7B protein expression was assessed
 32 by Western blotting (n = 3). (B) NRCMs were exposed to OTUD7B^{WT} or empty vector (EV)
 33 for 24h. OTUD7B protein expression was assessed by Western blotting (n = 3). (C) NRCMs
 34 were exposed to si-OTUD7B, OTUD7B^{WT}, OTUD7B^{C194A} or OTUD7B^{H358A} for 24h. OTUD7B
 35 protein expression was assessed by Western blotting (n = 3).

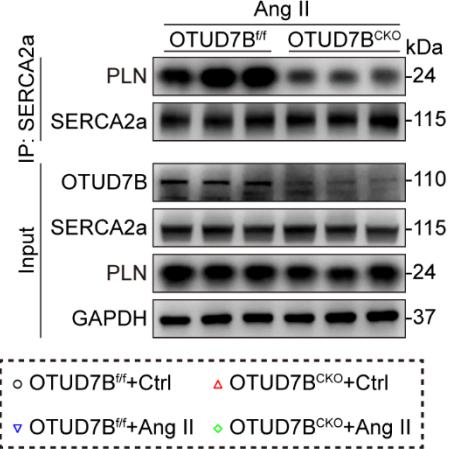

36

37
38
39
40
41
42
A**B**


37

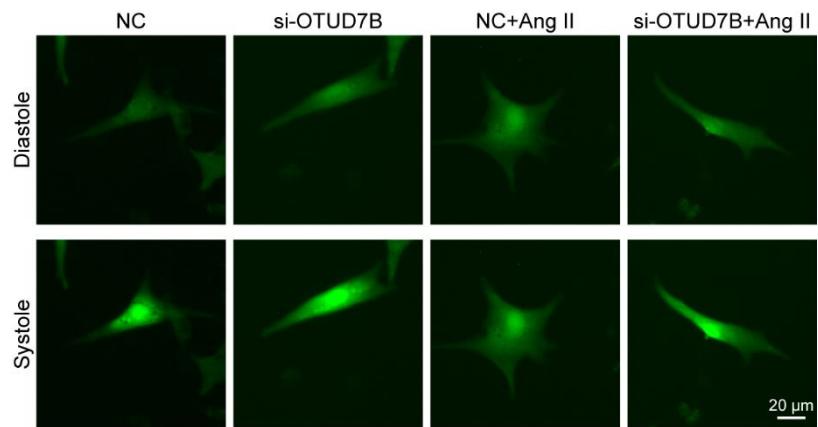
Supplementary Figure S4. OTUD7B does not affect the protein stability of SERCA2a. (A-B) Western blotting detection (A) and quantitative analysis (B) of Myc. 293T cells transfected with Flag-OTUD7B and Myc-SERCA2a were treated with cycloheximide (CHX, 50ug/ml) at the indicated time points. GAPDH was used as the loading control (n = 3).


A


B

C

D



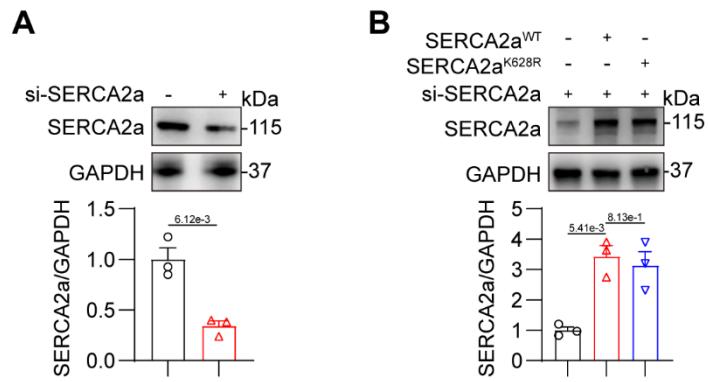
43

44 **Supplementary Figure S5. Cardiomyocyte-specific OTUD7B deletion inhibits the binding**
 45 **of SERCA2a and PLN in Ang II-induced cardiac hypertrophy.** (A-C) Western blotting
 46 detection (A) and quantitative analysis (B-C) of OTUD7B and SERCA2a in heart tissues (n =
 47 6). (D) Co-immunoprecipitation of SERCA2a and PLN in heart tissues. SERCA2a was
 48 immunoprecipitated by anti-SERCA2a antibody.

