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Abstract 

Oligonucleotide-based gene therapeutics (OGTs) have emerged as a promising strategy for treating a variety of diseases, offering 
a tool for gene modulation at the mRNA level. Despite significant progress in OGTs development, their efficacy in both 
experimental and clinical settings has often fallen short of expectations. Current estimates suggest that less than 1% of transfected 
OGTs are released into the cytosol, significantly limiting the interaction with target RNA. Moreover, data suggests that only about 
2% of the tested siRNAs achieve the expected 70% target gene knockdown in vitro. Clinically approved OGTs appear to be 
effective only against genetic disorders that lack effective alternative treatment, and even in these cases their therapeutic 
contribution remains marginal. Notably, the majority of approved OGTs, as well as those currently in clinical trials, are antisense 
oligonucleotides (ASOs) despite cell culture data showing that small interfering RNAs (siRNAs) exhibit greater potency. The 
delayed commercialization of siRNAs, despite high research interest, may be attributed to passenger stand-dependent off target 
effect and the immaturity of their design and modification strategies. This review critically evaluates the factors influencing 
therapeutic efficacy of OGTs and highlights the persistent gap between theoretical promise and clinical reality. 

Keywords: gene silencing, therapeutic oligonucleotides, efficacy, clinical relevance, cancer, antisense oligonucleotides, siRNA, miRNA, ribozymes, 
deoxyribozymes, CRISPR/Cas 

1. Introduction 
Gene therapy has been regarded as a 

transformative approach for treating hereditary or 
acquired diseases, including cancer. Its core principle 
is the introduction of genetic material into a patient's 
cells to replace defective genes with healthy 
counterparts, aiming to achieve therapeutic benefits 
[1,2]. Among various strategies, gene silencing, a 
technique which targets and suppresses disease 
promoting genes at the mRNA level, has emerged as a 
more refined approach to gene therapy. Within this 
context, oligonucleotide-based gene therapeutics 
(OGTs) have received a significant attention as 
potential game-changers [3]. 

The principles underlying OGTs rely on 

complementary base pairing between the therapeutic 
oligonucleotide (ON) and the target mRNA, leading to 
either mRNA degradation or steric hindrance of the 
translation machinery. OGTs include RNAi inducing 
agents, (e.g. siRNA), antisense oligonucleotides 
(ASOs), DNAzymes (Dzs) and RNAzymes (Rzs) as 
well as Crispr/Cas13-based systems. The therapeutic 
potential of an OGT is characterized by its efficacy in 
silencing the targeted genes and its specificity, which 
is also reflected by the extent of off-target effects. 
While a recent comprehensive review has addressed 
the specificity of OGT [4], this work focuses on the 
analysis of OGT efficacy. 

In this review, OGT efficacy is defined as the 
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degree to which an OGT can reduce the expression of 
a targeted gene. Efficiency, on the other hand, refers to 
the practical performance of OGT under specific 
conditions, including the amount of OGT required to 
achieve a biological effect, the speed of its action, and 
the conditions under which it operates. Thus, while 
efficacy measures the outcome, efficiency is about 
optimizing the conditions and resources to achieve 
this outcome. Both terms are used according to these 
definitions in this review. 

Current research endeavors are focusing on 
refining the OGT design and delivery systems [5–7]. 
Although productive internalization and release are 
critical for achieving high efficiency, these aspects are 
beyond the scope of this review, as the diverse array of 
delivery systems has been extensively reviewed [8,9]. 
Instead, this review focuses on evaluating current 
knowledge on OGTs through the lens of the efficacy 
demonstrated in experimental and clinical contexts. 
We evaluate the contribution of various factors into 
OGT efficacy and examine how closely experimental 

efficacy aligns with theoretical expectations. 

2. Mechanisms of action and their 
contribution to OGT efficacy 
2.1 Antisense Oligonucleotides 

ASOs are short, single-stranded DNA (ssDNA) 
or their analogs designed to hybridize with a specific 
mRNA sequence (Figure 1A). Their mechanism of 
ASO action involves binding to the target mRNA, 
which can lead to two outcomes – (1) RNase H 
mediated mRNA degradation or (2) steric blockage. In 
the first mechanism, the mRNA component of the 
ASO/RNA heteroduplexes is degraded by RNase H1 
in the cytoplasm or by RNase H2 in the nucleus [10,11]. 
In steric blockage either induce translational arrest by 
hindering interactions with ribosomal subunits or 
modulates splicing by influencing exon skipping or 
inclusion [10]. 

 
 

 
Figure 1. Oligonucleotide-mediated regulation of gene expression. A) ASOs bind to complementary mRNA sequences, leading to either RNase H-mediated degradation of 
the mRNA or steric inhibition for translation or splicing. B) the RISC complex associated with endogenous miRNA degrades imperfectly complementary mRNA targets, while 
exogenous antagomirs bind to miRNAs to inhibit their functions, thereby preventing suppression of their targets. C) the RISC complex guided by siRNAs strand degrades 
complementary mRNA target. Unlike ASOs, siRNAs require enzymes for their activity. D) Dzs and Rzs OGTs are ssDNA and ssRNA molecules with RNA cleaving activity. 
Unlike RNAi, CRISPR/Cas13, and ASOs, their activity is protein enzyme independent. E) The CRISPR/Cas13 system targets mRNA using crRNAs. 
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2.2 RNA Interference (RNAi) Agents 
In 1998, Fire and Mello revealed the mechanism 

of RNA interference (RNAi) for the regulation of gene 
expression in the nematode Caenorhabditis elegans 
[12]. RNAi agents, including small interfering RNAs 
(siRNAs), short hairpin RNAs shRNAs and 
microRNAs (miRs), induce degradation of the specific 
mRNA target by harnessing the RNA-induced 
silencing complex (RISC) (Figure 1B-C). Guided by a 
short ssRNA template, RISC recognizes the 
complementary mRNA target via Watson-Crick base 
pairing, leading to mRNA degradation and inhibition 
of protein synthesis [13]. Unlike ASO, can induce 
silencing without involvement of endogenous 
enzymes, RNAi agents differ are double-stranded 
RNAi agents that require RISC for their activity [14]. 

2.3 DNAzymes (Dzs) and RNAzymes (RZs) 
DZs and RZs are synthetic single stranded 

nucleic acids that possess catalytic activity [15–17]. 
Both RZs and DZs can be engineered to cleave 
particular mRNA sequences [18,19]. Both can be 
designed to recognize particular mRNA sequences 
with high specificity due to their short RNA binding 
[20,21]. However, their catalytic efficiency is often 
limited by the relatively low binding affinity of these 
short recognition arms [22]. Unlike RNAi, 
CRISPR/Cas agents and ASOs, DZs and RZs activity 
is completely protein enzyme-independent (Figure 
1D). 

2.4 CRISPR/Cas13 
CRISPR/Cas13 is a member of the CRISPR/Cas 

family that has gained significant attention due to the 
unique ability to target RNA rather than DNA, thereby 
enabling gene manipulation at the transcriptional level 
[23]. Similar to other CRISPR/Cas systems, Cas13 
proteins are guided by CRISPR RNAs (crRNAs) to 
complementary sequences of targeted RNAs [24,25] 
(Figure 1E). There are currently four main subtypes of 
Cas13 - Cas13a, Cas13b, Cas13c, and Cas13d [23]. 
Upon binding of the crRNA to the target RNA via 
Watson-Crick base pairing, Cas13 undergoes a 
conformational change that activates the catalytic site 
followed by cleavage of the target RNA [26]. Unlike 
other OGTs, CRISPR/Cas13 relies on the expression or 
co-delivery of the bacterial Cas 13 protein along with 
the crRNA, introducing an additional challenge in 
comparison with all other OGT. 

