Theranostics 2026, Vol. 16, Issue 2 876

g0y [VYSPRING
va BIT\III‘\V\IIOV\I_I‘LIHI_I.\,IIII‘\

Theranostics

2026; 16(2): 876-897. doi: 10.7150/ thno.123243

Al and organoid platforms for brain-targeted
theranostics

Rui Ye!, Yupei Zhang?? Wan Xu!, Li Lai4, Zhongwei Zhang>*, Yan Chen¢"’, Shugang Qin2"’

1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of
Stomatology, Sichuan University, Chengdu 610041, Sichuan, China

2. Department of Experimental Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University
of Electronic Science and Technology of China, Chengdu 610040, China.

3. Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center,
University of Electronic Science and Technology of China, Chengdu 610040, China.

4. Department of Pediatrics, Air Force Hospital of the Western Theater of the Chinese People's Liberation Army, Chengdu 500643, China.

5.  Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer
Center, West China Hospital, Sichuan University, Chengdu 610041, China

6. Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of
Electronic Science and Technology of China, Chengdu 610040, China.

P4 Corresponding authors: qinshugang@scszlyy.org.cn (Shugang Qin); cyfy1112@163.com (Yan Chen); 716461751@qq.com (Zhongwei Zhang).

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/).
See https:/ /ivyspring.com/terms for full terms and conditions.

Received: 2025.08.06; Accepted: 2025.09.26; Published: 2026.01.01

Abstract

Developing therapies for complex brain diseases faces significant challenges due to biological complexity and the stringent
blood-brain barrier. While nanomedicine holds promise, traditional R&D paradigms suffer from inefficiency. This review
introduces an intelligent theranostic paradigm that integrates high-fidelity brain organoid models, high-throughput screening
(HTS/HCS), and Artificial Intelligence (Al). In this closed-loop workflow, organoid platforms serve a diagnostic role, generating
predictive data on nanomedicine performance. Al then provides therapeutic guidance by processing this data to drive rational drug
design, synthesis, and interaction prediction. This Al-driven convergence is poised to significantly accelerate the development of

precisely targeted and individualized nanomedicines, offering new hope for breakthroughs in treating brain diseases.
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1. Introduction

Central Nervous System (CNS) diseases,
encompassing a variety of complex conditions such as
neurodegenerative diseases, brain tumors, and
psychiatric disorders, represent a leading cause of
long-term disability and mortality globally[1, 2].
Developing drugs for CNS conditions has historically
been fraught with challenges due to the high
complexity of the brain biological system, the
heterogeneity of diverse cell types like neurons and
glial cells, and the stringent restrictions imposed by
the Blood-Brain Barrier (BBB)- a critical physiological
barrier. The clinical trial failure rate for CNS drugs
has been significantly higher than that for non-CNS
drugs[3]. The BBB effectively prevents approximately
99% of small molecule drugs and nearly all large
molecule biologicals from entering the brain, acting as
the primary obstacle for drug delivery[4, 5].

Traditional drug discovery models have struggled to
effectively overcome the BBB and precisely target
therapeutic agents to diseased brain regions or
cells[3], leading to high clinical trial failure rates for
CNS drugs. Furthermore, even when drugs reach the
brain, non-specific distribution and targeting can
result in severe off-target effects and adverse
reactions, further narrowing the therapeutic
window][6]. Therefore, developing novel therapeutic
strategies capable of efficient brain delivery and
precise targeting is crucial for conquering CNS
diseases (Figure 1A).

Nanomedicine, particularly engineered
nanoparticle (NP) carriers, has shown immense
potential[7] for overcoming these challenges due to
their tunable size, shape, surface properties, and
capacity to conjugate diverse functional ligands[6, 8].
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Nanoparticles can encapsulate various therapeutic
agents (from small molecules to biological
macromolecules), and by modifying their surface
chemistry or conjugating targeting ligands, they can
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enhance their ability to cross the BBB, control drug
release within the specific brain microenvironment,
and potentially achieve precise targeted delivery to
specific brain regions or cell types[9] (Figure 1A).
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Figure 1. From a linear workflow to an integrated theranostic paradigm. (A) The Theranostic Challenge in Brain Delivery. The blood-brain barrier (BBB) presents a
formidable obstacle. Compounding this challenge is the vast design space of nanoparticles (NPs), making it exceedingly difficult to predict which candidates will not only cross the
BBB but also achieve the desired therapeutic effect. (B) The Disconnected Traditional R&D Workflow. The conventional linear process is inefficient because it separates testing
from design. Its reliance on poorly predictive in vitro and animal models constitutes an unreliable 'diagnostic' step, leading to high failure rates and low clinical translation of
potential 'therapeutics’. (C) The Integrated Theranostic Paradigm. This new approach closes the theranostic loop. High-fidelity models like brain organoids and organoid-chips
serve as the 'diagnostic platform’ to generate predictive data via high-throughput screening. Artificial Intelligence (Al) acts as the central engine, processing this diagnostic data to
provide 'therapeutic guidance'—rationally designing and optimizing nanomedicines. This integration of diagnostics and therapeutics is poised to dramatically improve the success
rate of developing effective brain-targeted nanomedicines.
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However, despite the great potential
demonstrated by  nanomedicine, traditional
nanomedicine development paradigms still face
inherent limitations that severely constrain their
clinical translation efficiency and ultimate efficacy.
These challenges span the entire pipeline from drug
design and screening to application. Firstly, the
complex interactions between nanoparticles and the
BBB and its constituent cells (such as endothelial cells,
pericytes, and astrocytes)[4], as well as their
transmembrane transport mechanisms[10, 11], are
difficult to accurately predict and control. Traditional
design often relies on empirical optimization[12] and
lacks a deep understanding and efficient utilization of
specific BBB transport mechanisms. Secondly, the
complexity of nano-bio interactions poses another
major challenge. Upon entering systemic circulation,
NPs undergo a series of dynamic processes, including
systemic clearance[5, 8, 12], plasma protein corona
formation[13-17], and interactions with blood cells
and endothelial cells[6]. These dynamic processes
significantly influence NP biodistribution and
targeting efficiency. Furthermore, the predictive
power of existing preclinical models remains
insufficient. Traditional in vitro cell models (such as
2D cell culture) struggle to mimic the complex
microenvironment of the human brain[18, 19] and
BBB function[18, 20], and animal models differ
significantly from human brain structure and
physiology, with critical divergences in aspects such
as cortical folding (gyrification), the ratio of white to
gray matter, and the diversity and function of glial
cell subtypes[21, 22]. Consequently, nanomedicines
showing promising results in vitro or in animal
models often fail in clinical trials[3]. Additionally, the
vastness of the nanomaterial design space necessitates
exploring a massive number of parameter
combinations, while the limited throughput of
screening methods and the lack of intelligent tools to
extract effective design rules from large datasets have
made nanomedicine optimization processes slow and
inefficient[23]. Finally, disease heterogeneity and
inter-patient  variability[24] pose a formidable
challenge to a "one-size-fits-all' R&D model (Figure
1B).

Addressing the inherent limitations of
traditional  brain-targeted nanomedicine R&D
concerning overcoming physiological barriers,
predicting complex interactions, model predictive
power, exploring the design space, and handling
individual variability, incremental improvements
based on single technologies are insufficient. The true
"path to breaking the mold" lies in building a new
R&D ecosystem that integrates multidisciplinary
cutting-edge technologies and possesses intelligent
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decision-making capabilities. In recent years, the
rapid development of high-fidelity in vitro models has
provided an unprecedented platform for mimicking
the real brain microenvironment and evaluating
nanomedicine behavior in vitro. Combined with
modern high-throughput screening (HTS) and
high-content screening (HCS) technologies capable of
generating massive high-content information, this has
enabled the systematic generation of large-scale,
multi-dimensional ~experimental data on the
interactions between nanomedicines and complex
brain biological systems. More critically, the rapid
advancement of Artificial Intelligence (AI) has
provided unprecedented opportunities for mining
deep patterns from these massive, high-dimensional
data, predicting nanomedicine properties and
behavior, and guiding rational design and efficient
screening, thereby becoming an intelligent engine for
accelerating brain-targeted nanomedicine R&D. This
integration heralds a paradigm shift towards an
integrated, theranostic R&D workflow. In this new
paradigm, the drug development process itself is
reframed: the 'diagnostic' component involves rapidly
and accurately predicting a candidate's biological
behavior using high-fidelity models, while the
'therapeutic' component leverages these predictions to
rationally design superior nanomedicines. This
review will systematically discuss how these
technologies can deeply collaborate, forming an
integrated innovation paradigm for brain-targeted
nanomedicine R&D (Figure 1C).