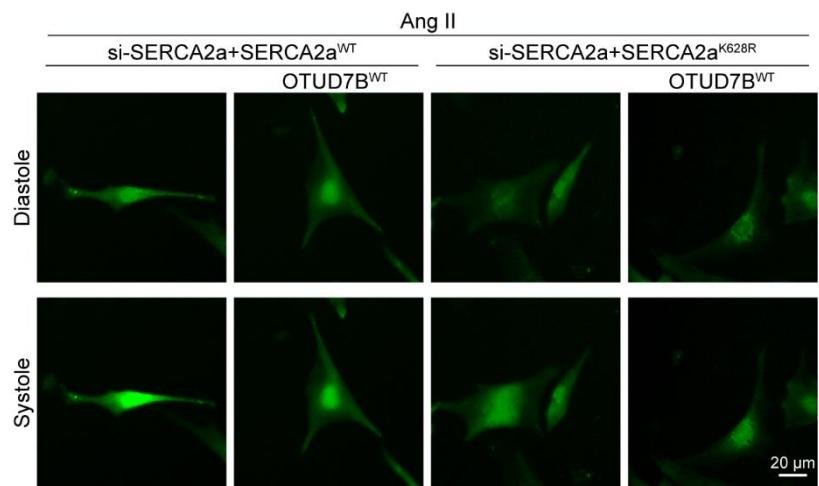
49

50

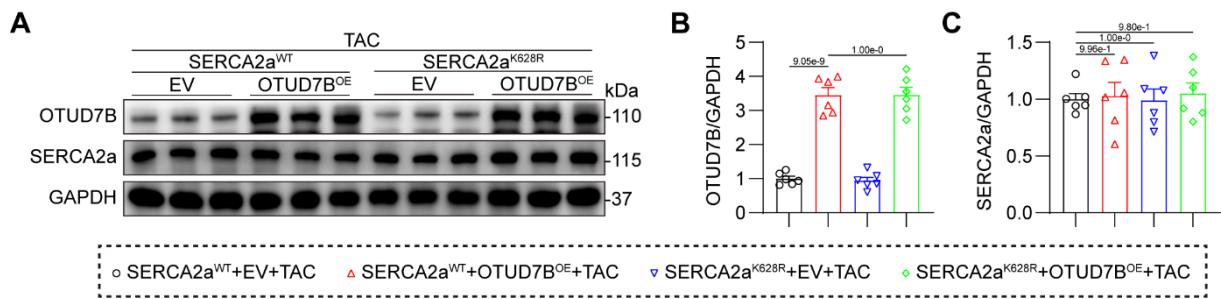
51 **Supplementary Figure S6. OTUD7B regulates sarcoplasmic reticulum (SR) calcium**
52 **content in cardiomyocytes.** Representative confocal images of cytosolic Ca^{2+} determined by
53 the Fluo-4 AM fluorescence signal in NRCMs transfected with si-OTUD7B or NC and then
54 challenged with Ang II for 24h.


55

56
57
58
59


Supplementary Figure S7. Second-order spectra of the peptide of SERCA2a at K611 and K628.

60
61
62
63
64
65
66
67



Supplementary Figure S8. Effects of SERCA2a knockdown or overexpression in NRCMs.

(A) NRCMs were exposed to SERCA2a siRNA (si-SERCA2a) for 24h, while control cells received NC siRNA. SERCA2a protein expression was assessed by Western blotting (n = 3).
(B) NRCMs were exposed to si-SERCA2a, SERCA2a^{WT} or Myc-SERCA2a^{K628R} for 24h. SERCA2a protein expression was assessed by Western blotting (n = 3).

68
69 **Supplementary Figure S9. OTUD7B regulates sarcoplasmic reticulum (SR) calcium**
70 **content in cardiomyocytes by regulating SERCA2a deubiquitination at residue K628.**
71 Representative confocal images of cytosolic Ca^{2+} determined by the Fluo-4 AM fluorescence
72 signal in NRCMs transfected with si-SERCA2a, OTUD7B^{WT}, and SERCA2a^{WT} or
73 SERCA2a^{K628R} and then challenged with Ang II for 24 h.
74

75
76
77
78
79

Supplementary Figure S10. Effects of OTUD7B and SERCA2a overexpression in vivo.

77 (A-C) Western blotting detection (A) and quantitative analysis (B-C) of OTUD7B and
78 SERCA2a in heart tissues (n = 6).

80 **Supplementary Table S1.** Clinical measurements for the human specimens

Type	Age (years)	Sex	IVS,mm	EF%
NCH-1	66	Male	11	68
NCH-2	48	Male	10	71
NCH-3	53	Female	9	64
NCH-4	81	Male	9	60
NCH-5	52	Male	10	67
NCH-6	76	Male	10	64
CH-1	46	Male	15	50
CH-2	77	Female	16	40
CH-3	73	Female	15	42
CH-4	80	Male	18	32
CH-5	57	Male	17	42
CH-6	55	Male	16	49

81 NCH, non-cardiac hypertrophy; CH, cardiac hypertrophy; IVS, interventricular septal thickness;
82 EF, ejection fraction.