Among all OGTs, ASOs and siRNAs remain at 
the forefront of successful clinical applications. In cell 
culture, siRNAs often demonstrate greater efficiency 

at lower concentrations compared to ASOs [27]. One 
major contributing factor is the RISC, which is more 
stable in cytoplasm, and processive [28], compared to 
the transient and less processive RNase 
H/ASO/mRNA complex [29]. In a direct comparison 
between siRNA and ASO efficiency against Influenza 
A viral RNA, Piasecka et al. showed that 8 nM siRNA 
achieved >84% decrease in viral RNA copies while 
ASO at the same concentration showed negligible 
activity [30]. Even at a much higher concentration of 
750 nM ASO achieved only about 27% decrease in viral 
RNA level. Interestingly, despite the superior potency 
of siRNAs in vitro, ASOs have shown greater clinical 
success, with more approvals from Food and Drug 
Administration (FDA) and the European Medicines 
Agency (EMA) over the last two decades (Table 1). In 
contrast, siRNAs only entered the market in the last 
seven years [31]. 

On the other hand, the therapeutic application of 
miRs is limited due to challenges with off-target effects 
and lack of specificity that stems directly from their 
natural function to regulate activity of multiple mRNA 
targets [32]. Similarly, CRISPR/Cas13 faces specificity 
challenges due to the collateral RNA cleavage, also 
known as collateral damage, which occurs due to the 
physical separation between the crRNA/RNA 
complex and the catalytic site of Cas13 [33–35]. Dzs 
and Rzs, while promising in vitro, have not yet 
achieved clinical translation mainly due to the stability 
issues, low affinity to the folded mRNA as discussed 
below and, possibly, due to the low intracellular 
concentration of Mg2+, a co-enzyme required for their 
catalytic activity. dependence. 

3. The use of OGT-based drugs is limited 
by their low efficacy  
3.1 The clinical efficacy of antiviral OGTs 
cannot yet compete with that of established 
treatments  

While OGTs against infectious diseases have 
shown promising results in experimental research, 
their progress through clinical trials has been 
challenging [36]. Fomiversen, developed against 
Cytomegalovirus (CMV) retinitis, was the first 
antisense-RNA agent to gain FDA approval in 1998 
and remains the only antiviral OGT to have passed 
clinical trials and reached the market. However, it was 
discontinued less than a decade later due to the low 
demand and market competition against the new and 
highly efficient antiretroviral treatments of the time 
[37]. 
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Table 1. FDA/EMA approved OGT formulations. 

Drug Name Agent Type Approval Target Disease Target Gene Delivery Vehicle Efficacy Data Dosing Regimen 
Fomivirsen 
(Vitravene) 

ASO FDA/EMA: 
1998/1999 
(Discontinued in 
2004/2002) 

Cytomegalovirus retinitis CMV IE2 
mRNA 

N/A Significant reduction in 
CMV replication in the 
eye 

330 µg once weekly for up 
to 3 weeks / IT injection 

Mipomersen 
(Kynamro) 

ASO FDA/EMA: 2013 
(Discontinued in 
2019) 

Homozygous familial 
hypercholesterolemia 
(HoFH) 

ApoB N/A Reduced LDL-C levels 
by approximately 25% 

200 mg once weekly /SC 
injection 

Nusinersen 
(Spinraza) 

ASO FDA/EMA: 2016 Spinal muscular atrophy 
(SMA) 

SMN2 N/A Improved motor 
function in SMA 
patients; achieved motor 
milestones in ~40% of 
treated patients 

Initial: Loading dose of 12 
mg on days 0, 14, and 28; 
Maintenance: every four 
months thereafter / IT 
injection 

Milasen ASO compassionate use 
- 2018 

Batten disease CLN7 N/A Improved motor 
function and cognitive 
abilities in case studies 

42 mg once every 3 
months / ITH 

Inotersen 
(Tegsedi) 

ASO FDA/EMA: 2018 Hereditary transthyretin 
amyloidosis (hATTR) 

TTR N/A Significant reduction in 
serum TTR levels (~80%) 

284 mg weekly for first 
three weeks / SC injection 

Eteplirsen 
(Exondys 51) 

ASO FDA: 2016 Duchenne muscular 
dystrophy (DMD) 

DMD N/A Increased dystrophin 
levels by ~0.93% of 
normal after 180 weeks; 
improved motor 
function in some 
patients 

30 mg/kg once weekly / 
IV infusion 

Golodirsen 
(Vyondys 53) 

ASO FDA: 2019 Duchenne muscular 
dystrophy (DMD) 

DMD N/A Increased dystrophin 
production in muscle 
tissue by ~60% 

30 mg/kg once weekly / 
IV infusion 

Viltolarsen 
(Viltepso) 

ASO FDA: 2020 Duchenne muscular 
dystrophy (DMD) 

DMD N/A Increased dystrophin 
production in muscle 
tissue by ~60% 

80 mg/kg once weekly / 
IV infusion 

Casimersen 
(Amondys 45) 

ASO FDA: 2021 Duchenne muscular 
dystrophy (DMD) 

DMD N/A Increased dystrophin 
production in muscle 
tissue by ~60% 

30 mg/kg once weekly / 
IV infusion 

Tofersen 
(Qalsody) 

ASO FDA: 2023 Amyotrophic lateral 
sclerosis (ALS) 

SOD1 N/A Significant reduction in 
SOD1 levels; improved 
clinical outcomes in 
treated patients 

Initial: Loading dose of 
100 mg; Maintenance: 
every four weeks 
thereafter / IT injection 

Volanesorsen 
(Waylivra) 

ASO EMA: 2019 Familial chylomicronemia 
syndrome 

ApoC-III N/A Reduces triglyceride 
levels significantly 

Initial dose followed by 
maintenance dose every 
week 

Patisiran 
(Onpattro) 

siRNA FDA/EMA: 2018 Hereditary transthyretin 
amyloidosis (hATTR) 
polyneuropathy 

TTR Lipid nanoparticles 
(LNPs) 

80% reduction in serum 
TTR levels after 18 
months 

Initial: 0.3 mg/kg IV every 
3 weeks (<100 kg); 
Maintenance: 30 mg IV 
every 3 weeks (≥100 kg) / 
IV infusion 

Givosiran 
(Givlaari) 

siRNA FDA/EMA: 
2019/2020 

Acute hepatic porphyria 
(AHP) 

ALAS1 GalNAc-conjugated 
siRNA 

Significant reduction in 
ALA levels during acute 
attacks 

2.5 mg/kg once monthly / 
SC injection 

Lumasiran 
(Oxlumo) 

siRNA FDA/EMA: 2020 Primary hyperoxaluria type 
1 (PH1) 

HAO1 GalNAc-conjugated 
siRNA 

Significant reduction in 
urinary oxalate excretion 
by ~60% at 6 months 

Initial: 3 mg/kg once 
monthly; Maintenance: 1 
mg/kg SC once monthly / 
SC injection 

Inclisiran 
(Leqvio) 

siRNA FDA/EMA: 
2021/2020 

Heterozygous familial 
hypercholesterolemia and 
atherosclerotic 
cardiovascular disease 

PCSK9 GalNAc-conjugated 
siRNA 

Significant reduction in 
LDL-C levels by ~50% at 
6 months 

Initial: 284 mg at day 1 
and day 90; Maintenance: 
every 6 months / SC 
injection 