2. Engineering human brain models for
predictive theranostic insights

For decades, the study of the blood-brain barrier
(BBB) and the effects of drugs on the central nervous
system has relied on traditional preclinical models.
These include two-dimensional (2D) in vitro systems,
such as simple cell cultures or Transwell models[25],
and in vivo animal models. While foundational, these
models have significant limitations. 2D cultures lack
the complex 3D tissue architecture and cell-cell
interactions of the human brain, leading to poor
barrier function and physiologically irrelevant results.
Animal models, though systemic, suffer from
limitations such as high costs and low throughput[26].
More importantly, significant interspecies biological
differences often lead to poor correlation with human
outcomes. These differences are not trivial, for
instance, the composition of blood plasma proteins
varies between species, leading to the formation of a
species-specific "protein corona" on nanoparticles[27].
This corona, in turn, dictates how the nanomedicine is
recognized by the mononuclear phagocyte system
(MPS), which also exhibits differences in cell
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populations and clearance activity[28]. Consequently,
the aggressive  off-target accumulation  of
nanomedicines in the liver and spleen observed in
many small animal models is a frequent translational

failure, as it may not accurately predict the
biodistribution and therapeutic =~ window in
humans[29].

To bridge this significant predictive gap, the
development of more human-relevant and
biologically complex models has become a critical
priority[30]. In recent years, as a major breakthrough
in three-dimensional (3D) cell culture technology,
organoid technology has rapidly evolved, providing
unprecedented theranostic platforms[31-34]. These
"high-fidelity testing grounds" not only mimic
complex physiological and pathological processes but
also function as a 'diagnostic assay' for drug
candidates, generating predictive data on their
potential efficacy and toxicity. In the field of
neuroscience, the progress of human brain organoids
has been particularly noteworthy, and they have
become indispensable new tools for clinical
neuroscience research, bridging the gap between
patient studies and animal models[35] in Table 1.

2.1 Leveraging brain organoids for theranostic
modeling of neuropathology

Brain organoids, as a 3D culture model capable
of recapitulating the complexity of the human brain in
vitro, have seen their construction methods evolve
significantly, representing a major advancement in
the field of neuroscience. This evolution has largely
drawn upon and expanded the understanding of the
self-organizing potential of pluripotent stem cells
gained from earlier research. As reviewed by
Eichmiiller & Knoblich[35], the initial landmark work
can be traced back to the research by Sasai and
colleagues, who pioneered the demonstration that
mouse embryonic stem cells could self-organize
under specific 3D culture conditions to form optic
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cups with stratified structures[36] and cortical tissues
with six layers[37]. hese early explorations established
the methodological foundation for the subsequent
construction of more complex brain organoids.
Following this, the work by Lancaster et al. marked
the formal establishment and widespread adoption of
the "brain organoid" concept[38, 39]. They developed
a method starting from human pluripotent stem cells
to generate complex 3D structures containing
multiple distinct brain regions, greatly advancing the
in vitro modeling of early human brain development
and related diseases. Building upon this, researchers
have continuously optimized culture protocols,
precisely controlling specific signaling pathways
during early culture to guide stem cell differentiation
towards specific brain regions (such as the cortex,
hippocampus, and thalamus), forming brain
organoids with greater regional specificity[40-53].
Concurrently, a method for constructing models
directly from human fetal brain tissue also provided
valuable supplementary resources for research. In
recent years, Ramani et al. developed the "Hi-Q" brain
organoid[54], which, through further optimization of
culture methods, achieved large-scale and
reproducible generation of models with excellent
cellular diversity and structural integrity, laying a
solid foundation for subsequent high-fidelity disease
modeling and drug screening.

The ‘"high-fidelity" characteristics of brain
organoids have been fully demonstrated in
mimicking specific and complex physiological
structures. Firstly, concerning the simulation of
complex physiological barriers, brain organoids have
shown unique advantages. The normal functioning of
the brain relies heavily on the finely regulated
protective structures like the blood-brain barrier
(BBB) and the blood-cerebrospinal fluid barrier
(B-CSF-B).

Table 1. Key human brain organoid technologies for theranostic modeling

Organoid type Source & method Key features & advantages Primary applications Pathologies modeled Ref
Whole-Brain PSCs via undirected 3D Models global brain development &  Studying neurodevelopment; Microcephaly, viral [38]
self-organization early inter-regional interactions investigating inter-regional encephalopathies
signaling
Region-Specific PSCs via directed differentiation ~ High regional specificity and Region-specific disease modeling; ~ Neurodegenerative diseases [48]
using region-specific signaling structural precision targeted drug testing (e.g., Alzheimer's)
Choroid Plexus (ChP) PSCs via ChP-specific induction =~ Forms a functional blood-CSF barrier = Screening drug CNS permeability; ~ CNS barrier disorders [55]
(B-CSE-B) in vitro studying barrier function
Genetically iPSCs + Gene Editing (e.g., High-fidelity modeling of genetic Personalized medicine; anti-cancer ~ Pediatric brain tumors, [69]
Engineered CRISPR-Cas9) diseases; enables isogenic controls drug screening hereditary syndromes

High-Reproducibility Methodological enhancement

(e.g., "Hi-Q" protocol) and diversity for HTS

Explant-Derived

Improved reproducibility, scalability,

Direct culture of fetal brain tissue Preserves native tissue architecture

High-throughput screening (HTS)
platforms

Glioma invasion, [54]
microcephaly

Modeling tumorigenesis Brain tumors [146]

and enables direct disease gene

introduction
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These barriers are not only critical for
maintaining CNS homeostasis but also represent
obstacles that many neurological disease treatments
struggle to overcome. Pellegrini ef al., in a pioneering
study, successfully constructed human choroid plexus
(ChP) organoids. These ChP organoids could not only
form choroid plexus epithelium with a selectively
permeable barrier but also secrete CSF-like fluid into
the contained lumen[55]. Crucially, they found that
the selective permeability of this in vitro constructed
barrier to small molecules was highly consistent with
the in vivo situation and could even predict the CNS
permeability of novel compounds. This achievement
clearly demonstrated the great potential of brain
organoids (specifically, choroid plexus organoids in
this context) in reconstituting complex, functional
physiological barriers in vitro, providing valuable
tools for studying barrier function, screening drugs
capable of crossing the barrier, and understanding the
role of barriers in disease.

Secondly, brain organoids have also
demonstrated their exceptional "high-fidelity" in
precisely mimicking the development and diseases of
the nervous system, opening up new avenues for
deeply understanding human-specific = disease
mechanisms. Eichmiiller & Knoblich[35], in their
review, systematically summarized the successful
applications of brain organoids in modeling various
neurological diseases[35]. The scope broadly included
viral encephalopathy[44, 56-62], key pathological
features of complex neurodegenerative diseases like
Alzheimer's disease[63-68], and various genetic
neurodevelopmental syndromes caused by specific
gene mutations[52]. Building on this, researchers have
continuously pushed for methodological innovation
to construct more refined and functional disease
models. Notably, concerning malignant brain tumors
like pediatric medulloblastoma and high-grade
glioma, which traditional animal models struggle to
fully recapitulate due to their human-specific
complexity, Lago et al. pioneered the construction of
specific brain region organoids from human iPSCs
and combined this with gene editing technology to
introduce  pathogenic  mutations, successfully
establishing in vitro models of these pediatric brain
tumors[69]. These highly relevant cancer organoids
not only provide a platform for deeply studying the
biological and genetic characteristics of tumors but
also support various key downstream applications
like in vivo transplantation, co-culture, lineage tracing,
and drug screening, bringing new hope for
conquering  these  challenging  malignancies.
Concurrently, to enhance the reproducibility and
scalability of brain organoid models, Ramani et al.
developed the "Hi-Q" brain organoid -culture
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method[54]. By further optimizing culture medium
components and methods, they achieved large-scale
and reproducible generation of brain tissue models
with rich cellular diversity and complex structure.
These Hi-Q brain organoids not only successfully
modeled key pathological features of
neurodevelopmental defects like microcephaly but
could also effectively recapitulate glioma invasion
processes. This series of advancements further
powerfully validated the core value of brain
organoids in precisely mimicking physiological
processes and the pathology of complex diseases,
providing an unprecedented tool for neuroscience
research and novel therapy development.

2.2 Limitations and improvement strategies
for brain organoid

Although brain organoids have achieved
remarkable success in mimicking tissue complexity,
the technology is far from perfect, and acknowledging
its current limitations is crucial for guiding future
innovation. A primary challenge stems from their
reliance on self-organization, which, while powerful,
introduces significant cellular heterogeneity and
batch-to-batch variability, complicating
standardization and reproducibility.