83

84 **Supplementary Table S2.** Primer sequences for PCR genotyping analysis

Gene	Species	Sequence
<i>Otud7b-flox</i>	Mouse	GTAGCTCACAGTTCAGCCTGGATATT CCCAGCCTGTATGACTCTTATATCTTC
<i>Myh6-CreERT2</i>	Mouse	CAGCAAAACCTGGCTGTGGATC
<i>WT</i>		ATGAGCCACCATGTGGGTGTC
<i>Myh6-CreERT2</i>	Mouse	GGCACATGAGTAACAAAGGCATG
<i>KI</i>		AGCCAACCTTGTTCATGGCAG

85

86

Supplementary Table S3. Primer sequences for real-time qPCR assay

Gene	Species	Sequence
<i>Myh7</i>	Mouse	ACTGTCAACACTAAGAGGGTCA TTGGATGATTGATCTTCCAGGG
<i>Nppa</i>	Mouse	GCTTCCAGGCCATATTGGAG GGGGGCATGACCTCATCTT
<i>Nppb</i>	Mouse	GAGGTCACTCCTATCCTCTGG GCCATTCCTCCGACTTTCTC
<i>Actb</i>	Mouse	GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT
<i>Otud7b</i>	Mouse	TGCTGTCCTGTCGGATTGT TGGACTTGACGCAACTGTTCA
<i>Myh7</i>	Rat	CTGAGGAGACACAGCGTTCT GGGTCAGCTGAGAGATAAGA
<i>Nppa</i>	Rat	GAGCGAGCAGACCGATGAAGC TCCATCTCTCTGAGACGGGTTGAC
<i>Nppb</i>	Rat	AGTCTCCAGAACAAATCCACGATGC GCCTTGGTCCTTGAGAGCTGTC
<i>Actb</i>	Rat	ACTATCGGCAATGAGCGGTTCC TGGCATAGAGGTCTTACGGATGTC
<i>Myh7</i>	Human	GGAGTTCACACGCCTCAAAGAG TCCTCAGCATCTGCCAGGTTGT
<i>Nppa</i>	Human	CACCGTGAGCTTCCTCCTT CCAAATGGTCAGCAAATTCTTG
<i>Actb</i>	Human	CATGTACGTTGCTATCCAGGC CTCCTTAATGTCACGCACGAT
<i>Otud7b</i>	Human	GTCAGATTGTCCGTTCCACA CATGGACTTGACGTAGCTGTT

90 **Supplementary Table S4.** Echocardiographic data in all groups

	Ctrl		Ang II	
	OTUD7B ^{f/f}	OTUD7B ^{CKO}	OTUD7B ^{f/f}	OTUD7B ^{CKO}
EF (%)	72.96±0.66	71.28±1.39 ^{ns}	58.6±1.27 [*]	65.83±1.5 [#]
FS (%)	39.34±0.68	37.81±1.38 ^{ns}	27.64±0.84 [*]	33.12±1.31 [#]
IVSd (mm)	0.81±0.04	0.83±0.04 ^{ns}	1.08±0.06 [*]	0.88±0.03 [#]
LVIDd (mm)	3.49±0.06	3.49±0.1 ^{ns}	4.03±0.2 ^{ns}	3.64±0.2 ^{NS}
LVPWd (mm)	0.93±0.06	1.0±0.06 ^{ns}	1.0±0.16 ^{ns}	1.03±0.07 ^{NS}
E/A	1.82±0.06	1.74±0.06 ^{ns}	1.22±0.04 [*]	1.5±0.06 [#]
HR (bpm)	482±7.24	479.5±6.2 ^{ns}	473.5±5.82 ^{ns}	484.3±3.02 ^{NS}
HW/BW (mg/g)	4.49±0.08	4.51±0.06 ^{ns}	6.26±0.39 [*]	5.15±0.2 [#]
HW/TL (mg/mm)	7.04±0.14	6.74±0.21 ^{ns}	8.67±0.38 [*]	7.36±0.25 [#]

91 EF, ejection fraction; FS, fractional shortening; IVSd, diastole interventricular septum; LVIDd,
 92 diastole left ventricular internal diameter; LVPWd, diastole left ventricular posterior wall; E/A,
 93 E peak/A peak; HR, heart rate; HW, heart weight; BW, body weight; TL, tibial length. Data
 94 were shown as mean ± SEM. ns, p>0.05 vs OTUD7B^{f/f} + Ctrl; *, p<0.05 vs OTUD7B^{f/f} + Ctrl.
 95 NS, p>0.05 vs OTUD7B^{f/f} + Ang II; #, p<0.05 vs OTUD7B^{f/f} + Ang II.