Vutrisiran 
(AMVUTTRA) 

siRNA FDA/EMA: 2022 Hereditary transthyretin 
amyloidosis (hATTR) 
cardiomyopathy 

TTR GalNAc-conjugated 
siRNA 

Sustained reduction in 
serum TTR levels over 
dosing interval (up to 
~80%) 

Loading: 25 mg once 
monthly for three months; 
Maintenance: every three 
months / SC injection 

Nedosiran 
(Rivfloza) 

siRNA FDA/EMA: 2023 Primary hyperoxaluria type 
1 (PH1) 

GPD1L GalXC™ RNAi 
platform 

Significant reduction in 
urinary oxalate excretion 
by ~70% at month 6 

Initial: 3 mg/kg once 
every month; 
Maintenance: every three 
months / SC injection 

 
Since then, several OGTs have entered clinical 

trials against viruses including Respiratory Syncytial 
Virus (RSV), Hepatitis B Virus (HBV), Ebola Virus and 
Human Immunodeficiency Virus (HIV). Among those, 
VIR-2218 and JNJ-3989 are currently in ongoing phase 
II trials for chronic HBV include. VIR-2218 is a N-
Acetylgalactosamine (GalNAc) conjugated version of 

ALN-HBV - an earlier siRNA agent from the same 
company. VIR-2218 demonstrated improved safety: 
no elevation in liver inflammation markers was 
observed, compared to 28% elevation in those treated 
with ALN-HBV. The VIR-2218 efficiency was evident 
by dose-dependent reduction in Hepatitis B surface 
antigen (HbsAg) [38]. Treatment of HBV patients with 
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JNJ-3989 provided sustained HBsAg reduction for up 
to 336 days after the last dose, although complete 
HBsAg clearance remained rare as demonstrated in 
the recent phase IIb study [39]. RG6346, a new agent 
against HBV in phase I trials, has also showed 
favorable safety and pharmacodynamic profile with 
reductions in HBV protein levels, although efficacy 
data are not yet available [40].  

Other OGTs in phase II trials such as ALN-RSV01 
against respiratory syncytial virus (RSV) and TKM-
130803 against Ebola virus were discontinued due to 
the failure in meeting the target suppression efficacy 
and, in the case of Ebola, the lack of improvement in 
patient survival [36]. Interestingly, OGTs against HIV 
have been in phase I trials since their initiation in 2007, 
largely due to the complexity of HIV infection 
dynamic and lack of comprehensive pre-clinical 
studies [36].  

Overall, the stagnation of antiviral OGT 
development can be attributed to persistent concerns 
regarding efficacy and safety. Moreover, the 
availability of established antiviral therapies presents 
a significant barrier to adopting OGTs. When existing 
treatments are effective, there may be less incentive for 
healthcare providers to switch to new therapies that 
have not yet demonstrated clear clinical superiority. 

3.2 In mitigating genetic disorders, clinical 
efficacy is satisfactory due to the low 
competition from alternative treatments 

For many genetic disorders, existing therapies 
are limited to symptom management and supportive 
care. The 16 OGTs approved for genetic disorders 
(Table 1) partially address the scarcity of disease-
modifying treatment options. However, their 
perceived success is influenced by the lack of 
alternative effective treatments, making OGT the only 
treatment available. For example, Mipomersen, the 
first ASO approved for treating Homozygous familial 
hypercholesterolemia, was withdrawn due to market 
competition. Although Mipomersen could decrease 
low density lipoprotein cholesterol (LDL-C) by 28-36% 
and apolipoprotein B (ApoB) by 36-38%, it also carried 
a significant risk of hepatotoxicity [37,41]. Safer and 
more efficient pharmacological alternatives, such as 
monoclonal antibody-based PCSK9 inhibitors and 
statins that reduce LDL-C more than 50%, were 
preferred. Similarly, Volanesorsen for Familial 
Chylomicronemia Syndrome (FCS) faced FDA 
rejection due to safety concerns [42] and Tominersen 
for Huntington’s Disease was discontinued due to lack 
of efficacy [43].  

Furthermore, even the efficacy of FDA approved 
drugs, like Eteplirsen for some types of Duchenne 
muscular dystrophy, is under question. Patients 

receiving Eteplirsen weekly showed an increase in 
muscle dystrophin levels by only ~0.44% ± 0.43% of 
that of healthy individuals, up from a baseline of 
~0.16% ± 0.12% with the median increase just 0.1% 
after 48 weeks. The EMA has not approved Eteplirsen, 
citing insufficient evidence of its efficacy [44]. This 
example highlights both differences in regulatory 
standards and the broader challenges of OGT in 
providing meaningful clinical outcomes. 

A notable example of successful clinical OGT 
applications are the FDA and EMA approved gene 
therapies for hereditary transthyretin-mediated 
amyloidosis (hATTR). hATTR is caused by the deposit 
of both mutant and wild-type transthyretin (TTR) 
variants mainly in the nervous system, causing severe 
multisystem neurological manifestations. Traditional 
treatment strategies for hATTR include TTR 
stabilizers, liver transplantation, as well as neuropathy 
and cardiomyopathy management. All four approved 
OGTs, Patisiran [45], Vutrisiran [46], Inotersen [47], 
and Eplontersen (ASO currently under review) [48], 
target a specific genetically conserved region in the 3’ 
untranslated region (3’-UTR) of all TTR isoforms. Each 
of these agents demonstrates the same significant 
efficacy of ~80-85% TTR knockdown. Notably, siRNA-
based treatment requires lower and less frequent 
dosing compared to ASO (Table 1), supporting earlier 
observation that siRNAs are more potent than ASOs. 

However, some siRNAs have encountered 
setbacks in clinical trials. One example is Revusiran 
targeting hATTR, which was withdrawn after the 
randomized, double-blind, placebo-controlled Phase 
III trial [49]. The trial was terminated in 2016 due to 
higher mortality observed in the treatment group 
compared with placebo [50]. Another failed RNAi 
agent is Fitusiran. It was developed to treat 
hemophilia A and B by targeting antithrombin to 
increase thrombin generation, thus promoting clot 
formation. However, during clinical trials, patients 
experienced serious thrombotic events, leading to a 
temporary suspension of the trials in 2017 and again in 
2021. Although, trials have since resumed and 
completed, comprehensive safety and efficacy data 
have not been fully evaluated yet [51]. 

While not classified as OGT, Imetelstat is worth 
mentioning here due to its approval by the FDA in 
June 2024 and EMA in March 2025. Imetelstat is a 13-
mer DNA oligonucleotide that acts as a first-in-class 
telomerase inhibitor, functioning not through gene 
silencing but via hybridization- 
dependent inhibition of enzyme active site. Clinical 
data suggest that Imetelstat restores normal 
haematopoiesis in patients with low-to-intermediate 
risk myelodysplastic syndromes and transfusion-
dependent anaemia [52]. Other emerging modalities 
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such as circular RNA and tRNA-derived fragments 
display significant regulatory properties that could be 
used for therapeutic purposes. However, their 
development is at an early stage with efficacy data 
being limited to date [53–55]. 

