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Abstract 

Developing therapies for complex brain diseases faces significant challenges due to biological complexity and the stringent 
blood-brain barrier. While nanomedicine holds promise, traditional R&D paradigms suffer from inefficiency. This review 
introduces an intelligent theranostic paradigm that integrates high-fidelity brain organoid models, high-throughput screening 
(HTS/HCS), and Artificial Intelligence (AI). In this closed-loop workflow, organoid platforms serve a diagnostic role, generating 
predictive data on nanomedicine performance. AI then provides therapeutic guidance by processing this data to drive rational drug 
design, synthesis, and interaction prediction. This AI-driven convergence is poised to significantly accelerate the development of 
precisely targeted and individualized nanomedicines, offering new hope for breakthroughs in treating brain diseases. 
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1. Introduction 
Central Nervous System (CNS) diseases, 

encompassing a variety of complex conditions such as 
neurodegenerative diseases, brain tumors, and 
psychiatric disorders, represent a leading cause of 
long-term disability and mortality globally[1, 2]. 
Developing drugs for CNS conditions has historically 
been fraught with challenges due to the high 
complexity of the brain biological system, the 
heterogeneity of diverse cell types like neurons and 
glial cells, and the stringent restrictions imposed by 
the Blood-Brain Barrier (BBB)- a critical physiological 
barrier. The clinical trial failure rate for CNS drugs 
has been significantly higher than that for non-CNS 
drugs[3]. The BBB effectively prevents approximately 
99% of small molecule drugs and nearly all large 
molecule biologicals from entering the brain, acting as 
the primary obstacle for drug delivery[4, 5]. 

Traditional drug discovery models have struggled to 
effectively overcome the BBB and precisely target 
therapeutic agents to diseased brain regions or 
cells[3], leading to high clinical trial failure rates for 
CNS drugs. Furthermore, even when drugs reach the 
brain, non-specific distribution and targeting can 
result in severe off-target effects and adverse 
reactions, further narrowing the therapeutic 
window[6]. Therefore, developing novel therapeutic 
strategies capable of efficient brain delivery and 
precise targeting is crucial for conquering CNS 
diseases (Figure 1A). 

Nanomedicine, particularly engineered 
nanoparticle (NP) carriers, has shown immense 
potential[7] for overcoming these challenges due to 
their tunable size, shape, surface properties, and 
capacity to conjugate diverse functional ligands[6, 8]. 
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Nanoparticles can encapsulate various therapeutic 
agents (from small molecules to biological 
macromolecules), and by modifying their surface 
chemistry or conjugating targeting ligands, they can 

enhance their ability to cross the BBB, control drug 
release within the specific brain microenvironment, 
and potentially achieve precise targeted delivery to 
specific brain regions or cell types[9] (Figure 1A). 

 