Structurally, a major and widely recognized
limitation of static organoid cultures is the lack of
functional vascularization. As organoids grow
beyond a few hundred micrometers, their internal
regions suffer from insufficient nutrient and oxygen
supply, leading to the formation of hypoxic or
necrotic cores[70]. Concurrently, these in vitro culture
conditions can induce significant cellular stress
responses, further compromising the physiological
relevance of the models[71]. Furthermore, current
protocols often fail to generate the full spectrum of
cell types found in the human brain; the insufficient
integration of critical non-neuronal cells, such as
microglia, oligodendrocytes, and pericytes, limits
their ability to model complex cell-cell interactions,
including neuroinflammation and myelination[55,
72-80]. Finally, most brain organoids recapitulate
early fetal development and struggle to achieve a
mature, adult-like state, which is a significant caveat
for modeling late-onset neurodegenerative diseases.
These collective challenges severely constrain the
predictive power of standalone organoid models.

To overcome this critical bottleneck of
avascularity, several innovative strategies have been
actively pursued. A primary approach involves the
co-culture of brain organoids with endothelial cells
(e.g., human umbilical vein endothelial cells or
iPSC-derived endothelial cells), often supplemented
with supporting cells like mesenchymal stem cells or
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pericytes, to promote the self-assembly of
capillary-like  networks within the organoid
tissue[81-83]. Concurrently, genetic engineering
techniques have emerged as a powerful tool. By
inducing the expression of key transcription factors,
such as ETV2, pluripotent stem cells can be directly
programmed towards an endothelial lineage,
allowing for the in situ generation of vascular
networks from the same cellular source as the neural
tissue[84].

2.3 Advancing theranostic platforms with
brain-organoid-on-a-chip systems

While the aforementioned strategies show
promise in forming structural vascular-like networks,
achieving functional, dynamic perfusion that mimics
physiological blood flow remains a significant
hurdle[85]. To systematically overcome the
bottlenecks this and other bottlenecks of traditional
models (Figure 2A, B) and static organoid cultures
(Figure 2C), the "Brain Organoid-on-a-Chip (BOoC)"
technology has emerged, representing the current
state-of-the-art in preclinical brain modeling (Figure
2)[86].

This innovative technology ingeniously
combines the inherent biological complexity of
organoids with the precision engineering advantages
of organ-on-a-chip platforms. As highlighted by
Vunjak-Novakovic et al. in their review on the
progress of organ-on-a-chip[87], organ-on-a-chip
systems constructed using engineering methods like
microfluidics can provide a more dynamic and
controlled microenvironment for cell and tissue
culture. Specifically for brain organoids, the BOoC
platform can achieve fine-tuned control over their
culture microenvironment, such as simulating
physiological blood flow through perfusion systems,
applying precise mechanical stimuli (e.g., shear
stress), and easily integrating various sensors for
real-time online monitoring of cell viability and key
parameters[88-92]. For example, the practice by Cho et
al. of integrating brain extracellular matrix with
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microfluidics to construct a blood-brain barrier model
successfully promoted the structural and functional
maturation of human brain organoids[93]. This
demonstrated that this engineering method could
effectively overcome challenges in traditional
organoid culture related to imprecise environmental
control, restricted nutrient transport, and difficulty in
standardization, providing a powerful tool for
constructing more functionally stable and
physiologically relevant in vitro brain models (Table
2).

This strategy of integrating brain organoids with
on-chip technology has shown great potential in
addressing key bottlenecks in brain disease research
and drug development, particularly in simulating the
BBB and studying drug delivery. By co-culturing
brain organoids with key cell types like brain
endothelial cells, pericytes, and astrocytes on a chip, it
is possible to build BBB models that are structurally
more realistic and functionally more complete[94].
These BOoC-BBB models can not only highly mimic
core physiological functions like BBB structural
integrity and selective permeability but can also be
used for dynamic studies of nanoparticle transcytosis
mechanisms and efficiency. For instance, existing
research constructed a multi-cellular co-culture
system on a chip incorporating brain endothelial cells,
pericytes, and a 3D astrocyte network, successfully
recapitulating key structural and functional
characteristics of the BBB, including tight barrier
function, specific gene expression profiles, and
physiologically relevant astrocyte polarization.
Importantly, this platform could precisely track the
3D distribution of nanoparticles within the vascular
and perivascular regions and reveal the mechanisms
of cellular uptake and BBB penetration mediated by
receptor-mediated transcytosis[94]. This undoubtedly
provides a crucial in vitro evaluation tool for
developing novel nanomedicines capable of
effectively crossing physiological barriers.

Table 2. Summary of Brain-Organoid-on-a-Chip (BOoC) technologies

Platform Key components Method

Core advantage

Primary application Key research goal Ref

Basic BOoC Brain Organoid +

Microfluidic Chip

Integrating organoids
into a perfused
microfluidic chip.

Overcomes static culture limitations
(e.g., nutrient diffusion, necrotic
cores); provides a dynamic,

Enhanced, long-term
brain modeling.

Improving model fidelity ~ [93]
for studying
neuropathology.

controlled microenvironment.

BOoC-BBB Model
cells (endothelial

cells, pericytes, on a single chip.

BOoC + BBB-specific Co-culture of organoids Recreates a functional BBB in vitro;
with key BBB cell types enables dynamic study of
nanoparticle transcytosis.

Testing drug and Modeling neurovascular [94]
nanoparticle delivery unit (NVU) dysfunction;
across the BBB. studying transport

astrocytes). mechanisms.
Multi-Organon-a-Chip BOoC fluidically Creating Simulates systemic drug effects Pharmacokinetic Understanding whole-body [95]

linked with other interconnected, (ADMET) and inter-organ crosstalk, (PK/PD) modeling; response and off-target

organ modules (e.g, multi-organ systems on providing greater physiological systemic toxicology effects of nanomedicines.

liver, kidney). a chip. relevance. screening.
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Figure 2. The evolution of preclinical models toward high-fidelity theranostic platforms. (A) Traditional in vitro models provide low-fidelity diagnostic data. Simple
2D cultures and Transwell systems, while foundational, suffer from a lack of 3D architecture, oversimplified cell interactions, and poor barrier function. These limitations severely
reduce their predictive power for in vivo performance, yielding unreliable diagnostic information for candidate selection. (B) Animal models offer systemic context but with poor
translatability. In vivo models present significant challenges, including interspecies differences, high costs, and ethical considerations. Crucially, they often fail to predict
human-specific responses (e.g., nanoparticle accumulation in the liver instead of the brain), making them a poorly translated platform for developing human-targeted theranostics.
(C) Brain organoids represent a leap toward human-relevant theranostic modeling. Derived from human iPSCs or ESCs, brain organoids recapitulate key features of human brain
development, including human-specific genetics and complex cellular diversity. This enables high-fidelity disease modeling, offering a far more relevant context for evaluating
nanomedicines. However, limitations such as a lack of vascular perfusion and limited standardization still hamper their full potential as robust theranostic platforms. (D)
Brain-Organoid-on-a-Chip (BOoC) systems emerge as integrated theranostic platforms. By integrating organoids into microfluidic devices, BOoC technology overcomes many
limitations of static cultures. It provides a controlled, perfused microenvironment, enables the integration of an engineered BBB, and allows for real-time monitoring. These
features establish BOoC systems as the most advanced preclinical platforms for high-throughput, physiologically relevant screening of brain-targeted nanotheranostics.
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Besides simulating the BBB and specific
neurological diseases, a key development direction
for BOoC technology is the construction of
multi-organ interconnected systems comprising
modules of multiple organoids or different tissue
types, thereby more comprehensively mimicking
complex physiological and pathological processes of
the human body in witro. The behavior of
nanomedicines in the body often involves complex
communication and interactions among multiple
organs, which is difficult to fully capture with
single-organ models[95]. By integrating key organ
modules such as brain, liver, and kidney on a chip,
researchers can more realistically simulate drug
Absorption, Distribution, Metabolism, and Excretion
(ADMET) processes and evaluate their efficacy and
potential systemic toxicity in different organs[96-98].
These multi-organ interconnected BOoC systems
provide an unprecedented platform, offering greater
physiological relevance, for deeply understanding the
overall behavior of nanomedicines in complex
biological systems, revealing the interaction patterns
between them and different cell types and distal
organ microenvironments—that is, effectively
addressing the complexity and unpredictability of
nano-bio interactions[99-101].