3.3 In cancer, clinical efficacy of OGTs is weak 
and relevant only as complementary 
treatment  

The targets selected for cancer gene therapy 
encompass a wide range of molecular and genetic 
factors associated with cancer initiation, progression, 
and treatment response. These targets include 
oncomarkers such as dysregulated angiogenic factors, 
tumor suppressor genes, drug resistance genes like 
MDR1, and proteins such as survivin and VEGF, all of 
which underscore the potential of gene therapy to 
address diverse aspects of cancer biology. However, 
most currently utilized targets demonstrate 
insufficient efficacy in cancer cell elimination, poor 
treatment specificity, and are considered unsuitable as 
a monotherapy against cancer [56,57]. As of 2022, 
approximately 70 anticancer ASO and 20 of siRNA 
entered clinical trials. Of these, only two ASOs reached 
phase III [58], and none have received FDA approval 
to date. 

Bcl-2 mRNA remains one of the most studied 
targets in anticancer OGT development. For example, 
BP1002 and PNT2258 entered phase I, while 
Oblimersen (G3139) passed phase III trials. Bcl-2 
silencing by Oblimersen aimed to restore cancer cell 
sensitivity to chemotherapy. However, when 
combined with chemotherapeutic agents such as 
cisplatin and 5-fluorouracil, it achieved only slight 
improvement of 43% in overall survival compared to 
40% in the control group [59]. Another study reported 
that AZD4785, which targeted mutated KRAS mRNA 
and successfully completed phase I clinical trials, but 
no updates have been published since 2017 [60]. 
Similarly, VEGF-targeting ASOs achieved therapeutic 
effect in combination with chemotherapeutics 
pemetrexed and cisplatin [61]. Phase I/II trials for 
VEGF-ASO were completed in 2011 without any 
further updates.  

Except for approaches that seem to sensitize 
cancer cells to chemotherapeutics [62] other 
combination strategies under investigation include 
OGTs engineered to improve radiotherapy sensitivity 
[63], and dendritic cell immunotherapy response [64], 
although these approaches have not been tested in 
clinic yet. Collectively, these data support the view 
that monotherapy targeting traditional mRNA may 
not be sufficient to address the complexities of cancer 
thus highlighting the necessity of finding alternative 

approaches. 
On the other hand, protein inhibitors for the same 

targets have been effective both as monotherapy and 
in combination with immunotherapy even against 
targets that were previously considered 
“undruggable”. The most popular Bcl-2 small 
molecule inhibitor, Venetoclax, was FDA approved in 
2016 for the treatment of chronic and acute myeloid 
leukemia [65]. These results indicate that OGTs 
targeting Bcl-2 currently cannot compete with the 
small molecule inhibitors in terms of efficacy. 
Similarly, in 2022, the FDA approved Krazati, a KRAS 
inhibitor, for patients with non-small cell lung cancer 
[66].  

We believe that the idea of targeting cancer-
related genes is fundamentally defective, as it merely 
suppresses malignant traits of the cancer cells rather 
than irradicates cancer cells, which is the ultimate 
therapeutic goal (Table 2) [67]. A more promising 
strategy could be the conditional activation of 
programmable agents triggered by cancer-specific 
genes, followed by downregulation of the vital genes 
that triggers cancer cell death. Several research groups 
have taken advantage of the programmability of 
nucleic acids to develop nucleic acid-based 
nanostructures that release the OGTs upon recognition 
of cancer markers. Examples include siRNA probes 
that are converted into Dicer substrate siRNA by an 
RNA trigger [68], reconfigurable nucleic acid 
nanoparticles that elicit a therapeutic siRNA response 
in the presence of mutated KRAS [69], RNA/DNA 
hybrids that re-assemble into active siRNA in the 
presence of their cognate hybrids [70], endogenous 
miRNA-triggered DNA nanostructures for the release 
of multiple, multifunctional siRNAs [71,72], and 
miRNA-triggered ASO release [73]. Our group has 
proposed targeting mRNA of vital genes exclusively 
in the presence of cancer-related mRNAs using 
marker-dependent Dz and ASO agents [67,74]. They 
include binary ASO that is active only in presence of 
KRAS RNA [75], binary Dz nanomachines [76], Dzs 
and ASOs that are activate at high but not low 
concentrations of miRs [77–79], and Dz-based logic 
gates that operate based on miRNA expression 
patterns [80]. The principle of DNA nanomachines for 
the conditional activation of OGTs is shown in Figure 
3. The ‘Cut’ function of these nanomachines 
recognizes cancer-related mutations with high 
specificity and cleaves mRNA at two sites to release 
the cancer marker fragment. This fragment is retained 
by the DNA nanomachine and serves as an activator 
either the Dz or ASO function, which suppresses the 
targeted vital gene, ultimately triggering apoptosis in 
cancer cells. 
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Figure 2. Graphs representing the gene effect (RNAi, Achilles+DRIVE+Marcotte, DEMETER2) of A) BCL2 and B) KRAS genes. Each purple dot on the graph represents a cell 
line on which the gene effect of the respective gene was tested by cell depletion assay. In the DEMETER2 scoring system, lower scores indicate higher gene essentiality; a score 
of 0 suggests the gene is non-essential in that cell line; a score of –1 approximates the median score for pan-essential genes, reflecting high essentiality. For both BCL2 and 
KRAS, most cell lines fall within the gene effect range of [–0.5, 0.5], suggesting low essentiality, while only a limited number of cell lines exhibit scores approaching or exceeding 
–1. 

 
Table 2. Essentiality of several cancer related genes that are 
commonly used as targets in cancer gene silencing research. The 
overall gene effect of each gene (DEMETER2 score) was calculated 
as the mean of its gene effect on each distinct cancel cell line 
included in the DepMap Portal database (as shown in Figure 2). 

Gene Gene Effect RNAi 
(Achilles+DRIVE+Marcotte, 
DEMETER2) 

Druggable Structure 

KRAS -0.06 yes 
BCL-2 0.04 yes 
MYC -0.5 yes 
BMI1 -0.03 yes 
EGFR 0.05 yes 
BRCA1 -0.1 yes 
CXCL14 -0.1 no 
YAP 0.03 no 
IDO1 0.1 yes 
TP53 -0.1 yes 
mTOR -0.5 yes 
STAT3 -0.1 yes 
VEGFA -0.1 yes 

 

 
Figure 3. Conditionally activated OGT for the knockdown of vital genes [67,76]. 
The inactive DNA machine recognizes the mutated biomarker’s RNA and cleaves it 
at predetermined sites. The cleavage product is then used to activate the DNA 
machine which acts as an OGT and silences the mRNA of the target essential gene, 
ultimately inducing apoptosis in cancer cells. 

Considering the variability in vital gene 
expression across different tissues, target selection for 
such programmable systems should be tailored to 
specific cell type, taking into consideration 
environmental stressors including hormonal status 
[81,82]. Beyond selecting cancer-related activator 
genes chosen solely based on the individual cancer 
type and its dysregulations, this approach aligns with 
the principles of personalized medicine. The use of 
programmable OGTs capable of implementing the 
principles of Boolean logic could also offer a solution 
to cancer cell heterogeneity by enabling processing 
complex gene expression patterns and incorporating 
the synthetic lethality approaches. 

4. Factors contributing to low OGTs’ 
efficiency 
4.1 Both the tissue and the cell specific 
delivery are not efficient  

One of the major limitations of the clinical success 
of OGT is the efficient and tissue-specific delivery of 
these agents. Naked ONs face a short half-life when in 
the bloodstream owing to nuclease dependent rapid 
degradation [83]. Advances in chemical modifications 
and delivery platforms have partially improved this 
problem, optimizing the biodistribution of OGTs. 
Biodistribution, however, remains a critical factor 
influencing therapeutic efficacy. For example, after 
systemic administration, drugs often accumulate in 
the liver due to interactions with lipid transport 
proteins, reducing their chances to reach target tissues. 