 
Figure 1. From a linear workflow to an integrated theranostic paradigm. (A) The Theranostic Challenge in Brain Delivery. The blood-brain barrier (BBB) presents a 
formidable obstacle. Compounding this challenge is the vast design space of nanoparticles (NPs), making it exceedingly difficult to predict which candidates will not only cross the 
BBB but also achieve the desired therapeutic effect. (B) The Disconnected Traditional R&D Workflow. The conventional linear process is inefficient because it separates testing 
from design. Its reliance on poorly predictive in vitro and animal models constitutes an unreliable 'diagnostic' step, leading to high failure rates and low clinical translation of 
potential 'therapeutics'. (C) The Integrated Theranostic Paradigm. This new approach closes the theranostic loop. High-fidelity models like brain organoids and organoid-chips 
serve as the 'diagnostic platform' to generate predictive data via high-throughput screening. Artificial Intelligence (AI) acts as the central engine, processing this diagnostic data to 
provide 'therapeutic guidance'—rationally designing and optimizing nanomedicines. This integration of diagnostics and therapeutics is poised to dramatically improve the success 
rate of developing effective brain-targeted nanomedicines. 
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However, despite the great potential 
demonstrated by nanomedicine, traditional 
nanomedicine development paradigms still face 
inherent limitations that severely constrain their 
clinical translation efficiency and ultimate efficacy. 
These challenges span the entire pipeline from drug 
design and screening to application. Firstly, the 
complex interactions between nanoparticles and the 
BBB and its constituent cells (such as endothelial cells, 
pericytes, and astrocytes)[4], as well as their 
transmembrane transport mechanisms[10, 11], are 
difficult to accurately predict and control. Traditional 
design often relies on empirical optimization[12] and 
lacks a deep understanding and efficient utilization of 
specific BBB transport mechanisms. Secondly, the 
complexity of nano-bio interactions poses another 
major challenge. Upon entering systemic circulation, 
NPs undergo a series of dynamic processes, including 
systemic clearance[5, 8, 12], plasma protein corona 
formation[13-17], and interactions with blood cells 
and endothelial cells[6]. These dynamic processes 
significantly influence NP biodistribution and 
targeting efficiency. Furthermore, the predictive 
power of existing preclinical models remains 
insufficient. Traditional in vitro cell models (such as 
2D cell culture) struggle to mimic the complex 
microenvironment of the human brain[18, 19] and 
BBB function[18, 20], and animal models differ 
significantly from human brain structure and 
physiology, with critical divergences in aspects such 
as cortical folding (gyrification), the ratio of white to 
gray matter, and the diversity and function of glial 
cell subtypes[21, 22]. Consequently, nanomedicines 
showing promising results in vitro or in animal 
models often fail in clinical trials[3]. Additionally, the 
vastness of the nanomaterial design space necessitates 
exploring a massive number of parameter 
combinations, while the limited throughput of 
screening methods and the lack of intelligent tools to 
extract effective design rules from large datasets have 
made nanomedicine optimization processes slow and 
inefficient[23]. Finally, disease heterogeneity and 
inter-patient variability[24] pose a formidable 
challenge to a "one-size-fits-all" R&D model (Figure 
1B). 

Addressing the inherent limitations of 
traditional brain-targeted nanomedicine R&D 
concerning overcoming physiological barriers, 
predicting complex interactions, model predictive 
power, exploring the design space, and handling 
individual variability, incremental improvements 
based on single technologies are insufficient. The true 
"path to breaking the mold" lies in building a new 
R&D ecosystem that integrates multidisciplinary 
cutting-edge technologies and possesses intelligent 

decision-making capabilities. In recent years, the 
rapid development of high-fidelity in vitro models has 
provided an unprecedented platform for mimicking 
the real brain microenvironment and evaluating 
nanomedicine behavior in vitro. Combined with 
modern high-throughput screening (HTS) and 
high-content screening (HCS) technologies capable of 
generating massive high-content information, this has 
enabled the systematic generation of large-scale, 
multi-dimensional experimental data on the 
interactions between nanomedicines and complex 
brain biological systems. More critically, the rapid 
advancement of Artificial Intelligence (AI) has 
provided unprecedented opportunities for mining 
deep patterns from these massive, high-dimensional 
data, predicting nanomedicine properties and 
behavior, and guiding rational design and efficient 
screening, thereby becoming an intelligent engine for 
accelerating brain-targeted nanomedicine R&D. This 
integration heralds a paradigm shift towards an 
integrated, theranostic R&D workflow. In this new 
paradigm, the drug development process itself is 
reframed: the 'diagnostic' component involves rapidly 
and accurately predicting a candidate's biological 
behavior using high-fidelity models, while the 
'therapeutic' component leverages these predictions to 
rationally design superior nanomedicines. This 
review will systematically discuss how these 
technologies can deeply collaborate, forming an 
integrated innovation paradigm for brain-targeted 
nanomedicine R&D (Figure 1C). 