However, whether it is increasingly complex
brain organoid models or precisely controlled brain
organoid-on-a-chip systems, despite their immense
potential in  mimicking the real brain
microenvironment and  generating  massive,
high-dimensional, and dynamic biological data,
challenges remained in efficiently leveraging this
potential for large-scale drug screening and
translating it into practical R&D breakthroughs. This
collectively highlighted an urgent need: these
high-fidelity in vitro models must be deeply integrated
with high-throughput screening technologies and
intelligent analysis platforms driven by artificial
intelligence.

3. Powering the theranostic workflow
with high-throughput screening
platforms

To fully leverage brain organoids in drug
development, a paradigm shift is required from
traditional, manual, and low-throughput methods to
integrated, automated platforms driven by
High-Throughput Screening (HTS) and High-Content
Screening (HCS) (Figure 3). The conventional
approach (Figure 3A) is often plagued by high
variability, labor-intensive workflows, and limited
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data dimensionality, which severely constrains its
scalability and predictive power. In contrast, the new
paradigm (Figure 3B) integrates automation for
standardized organoid production and screening with
advanced, multi-modal data acquisition systems,
paving the way for robust data analysis and,
ultimately, higher clinical translation efficiency.

As discussed in the preceding chapter, while
high-fidelity 3D cell models like brain organoids
offered unprecedented physiological relevance
compared to traditional methods, their application in
drug development was hindered by several
limitations when attempting large-scale screening.
These prominently included the low throughput of
existing culture and analysis methods, which made
systematic large-scale drug screening infeasible;
inherent challenges of the models themselves, such as
cellular composition heterogeneity, size and
morphological variability, lack of vascularization, and
complex handling procedures[102]; and the difficulty
in efficiently processing and extracting valuable
information from the high-dimensional data they
generated. These limitations severely constrained the
application efficiency and data output of brain
organoids in drug development. To overcome these
challenges and accelerate the application of organoid
models, the introduction of High-Throughput
Screening (HTS) and High-Content Screening (HCS)

technologies was essential. HTS, through its
automation, miniaturization, and standardized
workflows, significantly increased experimental
volume, primarily breaking the throughput

bottleneck in brain organoid research. HCS, on the
other hand, further enabled the acquisition of rich,
multi-dimensional phenotypic and mechanistic data
from complex models. The integration of HTS and
HCS thus brought unprecedented opportunities for
understanding complex brain function and tackling
neurological diseases by creating a powerful platform
to leverage the potential of organoid models.

3.1 Scaling up theranostic discovery with
high-throughput screening

The core capability of HTS is primarily reflected
in its significant contribution to scaling up brain
organoid research. By integrating automated culture
systems, advanced microfluidic technology, and
innovative methods like brain organoid-on-a-chip,
researchers can now achieve large-scale generation,
standardized maintenance, and precise manipulation
of brain organoids, greatly overcoming the
throughput bottleneck of traditional methods.
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Table 3. Achieving scale and depth in organoid screening with HTS/HCS.

Technology Core function Challenge overcome Key applications Ref
High-Throughput Enables scale and automation to generate, Throughput Bottleneck: Overcomes the Large-scale chemical/drug screening; [103]
Screening (HTS) culture, and process thousands of organoids ~ low-volume, manual limitations of high-throughput evaluation of nanomedicines

in a standardized manner. traditional organoid research. (e.g., BBB permeability, toxicity).
High-Content Enables deep and quantitative data Lack of Data Depth: Moves beyond simple =~ Multi-modal phenotyping (imaging, [105]
Screening (HCS) acquisition by automatically capturing viability readouts to capture rich, electrophysiology); quantitative analysis of

complex, multi-dimensional phenotypic data. multi-parameter biological information. complex disease pathologies (e.g., AB/p-tau).
HTS/HCS + Reaches molecular-level resolution by Cellular Heterogeneity: Dissects Drug target identification and validation (e.g.,  [106]
Single-Cell Omics revealing cellular responses and mechanisms  cell-type-specific responses that are masked CRISPR screens); deciphering gene regulatory

for individual cells. in bulk analysis. networks.
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Figure 3. From manual screening to an automated theranostic platform. (A) The Traditional Manual Screening Workflow is inadequate for theranostic R&D. This
process is characterized by manual handling, leading to low yield, high variability, and poor reproducibility. The reliance on labor-intensive, low-throughput analysis provides only
limited, low-dimensional data, making it impossible to systematically evaluate the complex interactions required for developing effective theranostics. (B) The Automated
HTS/HCS Platform Powers a Modern Theranostic Workflow. This integrated paradigm begins with the standardized, automated production of uniform organoid arrays, often
from gene-edited hiPSCs. An automated HTS/HCS platform then screens large compound libraries against these cultures. The automated, multi-modal data acquisition generates
large-scale, high-dimensional datasets, which serve as the 'diagnostic' input for analysis and modeling. This allows for the identification of biological patterns and the selection of
optimal candidates, directly connecting the diagnostic screening to therapeutic development and significantly improving clinical translation efficiency.
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A prominent example is the "Hi-Q" brain
organoid culture method developed by Ramani et al.,
which can efficiently and reproducibly generate
thousands of brain organoids and has been
successfully applied to high-throughput drug
screening[54], providing a solid methodological
foundation for large-scale evaluation of nanomedicine
behavior in complex 3D brain models (such as BBB
permeability simulation, targeting efficiency, efficacy,
and toxicity). This fully demonstrated how HTS
technology, through standardized culture and
handling procedures, overcomes the bottleneck of
scalability in traditional brain organoid research.
Additionally, Renner et al. reported a fully automated
high-throughput workflow for chemical screening
using human midbrain organoids[103], which
achieved complete automation from organoid
generation and maintenance to optical analysis in
standard 96-well plates, significantly improving
experimental efficiency and reproducibility. This fully
demonstrated how HTS technology, through
standardized culture and handling procedures,
overcomes the bottleneck of scalability in traditional
brain organoid research (Table 3).

3.2 Gaining deep theranostic insights with
high-content screening

However, achieving scalability —alone is
insufficient; extracting valuable insights from large
sample sets requires deep data. The complexity of 3D
cell models necessitates HCS to capture rich,
multi-parameter data, going beyond simple endpoint
indicators[102]. In this regard, HCS plays a central
role on the HTS platform. It transforms complex
biological processes into precisely quantifiable and
deeply analyzable data, achieving deep data
generation for brain organoid research. HCS can
rapidly and automatically acquire and quantify
complex biological data from large numbers of brain
organoid samples, including fine details of cellular
morphology, localization of specific molecular
markers, and cellular network states, far surpassing
traditional single biochemical or viability metrics.
Collectively, this rich, multi-parameter dataset
constitutes a 'theranostic signature' of the
nanoparticle's interaction with the biological system,
providing the crucial information needed for
subsequent Al-driven prediction.

Combining HCS with other functional
high-throughput analysis methods enables a more
comprehensive characterization of the brain
organoid's biological state. In the automated
workflow by Renner et al., multiple high-throughput
analysis methods were integrated, including
High-Content Imaging (HCI) for evaluating brain
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organoid  cellular composition and neurite
morphology, multi-electrode array (MEA) technology
for measuring electrophysiological activity, and
calcium imaging for single-cell neuronal activity
analysis[103]. This multi-modal HTS integration
method captured complex information from
morphological, functional, and other levels in brain
organoids, greatly improving the efficiency and depth
of quantitative analysis of brain organoid phenotypes.
The study also emphasized that by optimizing tissue
clearing protocols and wusing thin-section brain
organoid (SFEBs) models, they overcame the
challenge of imaging thick tissues, achieving
high-content imaging with single-cell resolution
across the entire brain organoid, simplifying
cumbersome steps like traditional sectioning and
further improving throughput. Durens et al. similarly
developed an integrated high-throughput workflow
that applied HCI, MEA, and calcium imaging to
hiPSC-derived brain organoids, revealing information
on neuronal activity and cellular composition through
multimodal analysis and further demonstrating the
power of high-throughput methods in brain organoid
research[104].