Theranostics 2026, Vol. 16, Issue 2 
 

 
https://www.thno.org 

606 

Key physicochemical properties such as size, shape, 
and charge significantly influence biodistribution. For 
example, overly small or negatively charged 
nanoparticles have higher clearance rates [84,85]. Since 
systemic administration often results in poor 
extrahepatic targeting, alternative delivery routes can 
enhance tissue accumulation and therapeutic efficacy 
[86–88]. Local administration is generally preferred, as 
it requires lower doses and is less invasive [89]. 

Lipid-based delivery systems are currently 
among the most effective non-viral methods for in vivo 
nucleic acid delivery, with several products approved 
for clinical use (Table 1), while many candidates 
remain in trials. Although lipid-based systems exhibit 
passive targeting capabilities, their lipid composition 
influences the protein corona on their surface, 
affecting tissue preference [90]. Targeting efficiency 
can vary from approximately 5% to 90% depending on 
cell type [90], yet these systems still predominantly 
accumulate in the liver [91] due to association with 
ApoE and low density lipoprotein receptor (LDLR)-
mediated endocytosis [92]. While this property favors 
hepatocyte targeting, it limits efficacy in other tissues 
and increases metabolic degradation in the liver [90]. 
Enhancing these systems with cell-specific penetrating 
proteins (CPPs) or antibodies, or direct bioconjugation 
with OGTs may help address these challenges [93]. 

Direct bioconjugation of OGT with lipids, cell 
penetrating peptides (CPPs), aptamers, antibodies, 
and sugars, enhances delivery by improving the 
specificity, cellular recognition, internalization and 
overall efficiency. CPPs have shown efficacy in 
targeting tissues such as skeletal muscle [94], heart 
[95], and the central nervous system [96], although 
transfection efficiencies varies depending on the cell 
type [97,98]. 

Bioconjugation with lipid moieties, such as 
cholesterol, enhances delivery by promoting 
endosomal escape than CPPs, primarily through 
facilitating membrane fusion and endosomal 
destabilization [93,99–102]. The endocytosis of 
cholesterol-OGTs is mediated by scavenger receptor 
type B1 (SCARB1, SR-B1) or LDLR, for HDL and LDL 
particles, respectively [103], leveraging the body’s 
endogenous lipid transport and uptake system in vivo 
[104], though this approach favors hepatic 
accumulation over others tissue [105]. GalNAc 
conjugates, several of which are clinically approved 
(Table 1), are particularly effective for liver-targeted 
delivery. These conjugates bind to the 
asialoglycoprotein receptor (ASGR) for rapid 
internalization via clathrin-dependent endocytosis 
[106]. Experimentally, modifications such as 5′-
(E)vinylphosphonate [107] and β-cyclodextrins [108] 
have been shown to enhance potency and stability of 

GalNAc-conjugated OGTs by 5-10 fold. Triantennary 
GalNAc, featuring three GalNAc sugars branching 
from a central core, significantly improves binding 
and efficacy [106,109]. 

Exosomes have also gained attention over the 
past decade due to their natural transport capabilities, 
long circulation time, and biocompatibility, making 
them promising vehicles for OGTs [110,111]. These 
lipid bilayer-encapsulated vesicles naturally facilitate 
intercellular communication and can traverse 
biological membranes [112], while evading 
phagocytosis and enhancing bioavailability [113,114]. 
Human exosomes are particularly promising due to 
their low immunogenicity and compatibility with 
RNA silencing applications [115]. They can be derived 
from patients to minimize immune responses [116] 
and exhibit natural tropism toward their parent cells, 
with potential for engineering enhanced targeting 
capabilities [117]. Exosomes release cargo through 
surface receptor interactions, fusion with the plasma 
membrane, or endocytosis via the endolysosomal 
pathway [118]. They effectively protect cargo from 
lysosomal degradation and facilitate release, 
demonstrating strong target gene silencing [119,120] 
and tumor size reduction [121,122]. Ongoing research 
focuses on optimizing exosome properties for 
therapeutic applications [123–125] with emphasis on 
improving cargo loading and interactions with sorting 
proteins [126]. 

Although non-viral methods generally exhibit 
lower transfection efficiencies compared to viral 
vectors, progress is being made in optimizing their 
formulations [127]. Specifically, transfection 
efficiencies up to ~10% have been reported for the 
most promising lipid-based systems [128], although 
this depends on various factors. The cell cycle phase 
plays a crucial role in intracellular delivery with 
mitotic with mitotic cells showing higher 
internalization rates [129,130]. The chemistry of both 
the delivery vehicle and the OGT itself also 
significantly impacts the productive uptake in 
different cell and tissue types [105]. These parameters 
complicate platform evaluation and raise concerns 
about reproducibility across different biological 
systems. 

4.2 OGTs’ concentrations affect the efficiency 
of cellular uptake 

The concentration of OGTs is a critical 
determinant of their efficacy and safety in gene 
therapy applications. While higher concentrations 
may have higher efficacy, both in vitro [131] and in vivo 
[132], they can also induce stronger immune responses 
[132,133] and cellular toxicity [134], complicating data 
interpretation and reducing the clinical significance of 
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such treatments. Conversely, lower concentrations 
may minimize toxicity and adverse effects but 
generally are expected to reduce gene silencing 
efficacy. Traditionally, in siRNA studies, 
concentrations as low as 1–10 nM are considered 
sufficient for effective target gene silencing in cell 
culture models [135]. Concentrations, such as 50 nM or 
100 nM, are often considered high and may induce off-
target effects and cellular toxicity without significantly 
improving silencing [136]. In ASO studies, 
concentrations between 10 - 100 nM are often found to 
be optimal, while concentrations 100 - 1 µM are 
typically categorized as high.  

The concentration of OGTs directly affects the 
loading efficiency onto delivery vehicles and their 
ability to penetrate cell membranes and reach 
intracellular compartments. For example, Liu Yang et 
al. reported that the gene silencing efficiency improved 
from 10.9% to 79.5% as the nitrogen in lipids to 
phosphate in ASO ratio (N/P) increased from 2.5 to 15, 
highlighting that effective loading enhances cellular 
uptake and subsequent gene silencing. At the highest 
tested ASOs concentrations of 7.5, 15 and 30 nM, more 
than 50% target silencing was achieved, while cell 
viability remained above 75%. This data indicates that 
efficient liposome loading correlates with silencing 
efficacy, but also suggests a threshold beyond which 
further increases in concentration do not yield 
proportional improvement in gene silencing [137]. 
Similarly, Xie et al. reported that siRNA delivery via 
transferrin-polyethyleneimine (Tf-PEI) resulted in 
effective gene silencing in activated T cells. Tf-PEI 
polyplexes fully condensed 50 pmol of siRNA at an 
N/P of 7.5 but showed more productive 
internalization at higher N/P of 10, 15 and 20, with 
N/P of 15 reaching approximately 60% target gene 
downregulation [138]. These data underscore the 
importance of understanding the dose-response 
relationship and the biological mechanisms to advance 
the development of effective gene therapies. 

4.3 The endosomal escape efficiency is low 
In addition to tissue specificity, the efficient 

internalization and release of OGTs into cell cytoplasm 
is another critical factor of therapeutic success. Either 
naked or encapsulated in delivery vehicles, OGTs are 
typically internalized via endocytosis [139]. 
Endosomal escape is the process by which the 
endosomal cargo exits the endosome to reach its target 
site within intracellular compartments. However, it 
has been estimated that approximately 99% of OGTs 
remain entrapped within endosomes, hindering their 
cytosolic delivery and subsequently reducing 
treatment efficacy [140,141]. This entrapment may 
result in the two possible outcomes; i) natural 

maturation of early endosomes to late endosomes and 
lysosomes, where the cargo is eventually digested; or 
ii) the formation of a poorly defined so-called “depot 
endosome” in which the cargo remains intact for 
extended periods. 