2. Engineering human brain models for 
predictive theranostic insights 

For decades, the study of the blood-brain barrier 
(BBB) and the effects of drugs on the central nervous 
system has relied on traditional preclinical models. 
These include two-dimensional (2D) in vitro systems, 
such as simple cell cultures or Transwell models[25], 
and in vivo animal models. While foundational, these 
models have significant limitations. 2D cultures lack 
the complex 3D tissue architecture and cell-cell 
interactions of the human brain, leading to poor 
barrier function and physiologically irrelevant results. 
Animal models, though systemic, suffer from 
limitations such as high costs and low throughput[26]. 
More importantly, significant interspecies biological 
differences often lead to poor correlation with human 
outcomes. These differences are not trivial; for 
instance, the composition of blood plasma proteins 
varies between species, leading to the formation of a 
species-specific "protein corona" on nanoparticles[27]. 
This corona, in turn, dictates how the nanomedicine is 
recognized by the mononuclear phagocyte system 
(MPS), which also exhibits differences in cell 
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populations and clearance activity[28]. Consequently, 
the aggressive off-target accumulation of 
nanomedicines in the liver and spleen observed in 
many small animal models is a frequent translational 
failure, as it may not accurately predict the 
biodistribution and therapeutic window in 
humans[29]. 

To bridge this significant predictive gap, the 
development of more human-relevant and 
biologically complex models has become a critical 
priority[30]. In recent years, as a major breakthrough 
in three-dimensional (3D) cell culture technology, 
organoid technology has rapidly evolved, providing 
unprecedented theranostic platforms[31-34]. These 
"high-fidelity testing grounds" not only mimic 
complex physiological and pathological processes but 
also function as a 'diagnostic assay' for drug 
candidates, generating predictive data on their 
potential efficacy and toxicity. In the field of 
neuroscience, the progress of human brain organoids 
has been particularly noteworthy, and they have 
become indispensable new tools for clinical 
neuroscience research, bridging the gap between 
patient studies and animal models[35] in Table 1. 

2.1 Leveraging brain organoids for theranostic 
modeling of neuropathology 

Brain organoids, as a 3D culture model capable 
of recapitulating the complexity of the human brain in 
vitro, have seen their construction methods evolve 
significantly, representing a major advancement in 
the field of neuroscience. This evolution has largely 
drawn upon and expanded the understanding of the 
self-organizing potential of pluripotent stem cells 
gained from earlier research. As reviewed by 
Eichmüller & Knoblich[35], the initial landmark work 
can be traced back to the research by Sasai and 
colleagues, who pioneered the demonstration that 
mouse embryonic stem cells could self-organize 
under specific 3D culture conditions to form optic 

cups with stratified structures[36] and cortical tissues 
with six layers[37]. hese early explorations established 
the methodological foundation for the subsequent 
construction of more complex brain organoids. 
Following this, the work by Lancaster et al. marked 
the formal establishment and widespread adoption of 
the "brain organoid" concept[38, 39]. They developed 
a method starting from human pluripotent stem cells 
to generate complex 3D structures containing 
multiple distinct brain regions, greatly advancing the 
in vitro modeling of early human brain development 
and related diseases. Building upon this, researchers 
have continuously optimized culture protocols, 
precisely controlling specific signaling pathways 
during early culture to guide stem cell differentiation 
towards specific brain regions (such as the cortex, 
hippocampus, and thalamus), forming brain 
organoids with greater regional specificity[40-53]. 
Concurrently, a method for constructing models 
directly from human fetal brain tissue also provided 
valuable supplementary resources for research. In 
recent years, Ramani et al. developed the "Hi-Q" brain 
organoid[54], which, through further optimization of 
culture methods, achieved large-scale and 
reproducible generation of models with excellent 
cellular diversity and structural integrity, laying a 
solid foundation for subsequent high-fidelity disease 
modeling and drug screening. 