Particularly for complex neurological diseases,
HCS can quantify disease-related complex
phenotypes or pathological features, making them
directly applicable to drug screening and evaluation.
For instance, Park et al. constructed a HCS platform
based on human iPSC-derived brain organoids,
utilizing 1300 brain organoids from 11 participants
(including CRISPR-Cas9 edited isogenic lines) for
large-scale testing of FDA-approved blood-brain
barrier permeable drugs[105]. Using HCS, they
successfully =~ quantified ~ Alzheimer's  disease
(AD)-related pathological features, such as AP and
p-tau protein deposition and cell viability. This study
not only demonstrated the feasibility and efficiency of
quantitatively evaluating complex disease
phenotypes using HCS on large numbers of brain
organoid samples but also combined mathematical
modeling and network analysis to guide drug
selection, providing strong support for drug screening
and precision medicine strategies based on brain
organoids. This ability to convert biological
phenomena into structured data not only enhances
the objectivity and reproducibility of research but,
more importantly, provides a solid data foundation
for subsequent complex computational analysis, Al
modeling, and intelligent decision-making,.

3.3 Reaching molecular resolution in
theranostic profiling with single-cell omics

At a deeper molecular level, modern HCS
platforms are further integrating high-throughput
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omics technologies, particularly single-cell omics, to
reveal molecular-level biological responses and
mechanisms at single-cell resolution. This integration
significantly enhances the depth and resolution of
information obtained from brain organoid models,
enabling an unprecedented fine-grained
understanding of drug effects on cellular subtypes
and molecular responses of specific cell types. These
methods, applied to models like brain organoids, are
helping us understand drug action at the cellular and
molecular mechanisms with unprecedented detail.
This powerful potential for deep mechanistic
investigation provides unprecedented cellular and
molecular level insights for brain-targeted drug
development, directly guiding more precise and
effective drug design and screening. For example, a
recent study utilized CRISPR-Cas9 for
high-throughput genetic perturbation of various brain
disease-related genes in human brain organoids and,
through single-cell RNA sequencing, deeply
investigated the impact of gene functional loss on cell
fate determination, cellular state, and gene regulatory
networks[106]. This work demonstrated the capability
to acquire and analyze complex single-cell molecular
profiles in brain organoid HTS, revealing disease
mechanisms and the vulnerability of cellular subtypes
with unprecedented depth, providing new avenues
for drug target identification and validation. Another
study obtained dense time-point single-cell
transcriptome and chromatin accessibility data during
human brain organoid development and constructed
gene regulatory networks to decipher molecular
mechanisms of human brain development[107]. By
combining high-throughput genetic perturbation with
single-cell readout, they validated key transcription
factors in cell fate determination. These two studies
collectively emphasized the strong potential of
utilizing HTS strategies to acquire high-dimensional
single-cell molecular data from brain organoids, a
physiologically relevant model, and combining this
with computational methods for deep mechanistic
investigation.

Consequently, the integration of HTS (providing
scalability and automation) and HCS (providing
high-content data and multi-modal analysis)
constitutes a data platform capable of generating
massive, high-quality, high-dimensional biological
data, addressing the bottleneck in data analysis for 3D
model HCS. This data, especially single-cell omics and
network data, is key for training powerful Al
algorithms. It can help us uncover complex
interaction patterns between 'nanomedicines and
brain organoids," build precise predictive models, and
ultimately guide rational nanomedicine design and
virtual screening, further enhancing the intelligence
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level of drug development. However, to truly
transform this powerful platform into a mature drug
development tool, further in-depth and systematic
investigation is needed concerning the correlation
between the key in vitro phenotypes generated and
clinical biomarkers, as well as the predictive
applicability of high-throughput screening results for
clinical efficacy[108].

4 Orchestrating the theranostic paradigm with
artificial intelligence

The convergence of high-fidelity biological
models with advanced computational methods gives
rise to a powerful new R&D engine driven by
Artificial Intelligence (Al). In this paradigm, complex,
high-dimensional data generated from brain
organoid-HTS/HCS platforms —including
histological images, high-content imaging data, and
multi-omics readouts—are fed into Al systems for

processing and analysis. The Al then serves a dual
purpose: it builds models to predict the complex
biological behavior of nanomedicines and provides
rational guidance for the de novo design and
optimized synthesis of new therapeutic candidates,
creating a powerful loop between data generation and
intelligent design (Figure 4). Building upon the robust
data platform enabled by high-fidelity organoid
models and HTS/HCS, Al takes center stage as the
intelligent engine driving the design and screening of
brain-targeted nanomedicines. Al,  particularly
through data-driven ML/DL methods, offers
unprecedented capabilities for developing predictive
models that accurately forecast the complex behavior
and properties of nanomedicines within the brain.
This includes predicting critical parameters such as
BBB permeability, brain distribution, cell targeting,
binding affinity to specific targets, and essential
ADMET/PK characteristics. This powerful predictive
capacity fundamentally transforms the R&D
workflow, enabling a more intelligent and rational
approach that directly guides the optimization of
nanomedicine structure and composition towards
desired brain targeting (Table 4).

4.1 Extracting theranostic signatures from
complex data using Al

The first crucial function of Al in this integrated
paradigm is the efficient processing and extraction of
meaningful insights from the massive, high-quality,
high-dimensional biological data generated by the
brain organoid and HTS/HCS platforms. This
complex, human-relevant dataset is indispensable for
training powerful Al algorithms to recognize
biologically relevant patterns that would be
imperceptible to human analysis.
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Figure 4. The Al engine orchestrating the theranostic workflow. The theranostic workflow is fueled by high-dimensional data generated from brain organoid-HTS/HCS
platforms. This data, serving as the diagnostic input, is processed by an Al engine that performs two synergistic functions: Theranostic Prediction: Al models are trained to predict
the complex in vivo behavior of nanomedicines. This includes forecasting their physical properties, protein corona formation, brain targeting efficiency, interactions with
regulatory systems (e.g., immune cells), and overall efficacy and toxicity. These predictions form a comprehensive diagnostic profile for each candidate. Therapeutic Guidance:
Based on the diagnostic insights, Al provides rational guidance for creating new and improved nanotherapeutics. This can involve high-throughput virtual screening, modular
synthon-based design, or de novo design of novel molecular structures. This Al-guided cycle, which continuously refines therapeutic design based on diagnostic prediction,
accelerates the discovery of effective and safe brain-targeted therapies.

Table 4. Al's role in orchestrating the brain-targeted nanomedicine R&D workflow.

Al-driven phase Core function & purpose Key Al technologies Ref

Data Processing & Process massive, high-dimensional HTS/HCS data (images, omics) to extract Convolutional Neural Networks (CNNs) for image analysis; [113]

Feature Extraction meaningful biological features for model training. algorithms for segmenting and quantifying cellular features.

Predictive Modeling &  Build predictive models for nanomedicine properties (e.g., BBB permeability, QSNAP for self-assembly prediction; Al-enhanced Virtual [119]

Rational Design toxicity) and guide the de novo or rational design of new candidates. Screening (VLS); Modular Synthon-Based Design.

Closed-Loop Create a self-optimizing "Design-Build-Test-Learn" cycle by integrating Generative Al for de novo design; ML-integrated [139]

Theranostic Cycle Al-driven design, automated synthesis, and HTS/HCS testing. High-Throughput Experimentation (HTE); robotic synthesis
platforms.

Overarching - Data Scarcity & Quality; Model Interpretability (the "black box" problem); High Computational Cost. [134]

Challenges -
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For example, Convolutional Neural Networks
(CNNSs) are adept at processing high-content imaging
data and can automatically identify subtle changes in
cell morphology, subcellular structures, and even
cellular network activity patterns[109-111]. Lampart et
al., in their review, mentioned the use of CNNs for
processing and analyzing brain organoid image data
from HCS platforms[112], and Gritti ef al. developed
MOrgAna[113], a tool that uses machine learning for
automatic segmentation and quantification of brain
organoid images. Al has also been used to interpret
and understand more complex biological response
data. For instance, the study by Tebon et al. used
machine learning-based image segmentation and
classification algorithms to successfully achieve
label-free, longitudinal quantitative monitoring of the
biological mass changes of thousands of brain
organoids, thereby revealing the heterogeneity of
treatment resistance at single-organoid
resolution[114].

Beyond image data, Al also excels at processing
other high-dimensional data. For example,
multi-layer perceptron models can efficiently process
large-scale  fluorescence data  generated by
high-throughput droplet screening, quantifying the
impact of different chemical compositions on complex
biological reaction systems[115]. When dealing with
complex single-cell data, Ramos Zapatero et al. used
the dendrogram analysis method Trellis for analyzing
complex single-cell data, achieving fine-grained
analysis of drug effects on post-translational
modification (PTM) signals, DNA damage, cell cycle,
and apoptosis across multiple dimensions from a
high-throughput mass cytometry platform[116].
These Al algorithms can automatically learn and
extract key biological features and patterns from these
diverse types of high-throughput, high-content data,
laying a solid foundation for subsequent predictive
model building. In this phase, the core role of Al is to
efficiently and accurately extract key biological
features and patterns from high-throughput
experimental ~ data,  transforming  biological
phenomena into precisely quantifiable and deeply
analyzable data[102], setting the stage for subsequent
intelligent prediction and design.