 

 
Figure 4. Possible fates of internalized OGTs. OGTs are not capable of diffusing 
through the cell membrane; thus they are taken up through endocytosis. Instead of 
undergoing maturation, “depot” endosomes can be formed, and release OGTs by 
the two mechanisms: (i) the proton sponge hypothesis suggests that the increased 
activity of membrane-bound ATPases causes increased influx of H+ and Cl- ions which 
is counteracted by water entry, resulting in swelling and rupture of the vesicles; (ii) 
the polyplex/polymer mediated escape theory suggests that the cationic 
polyplex/polymer is further protonated in the acidic environment (also impacted by 
ATPases activity), leading to enhanced direct interaction with the anionic lipids of the 
vesicle membrane, causing local destabilization of the membrane integrity and 
reversible pore formation through which the slow release of the cargo can occur 
[140,143]. 

 
While the precise mechanistic process of 

endosomal escape still remains unclear, two main 
mechanisms have been suggested as potential escape 
routes from the depot endosomes; i) endosomal 
rupture, also known as the proton-sponge effect, 
where the endosome irrevocably ruptures releasing its 
whole cargo into the cytosol (Figure 4); and ii), or 
polyplex/polymer-mediated enhanced endosomal 
escape, in which small and reversible breaches in the 
endosomal lipid bilayer allow small amounts of cargo 
to escape into the cytosol (Figure 4) [140,142,143]. The 
latter mechanism may potentially explain the 
prolonged therapeutic effect observed in both 
experimental and clinical settings [144]. However, 
localized disruption of the endosomal lipid bilayer 
membrane is a rare and transient event that represents 
the rate-limiting step in the endosomal escape process 
[140]. In contrast, endosomal or lysosomal rupture can 
induce non-specific cytotoxicity as it is known to 
activate the inflammasome [145] that may lead to cell 
death [146]. The acidic environment within endosomes 
stimulates the endosomal escape of the entrapped 
cargo. The efficiency of the escape is also affected by 
several proteins of the endosomal and lysosomal 
systems [147–150]. A better understanding of these 
mechanisms could offer strategies for enhancing 
endosomal escape. 
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It is believed that cationic and hydrophobic 
delivery vesicles, nanoparticles and OGT conjugates 
can facilitate the rate-limiting step of endosomal 
escape. Cationic conjugates may electrostatically 
associate with the lumen anionic of endosomal bilayer, 
while hydrophobic conjugates may penetrate the lipid 
bilayer. Both processes can cause small transient 
breaches in the membrane that allow gradual release 
of OGTs [140]. Currently, several of these delivery 
systems are being actively investigated to increase 
internalization, enhance release and ultimately 
increased therapeutic efficacy [151,152]. 

4.4 The choice of the targeted sequence 
within mRNA affects efficacy 

Efficient endosomal escape does not 
automatically guarantee effective target silencing. For 
therapeutic action to occur, the OGT must access and 
efficiently bind specific site within mRNA target. 
Proper target sequence selection requires 
consideration of several factors, including the 
identification of the disease-causing gene and its 
specific transcript, localization of the target mRNA, 
target sequence accessibility for OGT binding, 
conservation of the binding site across gene isoforms, 
possible nucleotide variations in the targeted sequence 
and unintended non-specific OGT interactions with 
the human transcriptome. 

Conservation of the targeted site across multiple 
gene isoforms or even between healthy and mutated 
transcripts is of the utmost importance. The degree 
and nature of conservation should be evaluated in the 
context of the disease, the specific targeted gene, and 
the intended therapeutic strategy. For example, in the 
development of antiviral therapeutics, suppression of 
several essential and conserved genes could inhibit 
viral replication across multiple strains. In 2022, Yi-
Chung Chang et al. demonstrated that siRNAs 
targeting conserved regions of vital Sars-Cov-2 genes 
such as RDRP, spike, and helicase, significantly 
inhibited multiple Sars-Cov-2 strains, including Delta. 
Viral replication decreased by 99% in vitro and in vivo 
when tested in infected mice receiving prophylactic 
treatment [153]. Similar findings have been reported 
for OGT-based antiviral against Sars-Cov-2 [154–157], 
influenza [30,155,156,158–160], HBV [161] and others 
[156,160,162]. Notably, antiviral activity can be elicited 
by targeting not only vRNA but also the host mRNA. 
For example, a study by Friefrich et al. in 2022 showed 
that an siRNA targeting exon1 of ACE2 mRNA, which 
serves as the entry receptor for SARS-CoV-2, reduced 
both ACE2 mRNA and protein levels by up to 90% for 
at least six days [163]. Perhaps the most successful 
example of proper target selection is the FDA 
approved RNAi agent Patisiran against hATTR 

amyloidosis, which targets so highly accessible and 
conserved region of the TTR gene that all the 
subsequently approved OGTs target the same exact 
site. 

Target sequences must also be unique to the 
target gene to avoid unintended side effects. 
Computational tools [164] such as siDirect [165], 
DNAzyme builder [166] are available to create safe 
OGTs with minimal off-target effects. However, in 
practice, complete specificity is difficult to achieve. An 
OGT of approximately 20 nucleotides has a high 
potential of being partially complementary to multiple 
sites in the human transcriptome. Such off-target 
interactions can not only cause side effects but severely 
reduce on-target activity. Nevertheless, off-target 
effects are not always detrimental. Interestingly, in the 
same Yi-Chung Chang's study [153], one of their major 
off-target was CXCL5, a chemokine involved in 
humoral immunity. The authors hypothesized that 
this off-target interaction may have contributed to the 
antiviral effect of their OGT due to the CXCL5role in 
COVID-19-associated pathogenesis.  

RNA secondary and tertiary structures influence 
hybridization thermodynamics and targeted site 
accessibility and thus determine OGT efficiency. It is 
well documented that ssRNA sites, such as loops, are 
more accessible and show better suppression 
efficiency when targeted than dsRNA regions such as 
stems [167,168]. For instance, Cas13 gRNAs targeting 
dsRNA regions of the long non-coding RNA XIST 
showed low gene silencing), which increased by 
almost five-fold when single-stranded regions of the 
same RNA were targeted instead [169]. At the same 
time, RNA binding domains (RBDs) that can be 
occupied by proteins should be considered during 
target site selection as RNA binding proteins (RBPs) 
can inhibit gene silencing via steric hindrance or 
enhance it via natural RBP interactions such as those 
observed for Ago/miRNA mediated gene regulation 
[170]. High ribosomal activity can also make the target 
site more accessible by unfolding its complex 
structure, facilitating RISC interactions and higher 
siRNA efficiency [171]. RNA secondary structure can 
be predicted by several tools, such as RNAstructure 
[172] or icSHAPE [173]. However, in vitro assays still 
offer a more accurate assessment by confirming the 
presence of stable, conserved structural elements, 
while also revealing many previously unknown 
structures [174]. For instance, Kierzek’s group has 
extensively studied viral RNA structural motifs for 
OGT design. They identified regions in segment 5 of 
IAV mRNA that were accessible by ASO and RNAi 
agents [175,176], and achieved nearly 90% reduction of 
the viral titer [177] thus demonstrating how 
knowledge of secondary RNA structures can help in 
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OGT design. 