96

97 **Supplementary Table S5.** Echocardiographic data in all groups

	Sham		TAC	
	OTUD7B ^{f/f}	OTUD7B ^{CKO}	OTUD7B ^{f/f}	OTUD7B ^{CKO}
EF (%)	76.4±1.94	75.01±2.21 ^{ns}	56.32±2.36 [*]	67.62±2.66 [#]
FS (%)	39.59±1.7	38.44±1.85 ^{ns}	25.22±1.39 [*]	32.69±1.94 [#]
IVSd (mm)	0.77±0.02	0.76±0.04 ^{ns}	1.02±0.04 [*]	0.78±0.04 [#]
LVIDd (mm)	3.93±0.06	4.01±0.09 ^{ns}	4.25±0.1 ^{ns}	4.1±0.14 ^{NS}
LVPWd (mm)	0.85±0.06	0.9±0.08 ^{ns}	1.0±0.11 ^{ns}	0.96±0.07 ^{NS}
E/A	1.65±0.05	1.7±0.08 ^{ns}	1.03±0.06 [*]	1.41±0.06 [#]
HR (bpm)	468.5±6.01	477±4.31 ^{ns}	485.8±10.41 ^{ns}	479.5±5.7 ^{NS}
HW/BW (mg/g)	4.43±0.05	4.3±0.04 ^{ns}	6.3±0.25 [*]	5.15±0.26 [#]
HW/TL (mg/mm)	6.5±0.2	6.61±0.19 ^{ns}	8.75±0.21 [*]	7.34±0.29 [#]

98 EF, ejection fraction; FS, fractional shortening; IVSd, diastole interventricular septum; LVIDd,
99 diastole left ventricular internal diameter; LVPWd, diastole left ventricular posterior wall; E/A,
100 E peak/A peak; HR, heart rate; HW, heart weight; BW, body weight; TL, tibial length; TAC,
101 transverse aortic constriction. Data were shown as mean ± SEM. ns, p>0.05 vs OTUD7B^{f/f} +
102 Sham; *, p<0.05 vs OTUD7B^{f/f} + Sham. NS, p>0.05 vs OTUD7B^{f/f} + TAC; #, p<0.05 vs
103 OTUD7B^{f/f} + TAC.

104

105 **Supplementary Table S6.** Echocardiographic data in all groups

	TAC			
	SERCA2a ^{WT} +	SERCA2a ^{WT} +	SERCA2a ^{K628R} +	SERCA2a ^{K628R} +
	EV	OTUD7B ^{OE}	EV	OTUD7B ^{OE}
EF (%)	75.84±2.16	64.82±2.45*	65.38±1.82	66.37±2.36 ^{NS}
FS (%)	43.07±2.64	32.45±1.85*	32.8±1.6	33.98±1.57 ^{NS}
IVSd (mm)	0.93±0.04	1.17±0.06*	1.11±0.03	1.08±0.03 ^{NS}
LVIDd (mm)	3.82±0.1	4.06±0.13 ^{ns}	4.02±0.04	3.99±0.08 ^{NS}
LVPWd (mm)	1.08±0.07	1.25±0.07 ^{ns}	1.27±0.06	1.36±0.09 ^{NS}
HR (bpm)	462.8±8.24	482.5±4.25 ^{ns}	470.2±18.8	457.8±13.14 ^{NS}
HW/BW (mg/g)	5.62±0.14	6.78±0.33*	6.73±0.14	6.98±0.29 ^{NS}
HW/TL (mg/mm)	7.71±0.16	9.33±0.4*	9.09±0.31	8.99±0.33 ^{NS}

106 EF, ejection fraction; FS, fractional shortening; IVSd, diastole interventricular septum; LVIDd,
107 diastole left ventricular internal diameter; LVPWd, diastole left ventricular posterior wall; HR,
108 heart rate; HW, heart weight; BW, body weight; TL, tibial length; EV, empty vector; TAC,
109 transverse aortic constriction. Data were shown as mean ± SEM. ns, p>0.05 vs
110 SERCA2a^{WT}+EV+TAC; *, p<0.05 vs SERCA2a^{WT}+EV+TAC. NS, p>0.05 vs
111 SERCA2a^{K628R}+EV+TAC.

112