4.2 Guiding therapeutic design with Al-driven
theranostic prediction

Leveraging the rich features extracted from the
high-fidelity brain organoid models via HTS and
HCS, data-driven Al/DL methods unlock significant

potential in brain-targeted nanomedicine
development[117]. Their core strength lies in building
predictive  models that accurately forecast

nanomedicine behavior and properties within the
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complex human brain environment, encompassing
key factors like BBB permeability, distribution,
targeting, binding affinity, and ADMET/PK
profiles[118]. This powerful predictive capacity is
reshaping the R&D landscape, enabling a more
intelligent and rational approach that directly guides
the design and optimization of nanomedicines for
effective brain targeting.

4.2.1 Designing the molecular architecture of
nanotheranostics

Al's predictive capability and insights are
reflected in various specific strategies for guiding
nanomedicine design and screening. Firstly, Al can be
used to predict the key formation and physical
properties of nanostructures and guide component
selection and design accordingly. For example, when
designing nanomedicines formed by component
self-assembly, the molecular structure of precursor
molecules (such as the drug itself) plays a key role in
their assembly behavior and the final nanoparticle
size, but this is difficult to predict. In this regard,

Shamay et al. developed the Quantitative
Structure-Nanoparticle Assembly Prediction
(QSNAP) model, which accurately predicted

assembly behavior and size based on molecular
descriptors of drug molecules and guided drug
payload selection, successfully applied to the design
of targeted nanomedicines[119].

Secondly, structure-based  virtual ligand
screening (VLS) is a mature method using
computational prediction to guide drug design[117].
Its principle involves computationally docking
potential ligand molecules into the 3D structure of
target proteins to predict binding modes and strength,
thereby enabling the rapid identification of potential
active molecules from vast chemical libraries. With
the accessible chemical space expanding to billions or
even trillions of molecules[23], efficient VLS
strategies, increasingly leveraging Al and machine
learning (ML) techniques, have become crucial for
accelerating lead compound discovery. AI/ML
enhances VLS by improving docking accuracy,
filtering out less promising candidates early, and
navigating ultra-large chemical spaces more
effectively than traditional brute-force simulation. For
example, there was research using ultra-large-scale
virtual screening to successfully discover active
molecules with novel chemical scaffolds from a
library of hundreds of millions of compounds[120].

Furthermore, Al is also driving more
principle-based rational design methods. Unlike
virtual screening which searches existing chemical
libraries, these methods focus on de novo design or
building molecules from smaller units based on
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fundamental principles. One such approach is
Modular Synthon-Based Design, which involves
using a predefined set of molecular fragments or
"synthons" as building blocks to construct novel
molecular structures. This method allows for the
systematic exploration of a vast synthesizable chemical
space by combining and optimizing these fragments.
Modular Synthon-Based Design, such as exemplified
by the V-SYNTHES methods[121], can efficiently
generate lead compounds with high activity and
diversity and avoid costly custom synthesis. Al
significantly empowers Modular Synthon-Based
Design by assisting in the selection and design of
optimal synthons, guiding the efficient combinatorial
assembly of fragments, predicting the properties and
synthesizability —of generated molecules, and
navigating the vast combinatorial space. This type of
Al-guided method provides important guidance for
the rational design of components (such as active
molecules and functional ligands) for brain-targeted
nanomedicines, enabling the construction of NPs with
tailored functionalities and improved properties.

4.2.2 Predicting the biological fate and efficacy of
nanotheranostics

Al's predictive capabilities are crucial for
understanding the complex biological interactions of
nanomedicines at multiple levels, from molecules to
cells. Accurately evaluating these interactions is vital
for understanding how nanoparticles behave upon
entering the body and how they affect specific
biological components, which in turn influences their
efficacy and potential off-target risks.

At the molecular level, Al aids in predicting the
interactions between nanomedicines (or their
components) and biomolecules. A key focus here is
the prediction of protein corona formation upon
systemic administration. ML models are applied to
predict the composition and characteristics of the
protein corona formed around nanoparticles, crucial
for understanding their subsequent biological identity
and fate[122, 123]. Leveraging datasets from
advanced techniques like mass spectrometry-based
proteomics, ML models show promise in enabling
efficient and reliable prediction of protein adsorption
onto nanoparticles and their associated impacts[124,
125]. Furthermore, Al is instrumental in accurately
evaluating the binding interactions between
nanomedicine components (such as drugs or targeting
ligands) and specific biological target proteins. Al
especially deep learning models, can predict these
binding events based on molecular and protein
structures[126-128]. However, these models face
challenges in generalizing to predict the binding
behavior of novel molecules or proteins, sometimes
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learning "shortcuts" from training data. Advanced
methods like AI-Bind are being developed to improve
generalization and provide more reliable tools for
precise design and safety assessment[129].

Moving to the cellular level, Al is applied to
predict various nano-cellular interactions,
encompassing processes such as cell recognition,
adhesion, and uptake mechanisms, as well as the
resulting cellular responses like toxicity. These

interactions are highly dependent on both
nanoparticle = properties and  the  cellular
microenvironment. ML approaches demonstrate

strong capabilities in forecasting cellular association
and uptake, and in identifying the influencing factors.
For instance, a recent study utilized large-scale
parallel screening and machine learning to
systematically identify material properties and
intrinsic cellular features (such as gene expression)
that influence nanoparticle cellular uptake,
constructing a genome-nanoparticle interaction
network and identifying genetic biomarkers like
SLC46A3[130]. This work effectively demonstrates
how Al can leverage complex cellular data to predict
nanoparticle absorption and pinpoint key influencing
factors.

Crucially, Al is proving powerful in predicting
nanoparticle cytotoxicity, a vital outcome of these
cellular interactions and a key concern for therapeutic
development. Based on experimental data from
cell-based assays, ML models offer various
capabilities for toxicity prediction. These include
quantitative predictions, such as gradient boosting
regression models demonstrating high accuracy in
forecasting the viability of nanoparticle-treated cell
lines[131], and models providing quantitative
cytotoxicity predictions across varying concentrations
for inorganic nanomaterials[132]. Importantly, Al
models also contribute to understanding the factors
driving toxicity. By analyzing experimental data, they
can identify key influencing attributes like size,
surface properties, and experimental conditions,
thereby highlighting the role of components such as
nano-corona complexes in toxicity
determination[133]. Leveraging these predictive and
analytical capabilities, Al, often combined with
techniques like genetic algorithms, enables
high-throughput in silico screening. This allows for
the rapid identification of selectively cytotoxic
nanoparticles against specific cell lines[132],
significantly accelerating the search for targeted
therapeutic candidates.

Understanding  these  intricate  biological
interactions across molecular and cellular scales
through Al-driven prediction provides valuable
insights into the fundamental mechanisms governing
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nanoparticle behavior, thereby guiding the rational
design of nanomedicines with desired targeting and
reduced side effects.

4.2.3 Addressing key challenges in Al-driven
theranostic design

However, despite the significant advancements
and ongoing improvements in Al models for rational
design and interaction prediction (as discussed in
Section 4.2), building highly accurate predictive
models with consistently good generalization ability
across diverse chemical spaces and targets still faces
significant challenges.

Firstly, a primary challenge stems from the
availability and quality of training data. Al models are
heavily reliant on large, high-quality datasets, yet
data remains scarce, costly to acquire, and limited by
privacy concerns and restricted sharing, especially for
rare diseases or novel targets[134]. Available datasets
often suffer from biases, errors, missing information,
and inconsistent experimental results, further
reducing Al reliability. This is particularly
problematic for predicting novel structures or
interactions with unknown targets, leading to poor
performance[134]. As highlighted by some studies,
this limitation is partly due to models sometimes
tending to learn non-universal patterns or "shortcuts"
from training data (for example, relying on the
network topology of protein-ligand bipartite graphs
rather than intrinsic molecular features)[117, 129],
which fundamentally limits their predictive capacity
for truly novel compounds. Furthermore, a general
lack of representation of 'negative data' (e.g.,
unsuccessful experiments) in literature hinders a
complete understanding[134].

Secondly, the interpretability and explainability
of complex Al models remain a major hurdle. The
"black box" nature of deep learning models makes it
difficult to understand why a particular prediction is
made, which is crucial for gaining biological insights,
building trust among researchers and clinicians, and
meeting regulatory requirements[134].