4.5 OGTs’ design can increase efficiency by 
protecting from nuclease degradation, 
achieving affinity/specificity balance and 
enhancing OGT/protein interactions 

To increase the probability of successful target 
binding, OGT design guidelines recommend avoiding 
sequences with strong internal secondary structures, 
maintaining a GC content of 30-50%, avoiding runs of 
four or more identical nucleotides, and excluding 
sequences that can target unintended genes due to 
partial sequence complementarity. Commonly, ~20 nt 
long OGT/target hybridization sites show the best 
knockdown efficiency, due to their sufficient affinity 
for the target under physiological conditions [178–
181]. Lower affinity can reduce silencing efficacy due 
to unstable binding. However, the high affinity of the 
20 nt OGT may cause non-specific binding to partially 
complementary fragments of unintended targets. The 
affinity/specificity dilemma suggests that the higher 
the affinity is, the lower the specificity of OGTs and 
vice versa [4,182]. The fragile OGT/mRNA complex 
stability should be fine-tuned by careful sequence 
design and/or by introducing chemical or structural 
alterations that can help attain an optimal 
affinity/specificity balance. 

Advances in ON chemistry have improved ASO 
performance [183], with the phosphorothioate (PS) 
backbone remaining prevalent for its role in ON 
trafficking [184] and RNase H recruitment [185]. 
However, PS alone is insufficient to fully protect ASOs 
from nucleases and can increase cytotoxicity. This has 
led to the development of alternative backbones like 
mesylphosphoramidate (MsPA) [186,187]. For 
instance, Patutina et al. reported up to 90% target 
silencing in vitro after 72 h post-transfection with 100 
nM MsPA ASOs, and up to 95% target silencing in vivo 
compared to approximately 50% silencing by PS-
modified ASOs [188]. Sugar modifications such as 2'-
O-methyl (2'OMe), 2'-methoxyethyl (2'MOe) [189,190] 
and locked nucleic acids (LNA) [191–193] have 
enhanced both stability and binding affinity but do not 
support RNase H activity. To address this problem, 
the 'gapmer' design was introduced. It combines 
central PS or native DNA to support RNase H activity 
with affinity-boosting modifications on the 5’ and 3’ 
ends [194]. LNA gapmers are among the most 
effective, allowing fine-tuning of affinity and 
demonstrating superior efficacy. Shin et al. have 
shown that an LNA gapmer achieved approximately 
90% in vivo gene silencing in the lungs of mice two 
days after intratracheal administration, outperforming 
2’MOe gapmers that achieved only 60% gene silencing 
[195]. Gapmers combining LNA, cEt, 2’-FANA, and 2’-

5 linkages have been utilized for SNP-selective 
targeting [158,196,197]. Nonetheless, excessive 
ASO/target affinity can be counterproductive by 
limiting ASO recycling and depleting the ASO pool 
through off-target binding [198,199], a challenge 
shared by other nucleic acid systems guided by 
nucleases or ribozymes [200,201]. 

siRNA modifications should not affect Ago 
activity and not alter the agent's conformation, as an 
RNA-like conformation is essential for RISC assembly 
and activation. Extensive studies have shown that 
strategically placed modifications, like alternating 
2'OMe and 2'-fluoro (2'F) or PS linkages at the edges of 
each strand, enhanced siRNA stability without 
compromising activity [142,202]. Hassler et al. 
reported that fully modified siRNA achieves efficient 
tissue accumulation, RISC loading, and gene silencing, 
with an IC50 of 0.9 nM versus 3.5 nM of native siRNA 
[203]. The 5'-phosphate of siRNA's guide strand is 
critical for RISC recognition. Chemical stabilization, 
such as introducing 5’-E-vinylphosphonate (5’-E-VP) 
and PS modifications, strengthens the 5'-end against 
nucleases without impeding RISC interaction, 
improving IC50 of 81 nM compared to 217 nM for 
native siRNA against PPIB mRNA, as shown by 
Haraszti et al. [204]. 5’-E-VP introduction was also 
shown to extend the siRNA-based silencing duration 
for over 30 days in rapidly dividing cells [205]. Special 
attention is given to the seed region of the siRNA 
guide strand. Fully or partially modified seed regions 
can alter both affinity and specificity to the intended 
target either positively, by reducing off-targets, or 
negatively, by disrupting structural integrity of the 
region thus inhibiting target binding [206–208]. It has 
been proposed, though, that the seed region should be 
considered a dual-functional domain and optimized to 
balance high target affinity and low off-target activity 
when modified with 2’OMe [209]. 

The role of the passenger strand must also be 
considered since it can be mistakenly loaded into the 
RISC, reducing efficacy and producing off-target 
effects. Some modifications such as LNA can 
significantly inhibit RISC activity if introduced in the 
guide strand. However, they may be useful for 
minimizing the unintentional passenger strand 
activity [208]. Likewise, bulky phosphoryl guanidine 
(PG) groups at the 5’ end of the passenger strand can 
be used to reduce off-target effects, leading to 
approximately 0.5 fold change (FC) in on-target 
silencing compared to 0.9 FC of non-PG-modified 
siRNA [210]. Since 5’ end modification can increase the 
RISC loading probability of a strand, modifying the 5’ 
end of the guide strand can also help avoid 
unintended off-targets [211]. 

DZs and RZs, on the other hand, are better 
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predisposed to address the affinity/specificity 
dilemma due to their use of two relatively short arms 
that cooperatively bind targeted RNA. The length of 
these arms can be adjusted to increase affinity to their 
target [212], increase specificity against SNVs [76], or 
be asymmetric to achieve efficiency/specificity 
balance [213,214]. DZs and RZs are governed by a 
well-characterized enzymatic cycle: 1) target binding, 
2) catalytic reaction and 3) product release. Each step 
is crucial for achieving optimal reaction efficiency, and 
arm lengths can significantly influence both the initial 
binding and final release steps. Contrary to the earlier 
assumptions that high affinity Dz arms inhibit product 
release, recent findings suggest that longer high 
affinity arms increase Dz catalytic efficiency by 
facilitating RNA substrate binding, which is the 
limiting stage of the catalytic cycle. Very long arms 
with Tm > 65oC are not inhibited by the product release 
stage, as long as the cleavage products self-fold into 
stable secondary structures [22,182,215,216].  

High affinity of Dz to RNA can be achieved by 
introducing LNA nucleotides in short flanking arms 
[217–219]. However, chemically modifying the 
catalytic core remains challenging, as even small 
chemical modifications often inhibit the catalytic 
activity [17,220,221]. This limitation impairs 
intracellular performance, as the unmodified core is 
vulnerable to nuclease degradation. To overcome 
these issues, researchers have explored strategic 
combinations of chemical modifications. These 
approaches have achieved up to a two-fold or greater 
reduction in target gene expression in cell-based 
studies [219]. In vitro selected chemically modified 
variants of Dzs and Rzs have shown promising results 
achieving more than fourfold increase in Dz activity 
and a twofold higher Rzs activity compared to 
unmodified equivalents [222–224]. 

The CRISPR/Cas13 system obeys several key 
rules for optimal activity: it targets an ssRNA region, 
requires perfect matching between gRNA and target 
sequences especially with the ‘seed region’ and avoids 
stable gRNA secondary structure. It has also been 
shown that fusion of gRNA with a nuclear localization 
signal (NLS) can increases efficacy of Cas13 systems 
[225]. Although the CRISPR/Cas13 system 
modifications are not yet thoroughly studied, some 
data suggests that 2'OMe and PS modifications placed 
at the 3’ end of the gRNA can increase its transient 
target silencing in human T-cells from 40-45% to 60-
65% [226]. 