The "high-fidelity" characteristics of brain 
organoids have been fully demonstrated in 
mimicking specific and complex physiological 
structures. Firstly, concerning the simulation of 
complex physiological barriers, brain organoids have 
shown unique advantages. The normal functioning of 
the brain relies heavily on the finely regulated 
protective structures like the blood-brain barrier 
(BBB) and the blood-cerebrospinal fluid barrier 
(B-CSF-B).  

 

Table 1. Key human brain organoid technologies for theranostic modeling 

Organoid type Source & method Key features & advantages Primary applications Pathologies modeled Ref 
Whole-Brain PSCs via undirected 3D 

self-organization 
Models global brain development & 
early inter-regional interactions 

Studying neurodevelopment; 
investigating inter-regional 
signaling 

Microcephaly, viral 
encephalopathies 

[38] 

Region-Specific PSCs via directed differentiation 
using region-specific signaling 

High regional specificity and 
structural precision 

Region-specific disease modeling; 
targeted drug testing 

Neurodegenerative diseases 
(e.g., Alzheimer's) 

[48] 

Choroid Plexus (ChP) PSCs via ChP-specific induction Forms a functional blood-CSF barrier 
(B-CSF-B) in vitro 

Screening drug CNS permeability; 
studying barrier function 

CNS barrier disorders [55] 

Genetically 
Engineered 

iPSCs + Gene Editing (e.g., 
CRISPR-Cas9) 

High-fidelity modeling of genetic 
diseases; enables isogenic controls 

Personalized medicine; anti-cancer 
drug screening 

Pediatric brain tumors, 
hereditary syndromes 

[69] 

High-Reproducibility Methodological enhancement 
(e.g., "Hi-Q" protocol) 

Improved reproducibility, scalability, 
and diversity for HTS 

High-throughput screening (HTS) 
platforms 

Glioma invasion, 
microcephaly 

[54] 

Explant-Derived Direct culture of fetal brain tissue Preserves native tissue architecture 
and enables direct disease gene 
introduction 

Modeling tumorigenesis  Brain tumors [146] 
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These barriers are not only critical for 
maintaining CNS homeostasis but also represent 
obstacles that many neurological disease treatments 
struggle to overcome. Pellegrini et al., in a pioneering 
study, successfully constructed human choroid plexus 
(ChP) organoids. These ChP organoids could not only 
form choroid plexus epithelium with a selectively 
permeable barrier but also secrete CSF-like fluid into 
the contained lumen[55]. Crucially, they found that 
the selective permeability of this in vitro constructed 
barrier to small molecules was highly consistent with 
the in vivo situation and could even predict the CNS 
permeability of novel compounds. This achievement 
clearly demonstrated the great potential of brain 
organoids (specifically, choroid plexus organoids in 
this context) in reconstituting complex, functional 
physiological barriers in vitro, providing valuable 
tools for studying barrier function, screening drugs 
capable of crossing the barrier, and understanding the 
role of barriers in disease. 

Secondly, brain organoids have also 
demonstrated their exceptional "high-fidelity" in 
precisely mimicking the development and diseases of 
the nervous system, opening up new avenues for 
deeply understanding human-specific disease 
mechanisms. Eichmüller & Knoblich[35], in their 
review, systematically summarized the successful 
applications of brain organoids in modeling various 
neurological diseases[35]. The scope broadly included 
viral encephalopathy[44, 56-62], key pathological 
features of complex neurodegenerative diseases like 
Alzheimer's disease[63-68], and various genetic 
neurodevelopmental syndromes caused by specific 
gene mutations[52]. Building on this, researchers have 
continuously pushed for methodological innovation 
to construct more refined and functional disease 
models. Notably, concerning malignant brain tumors 
like pediatric medulloblastoma and high-grade 
glioma, which traditional animal models struggle to 
fully recapitulate due to their human-specific 
complexity, Lago et al. pioneered the construction of 
specific brain region organoids from human iPSCs 
and combined this with gene editing technology to 
introduce pathogenic mutations, successfully 
establishing in vitro models of these pediatric brain 
tumors[69]. These highly relevant cancer organoids 
not only provide a platform for deeply studying the 
biological and genetic characteristics of tumors but 
also support various key downstream applications 
like in vivo transplantation, co-culture, lineage tracing, 
and drug screening, bringing new hope for 
conquering these challenging malignancies. 
Concurrently, to enhance the reproducibility and 
scalability of brain organoid models, Ramani et al. 
developed the "Hi-Q" brain organoid culture 