Thirdly, computational intensity poses another
severe challenge. While Al assists in pre-filtering
candidates, traditional simulations like molecular
docking still face huge bottlenecks when exploring
ultra-large chemical spaces. Furthermore, training
complex Al  models requires  substantial
computational resources, creating barriers
particularly for smaller research teams[134].

Finally, balancing multiple objectives in the
rational design phase (e.g., optimizing simultaneously
for activity, selectivity, ADMET, and synthesizability)
and developing robust, standardized evaluation
processes for models across these diverse criteria
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remains complex[134].

In summary, while AI models have shown
immense potential in predicting nanomedicine
properties and interactions, effectively overcoming
these multifaceted challenges is paramount. These
hurdles necessitate innovative strategies that integrate
computational  predictions with  experimental
validation, forming a dynamic and iterative
workflow.

4.3 Creating a closed-loop theranostic system
for iterative optimization

Capitalizing on the enhanced predictive
capability of Al, a natural synergy is formed with the
screening and modeling platforms introduced in
Sections 2 and 3. This potent combination is what
closes the theranostic loop: AI processes the
'diagnostic' data from the screening platforms to build
predictive models, and then leverages these models to
guide the rational design of the 'therapeutic' agent.
This directly enables the building of a dynamic,
self-optimizing R&D system. As highlighted in
relevant reviews[117], closely integrating
computational tools with experimental validation is
considered crucial for driving the transformation of
drug discovery processes, aiming to overcome the
bottlenecks of traditional linear workflows and form a
"virtuous  cycle" where experimental data
continuously refines computational models, and in
turn, models guide experiments (Table 4).

The core workflow of this Al-driven closed-loop
system was envisioned as follows:

Al Design and Prediction Phase: In this initial
phase, Al models, leveraging prior knowledge and
learned patterns (including those from biological
atlases[118, 135, 136] and previous experimental
cycles), predicted the potential performance of a series
of virtually designed or initially screened
nanomedicines or their components for brain
targeting. Advanced generative models could even
explore mnovel chemical spaces and propose
innovative nanomedicine design solutions with
predicted properties (as discussed in Section 4.2.1).
These in silico predictions aimed to rapidly narrow
down the potential design space, prioritizing
candidates with the highest predicted potential based
on properties like BBB permeability and target
interaction (as discussed in Section 4.2.2).

Automated Synthesis Phase: Subsequently,
based on Al's predictions and rational design
suggestions, the (automated) nanomedicine synthesis
phase was initiated. This phase utilized automated
synthesis platforms (such as robotic synthesisers) for
high-throughput, high-precision synthesis of selected
nanomedicine candidates, ensuring batch-to-batch
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consistency and reproducibility[137, 138].
High-throughput synthesis was essential to generate
the diverse set of candidates needed for the
subsequent experimental evaluation.

Experimental  Testing (HTS/HCS) and
Al-Integrated Optimization Phase: Next, these newly
synthesized nanomedicines underwent systematic
evaluation  using  high-fidelity = experimental
platforms. This involved applying HTS/HCS to
large-scale brain organoid models or BOoC platforms
and employing methods like high-content imaging,
multi-omics analysis (including single-cell omics),
and functional assays to comprehensively collect
detailed experimental data on the interactions and
effects of the nanomedicines within the complex brain
organoid microenvironment. This experimental phase
actively leveraged Al-integrated High-Throughput
Experimentation (HTE) strategies not only for data
acquisition but also for accelerated optimization and
understanding structure-activity relationships (SARs)
within the complex nanomedicine design space.
Computation was integrated with HTE to guide the
experimental design itself and analyze the resulting
data for optimization. For instance, a landmark study
demonstrated how the integration of machine
learning with high-throughput experimentation
enabled the rapid design and discovery of novel
self-assembling nanoparticle formulations from a vast
chemical space[139]. By computationally predicting
promising drug-excipient combinations and then
rapidly validating nanoparticle formation and
properties using high-throughput methods, they
effectively  explored  millions of  potential
formulations. Similarly, other work applied this
integrated approach (HTS synthesis/screening
combined with machine learning) to explore the
design space of complex nanostructures like spherical
nucleic acids (SNAs), revealing structure-activity
relationships and identifying key design parameters
influencing biological activity with significantly fewer
tests than traditional methods[140]. These specific
examples illustrate how the deep integration of Al and
HTE within the experimental cycle overcomes
complexity and inefficiency by allowing for
data-driven exploration and optimization of the vast
design space and facilitating the discovery of
underlying design rules.

Data Feedback and AI Model Learning/Update
Phase: The massive, high-quality, high-dimensional
experimental data generated by the HTS/HCS
platform, incorporating these Al-integrated HTE
strategies, was then collected, processed, and
standardized as HTS data feedback, which was
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subsequently "fed" to the Al system. The experimental
data from advanced in vitro models like brain
organoids or organoids-on-a-chip provided more
biologically relevant data for training Al models (e.g.,
models for predicting ADMET/PK properties,
cellular uptake, efficacy, or SARs), thereby
significantly improving the quality and predictive
power of the models compared to using less relevant
data. Finally, in the AI model learning and update
phase, Al models utilized this new stream of data for
iterative optimization. They continuously updated
their internal parameters and improved their
predictive accuracy and understanding of complex
biological laws governing nanomedicine behavior in
the brain context. If the model's predictions for a
tested nanomedicine did not match the experimental
results, the Al model performed self-adjustment and
refinement using the discrepancy as a learning signal.
If the predictions matched, the model's confidence
was further strengthened.

The Al model, after learning and updating, was
then used to guide the next round of nanomedicine
design, prediction, and screening, potentially
exploring modifications to the previous candidates or
proposing entirely new designs based on the
improved SAR understanding. This process formed a
continuously iterative, spiraling upward closed-loop,
where each cycle built upon the knowledge gained in
the previous one, leading to progressively better
designs and more accurate predictions, thereby
accelerating the path to identifying promising
candidates.

5. Charting the path toward personalized
nanotheranostics

The preceding sections detailed the complexity
of brain diseases and the challenges of brain-targeted
nanomedicine delivery. We explored the significant
potential of three key areas: high-fidelity brain
organoid models; HTS/HCS technologies which
generating rich, multi-dimensional data; and Al that
serves as a core engine for extracting insights and
guiding rational design. These technologies,
developed independently or synergistically, together
lay a solid foundation for the future development of
brain-targeted nanomedicine, heralding a new era of
therapy that is more precise, efficient, and even
tailored to individuals. Deeply integrating these
cutting-edge technologies is expected to overcome
current bottlenecks in brain nanomedicine R&D,
significantly improving clinical translation efficiency
and treatment success rate (Table 5).
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Table 5. The path to precise and personalized brain nanomedicine.
Future application Key enabling technologies Landmark example discussed Theranostic goal Ref

Precision Design & Al Models + High-Resolution Brain Comprehensive Brain Atlases: Single-cell atlases of
human brain and vasculature provide molecular maps subcellular precision, maximizing efficacy and

Delivery Cell Atlases + High-Fidelity

Organoids for targeting.
Accelerated R&D  Al-driven Closed-Loop
Pipeline "Design-Validate" Platforms

Individualized
Theranostics

Patient-Specific Organoid Models
("Digital Twins") + Al-driven
Analysis

Al-Discovered TNIK Inhibitor: An Al platform
identified a novel target and guided inhibitor design,
which rapidly advanced to clinical trials.

Individualized Patient Tumor Organoids (IPTOs):
Patient-derived models accurately predicted clinical
responses to therapy (TMZ).

Achieve nanomedicine delivery with cell-type and  [118]

minimizing off-target effects.

Significantly shorten discovery-to-clinic timelines,  [141]
reduce costs, and increase the success rate of
brain-targeted nanomedicines.

Enable true personalized medicine by selecting or  [143]
designing the optimal nanomedicine for each
individual patient's disease.