Stereopure mixtures of OGTs have been proved 
to outperform the respective stereorandom 
counterparts [227,228]. Researchers use specific 
chemistries to tightly control the chiral configuration 
of the modified backbones. For example, chimeric 

PS/PN (phosphoryl guanidine) containing backbones 
developed by Kandasamy et al. [229], displayed 
enhanced activity both in vitro and in vivo with better 
pharmacological properties than stereorandom PS 
modified splice switching ONs. This improvement 
enabled a twofold reduction in dosage during in vivo 
testing [229]. Chiral chemical modifications have also 
been shown to affect siRNA agents [230,231], although 
other OGTs have yet to be studied in this context. 
However, this approach doesn’t come without 
challenges-nuclease stability remains a significant 
concern and one of the major obstacles to its broader 
application [232,233]. 

Design can also affect the immunogenicity of 
OGTs. OGTs rich in guanosine (G) and uridine (U), 
and motifs such as CpG, GU and AU, are recognized 
as viral RNA mimics and can activate toll-like 
receptors 3, 7 and 8 (TLR3, TLR7 and TLR8 
respectively) [234]. Pollak et al. have shown that native 
and modified OGTs, especially PS-modified, induce 
innate immune activation, by interacting with several 
extracellular proteins and TLR9 [235]. Such 
interactions ultimately lead to cytokine and interferon 
production which can interfere with the cellular 
uptake, trafficking, and processing of the 
oligonucleotides, thereby reducing their ability to 
engage target mRNA effectively. It can also lead to the 
activation of the complement system and opsonization 
of OGTs, which promotes their clearance by 
phagocytes, lowers their bioavailability and half-life in 
circulation and tissues, thus diminishing their effective 
concentration at the target site. To mitigate these 
effects design strategies such as reducing the PS 
content and strategic placement of 2’OMe have been 
proposed [235,236]. While well-documented adverse 
effects such as injection site reactions, fever, chills, and 
systemic inflammation can complicate clinical efficacy, 
many studies tend to underemphasize the 
immunogenic effect of OGTs. 

5. Theoretical vs real world efficacy 
The reported efficacy of OGTs in modern 

literature often falls short of theoretical expectations. 
The expected efficacy of OGTs is typically derived 
from computational and empirical models designed to 
predict how effectively OGTs will silence target genes. 
Such theoretical indexes include i) the Secondary 
Structure Score (Sscore), which estimates the strength 
of local mRNA secondary structures at the OGT target 
site; ii) the Duplex Score (Dscore), which estimates the 
stability of the OGT:mRNA duplex formation; and iii) 
the Competition Score (Cscore), which represents the 
difference between Dscore and Sscore [237]. These 
indices are incorporated into major designing tools 
such as SciTools suite by IDT [238] and Ufold [239]. 
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Well-designed OGTs, with the help of these tools, are 
expected to achieve over 70% knockdown of the 
mRNA target under optimal conditions. 

However, a 2016 study by Munkacsy et al., 
revealed a significant gap between theory and practice 
[240]. After evaluating 1643 samples across 429 
experiments published in 207 siRNA studies, they 
found that 70% knockdown — was achieved in only 10 
experiments (2.3%); 50% in 166 experiments (38.7%), 
and 30% in 79 experiments (18.5%) of the cases. 
Surprisingly, the unexpected upregulation was 
observed in 22 experiments (5.1%). The study 
concluded that the choice of the cell line and the 
validation method had the most impact on silencing 
efficiency. It also highlighted issues such as the 
improper use of controls and variability in 
experimental conditions, which contribute to 
inconsistencies and raise questions about reliability of 
the results. According to a recent study of Davis et al., 
target-specific features, such as exon presence, 
ribosome occupancy and so on, may likely be 
responsible for the low endogenous efficacy of siRNA 
[171]. This highlights the need for native expression 
assay inclusion in OGT development studies, that is 
often replaced by reporter-based expression assays. 

Considering only ~1% of the internalized OGTs 
escape into the cytosol, the low efficiency of most 
OGTs might not look as disappointing as it initially 
seems. The inconsistency of theoretical prediction with 
experimental findings indicate that intrinsic aspects of 
OGT-assisted gene silencing are yet to be understood. 

6. Concluding remarks 
Although extensive research has led to 

considerable advancements, significant challenges still 
hinder the full potential of OGTs in medicine. The low 
efficiency of OGTs remains a primary barrier to their 
successful translation and widespread adoption in 
medical practice. Tissue specific delivery, efficient 
internalization and endosomal escape, are the major 
factors affecting OGT efficacy. Despite the growing 
use of cationic and lipid-based delivery systems, the 
percentage of OGTs that escape from endosomes is 
disappointingly low, estimated at less than ~1%. This 
result suggests that poor endosomal escape is a key 
factor limiting OGT efficiency and their overall 
therapeutic performance.  

While experimental studies have characterized 
siRNA as the most potent among OGTs, evidence 
suggests that only 2.3% of siRNAs reach the 
theoretically predicted 70% target downregulation, 
while approximately 40% of the siRNAs fail to achieve 
50% suppression level. These results highlight the 
inadequacy in siRNA design and the challenges 
associated with achieving consistent and effective 

gene silencing across different studies and 
experimental conditions. Inconsistent methodologies, 
and suboptimal controls further obscure accurate 
assessments of OGT performance, challenging their 
reliability as a therapeutic tool and halting the 
advancement of the field. Additionally, the lack of 
standardized reporting, such as varying concentration 
units (molarity vs. mass), different assay 
methodologies, and endpoint variability, including 
short-term vs. long-term effects, further impedes 
result validation and can confuse the reader ultimately 
eroding trust in the findings. Standardizing assays and 
reporting are ongoing and adopting existing (e.g. 
MIQE for PCR data), or developing new guidelines 
will help in comparative data analysis. 

These broader challenges are also reflected by the 
performance of approved OGTs in clinic that often 
only marginally improve patient conditions. The 
limited clinical success of the approved OGTs is likely 
due to their suboptimal performance when compared 
with pre-existent therapeutics or a lack of alternative 
treatment options. Notably, ASOs, generally less 
efficient than the most potent siRNA, have higher 
success rates in FDA and EMA approval. Moreover, 
statistical data shows that more ASOs have entered 
clinical trials and moved to more advanced phases, 
than siRNA and miRs combined. Likely, challenges in 
siRNA design can be attributed to the greater 
complexity in designing and modifying them without 
reducing activity compared to ASO. On the other 
hand, miRs face challenges due to the inherently low 
selectivity making them less studied in both 
experimental and clinical settings. The Dz agents have 
not been successful in clinical trials due to the incorrect 
design of RNA binding arms, having too low affinity 
to targeted RNA, and the difficulty in chemical 
protection of their catalytic cores against nuclease 
degradation. CRISPR/Cas13 remains relatively new 
and not sufficiently studied tool that might be limited 
by greater challenges in delivery in comparison with 
ASO and siRNA, low specificity and collateral RNase 
activity. Notably the recent approval of Imetelstat, a 
first-in-class oligonucleotide agent that acts as a 
telomerase inhibitor, offers hope by restoring normal 
haematopoiesis for low to intermediate risk patients 
with anaemia. 

Ultimately, while OGTs still face considerable 
hurdles, we are now at the stage when incremental 
improvements in delivery, design, or validation of 
OGT efficacy could unlock immense potential, 
revolutionizing gene therapy. 
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