5.1 Advancing the precision of nanomedicine
through a theranostic approach

Looking ahead, Al-driven intelligent design and
screening engines will be deeply coupled with
high-fidelity = brain organoid models, greatly
enhancing the precision of predicting the behavior
and delivery of brain-targeted nanomedicines in the
complex brain environment. The high complexity of
brain structure, cellular heterogeneity across different
brain regions, disease heterogeneity, and the strict
limitations of the Blood-Brain Barrier (BBB) require
nanomedicines to precisely cross the BBB, reach
specific brain regions, and specifically target diseased
cells or subcellular structures while avoiding impact
on healthy brain tissue. Achieving this high level of
precision particularly relies on gaining deep
understanding of the molecular characteristics of
various cell types and subtypes making up brain
tissue, as well as their features in different brain
regions and physiological/pathological states.
Recently, large-scale single-cell genomics research has
made breakthroughs, constructing a comprehensive
brain cell atlas covering major human brain regions,
developmental stages, and disease states[118], as well
as high-resolution atlases specifically for the human
brain vasculature[135, 136]. These atlases revealed
with unprecedented detail the wide diversity of brain
cell types and subtypes, region-specific differences
across brain regions, and disease-specific molecular
alterations, providing a key reference for precisely
defining the cell types and subtypes that need to be
targeted and understanding their molecular basis.
Utilizing the molecular details revealed by these
human brain cell atlases, combined with Al predictive
models, researchers can precisely predict their BBB
permeability, brain distribution patterns, and
interactions with and uptake efficiency by specific
brain cell types like neurons, glial cells, and vascular
endothelial cells based on nanomedicine structural
parameters (e.g., size, surface chemical modification,
charge), drug loading properties, and characteristics
of the simulated brain microenvironment. Further
combining diverse brain organoid models with
high-content screening to validate these predictions
will  enable the design of brain-targeted

nanomedicines to truly achieve precise control from
macroscopic distribution to microscopic
cell/subcellular localization, maximizing efficacy and
minimizing off-target effects.

5.2 Streamlining the R&D pipeline for faster
theranostic development

Besides enhancing the precision of drug
delivery, the application of Al is driving a significant
transformation in the entire drug development
process, significantly improving efficiency and
effectiveness in key areas including virtual screening,
ADMET prediction, and synthesis planning[141]. In
the field of brain nanomedicines, which is
characterized by a long R&D cycle and high costs, the
Al-driven closed-loop learning and iterative
optimization workflow discussed earlier is the core
approach to achieving efficiency breakthroughs.
Unlike the traditional lengthy linear R&D model, the
Al-enabled workflow can rapidly perform
computational prediction and rational design,
significantly narrowing down the range of candidates
before entering the experimental stage and
prioritizing  nanomedicine = formulations  and
compositions with high potential for success. This
rapid computation-experiment iterative cycle
significantly reduces unproductive experiments,
greatly shortening the cycle time from lead
compounds to preclinical candidates, lowering R&D
costs, and thereby accelerating the discovery and
translation of brain-targeted nanomedicines.

The potential of Al to transform and accelerate
the entire drug discovery and development pipeline
has been clearly demonstrated by successful cases,
even outside the specific realm of nanomedicine. For
example, a compelling recent case illustrated how an
Al platform was used to identify TNIK as a potential
therapeutic target for fibrosis[141, 142]. Subsequently,
through an Al-assisted structure-based design
workflow, a small molecule inhibitor targeting TNIK
was rationally designed and optimized. This
Al-driven design process considered molecular
structural features, predicted binding modes with the
target, and predicted ADMET/PK properties. The
lead  compound  identified  through  this
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computationally guided process was effectively
validated in subsequent in wvitro and in vivo
experiments, demonstrating favorable efficacy and
safety profiles, and was ultimately successfully
advanced to clinical trials. This demonstrably
successful Al-driven drug development workflow,
while applied to a small molecule drug, highly
aligned with the principles of Al-driven design
proposed in this review for brain-targeted
nanomedicines, leveraging computational guidance
for rational design and accelerated progression
through the pipeline. This case validated Al's
potential in guiding drug discovery and optimization
across the entire pipeline, a principle directly
applicable to accelerating the development of brain
nanomedicines within the proposed new paradigm.

5.3 Realizing personalized theranostics for
individual patient care

Ultimately, combining Al-driven intelligent
design, efficient screening, and high-fidelity models is
expected to achieve precise treatment for individual
patients with brain diseases (Figure 5). Brain diseases
commonly exhibit significant inter-patient variability,
reflected in genetic background, pathological features,
disease progression, and treatment response, making
traditional "one-size-fits-all' treatment approaches
difficult to be effective. Achieving individualized
medicine requires developing treatment plans based
on the patient's unique biological characteristics. By
combining patient genomic, clinical imaging, and
liquid biopsy data, as well as data from
patient-specific brain organoid models[143, 144], Al
models can deeply learn and model patient-level
disease features and response patterns to different
nanomedicines. This approach effectively transforms
each patient-derived organoid into a 'theranostic
digital twin.'" This powerful in vitro proxy allows
clinicians to computationally screen and rationally
design the optimal nanomedicine for that specific
individual ~ before  administration, seamlessly
integrating personalized diagnosis and treatment.
Recently, researchers developed individualized
patient tumor organoid (IPTO) models, constructed
by co-culturing patient tumor tissue with brain
organoids. These models faithfully preserved the
human brain tumor microenvironment and cellular
heterogeneity and were proven capable of accurately
predicting patient clinical response to therapies like
temozolomide (TMZ) in prospective clinical studies
and revealing potential resistance mechanisms[143].
This breakthrough achievement validated the
feasibility of wusing high-fidelity individualized
models to predict real patient treatment response. In
the future, combined with Al's deep analysis, pattern
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learning, and prediction of data generated from these
individualized models, Al will be able to provide
decision support for clinicians, assisting in selecting
the most suitable brain-targeted nanomedicine
formulation and treatment plan for specific patients,
thereby truly achieving precise treatment for
individualized brain diseases, maximizing efficacy
and minimizing side effects.

6. Conclusion

Developing effective therapies for CNS diseases
remains a formidable challenge, primarily due to the
brain's biological complexity, the stringent BBB, and
the limitations of traditional R&D models. This
review has presented an integrated paradigm
leveraging cutting-edge technologies to overcome
these hurdles. The core of this approach lies in the
synergy between high-fidelity brain organoid models
(including organoid-on-a-chip platforms), HTS/HCS,
and AL

This powerful technological system enables a
dynamic, self-optimizing closed-loop R&D workflow.
High-fidelity models generate biologically relevant,
high-dimensional data on nanomedicine interactions
within a complex brain-like environment. Al serves as
the intelligent engine, processing this data to build
predictive models, inform rational nanomedicine
design, and guide rapid experimental validation via
HTS/HCS.

The adoption of this integrated paradigm
promises to significantly accelerate brain-targeted
nanomedicine discovery and improve its precision. It
allows for more accurate prediction of nanomedicine
behavior, including BBB permeation, tissue
distribution, and  cell-specific  targeting. By
intelligently navigating the vast design space and
iteratively refining candidates based on experimental
feedback, the R&D cycle can be substantially
shortened, reducing costs and increasing success
rates. Furthermore, the potential to integrate
patient-specific data and models offers a
transformative pathway towards truly individualized
brain disease treatment.

While the convergence of these fields marks a
pivotal shift, the path toward realizing this fully
integrated paradigm is not without significant
hurdles that require concerted effort to overcome. Key
challenges remain in standardizing the highly
complex and multi-modal experimental data
generated from diverse organoid platforms to ensure
quality and enable robust cross-platform validation. A
potential solution lies in collaborative,
community-wide efforts to establish standardized
data formats and build open-access, federated
databases.
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Figure 5. The proposed workflow for personalized brain theranostics. This figure illustrates the future of individualized patient care, enabled by a closed-loop
theranostic workflow. The cycle begins with an individual patient, from whom clinical and biological data (e.g., genomic, pathology reports) are collected. This information is used
to engineer a 'theranostic digital twin'-a patient-specific brain organoid model that recapitulates the individual's disease. This high-fidelity model is then subjected to an Al-driven
high-throughput screening platform, which performs two key tasks: (1) 'diagnosing' the organoid's response to a library of nanomedicines and (2) 'guiding' the rational design of
an optimal, personalized nanotherapeutic. Finally, the resulting tailor-made nanomedicine is administered to the patient, completing the patient-centric theranostic cycle from

diagnosis to precision treatment.

Concurrently, enhancing Al model
generalization and interpretability is paramount;
overcoming the "black box" nature of deep learning is
critical for building trust and deriving actionable
biological insights. The development and application
of explainable Al (XAI) will be essential in this
regard[145]. Perhaps most critically, we must ensure
the clinical relevance of this entire workflow by
rigorously validating that the insights gleaned from
these in vitro systems possess true predictive power
for outcomes in human patients. This will require
systematic studies correlating organoid-derived
biomarkers and therapeutic responses with
real-world clinical data. Despite these challenges, this
Al-driven, integrated approach provides a robust
framework and unprecedented tools for developing
precise, efficient, and personalized brain-targeted
nanomedicines, holding great promise for addressing
devastating neurological conditions in the future.
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