method[54]. By further optimizing culture medium 
components and methods, they achieved large-scale 
and reproducible generation of brain tissue models 
with rich cellular diversity and complex structure. 
These Hi-Q brain organoids not only successfully 
modeled key pathological features of 
neurodevelopmental defects like microcephaly but 
could also effectively recapitulate glioma invasion 
processes. This series of advancements further 
powerfully validated the core value of brain 
organoids in precisely mimicking physiological 
processes and the pathology of complex diseases, 
providing an unprecedented tool for neuroscience 
research and novel therapy development. 

2.2 Limitations and improvement strategies 
for brain organoid 

Although brain organoids have achieved 
remarkable success in mimicking tissue complexity, 
the technology is far from perfect, and acknowledging 
its current limitations is crucial for guiding future 
innovation. A primary challenge stems from their 
reliance on self-organization, which, while powerful, 
introduces significant cellular heterogeneity and 
batch-to-batch variability, complicating 
standardization and reproducibility. 

Structurally, a major and widely recognized 
limitation of static organoid cultures is the lack of 
functional vascularization. As organoids grow 
beyond a few hundred micrometers, their internal 
regions suffer from insufficient nutrient and oxygen 
supply, leading to the formation of hypoxic or 
necrotic cores[70]. Concurrently, these in vitro culture 
conditions can induce significant cellular stress 
responses, further compromising the physiological 
relevance of the models[71]. Furthermore, current 
protocols often fail to generate the full spectrum of 
cell types found in the human brain; the insufficient 
integration of critical non-neuronal cells, such as 
microglia, oligodendrocytes, and pericytes, limits 
their ability to model complex cell-cell interactions, 
including neuroinflammation and myelination[55, 
72-80]. Finally, most brain organoids recapitulate 
early fetal development and struggle to achieve a 
mature, adult-like state, which is a significant caveat 
for modeling late-onset neurodegenerative diseases. 
These collective challenges severely constrain the 
predictive power of standalone organoid models. 

To overcome this critical bottleneck of 
avascularity, several innovative strategies have been 
actively pursued. A primary approach involves the 
co-culture of brain organoids with endothelial cells 
(e.g., human umbilical vein endothelial cells or 
iPSC-derived endothelial cells), often supplemented 
with supporting cells like mesenchymal stem cells or 
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pericytes, to promote the self-assembly of 
capillary-like networks within the organoid 
tissue[81-83]. Concurrently, genetic engineering 
techniques have emerged as a powerful tool. By 
inducing the expression of key transcription factors, 
such as ETV2, pluripotent stem cells can be directly 
programmed towards an endothelial lineage, 
allowing for the in situ generation of vascular 
networks from the same cellular source as the neural 
tissue[84]. 

2.3 Advancing theranostic platforms with 
brain-organoid-on-a-chip systems 

While the aforementioned strategies show 
promise in forming structural vascular-like networks, 
achieving functional, dynamic perfusion that mimics 
physiological blood flow remains a significant 
hurdle[85]. To systematically overcome the 
bottlenecks this and other bottlenecks of traditional 
models (Figure 2A, B) and static organoid cultures 
(Figure 2C), the "Brain Organoid-on-a-Chip (BOoC)" 
technology has emerged, representing the current 
state-of-the-art in preclinical brain modeling (Figure 
2)[86].  

This innovative technology ingeniously 
combines the inherent biological complexity of 
organoids with the precision engineering advantages 
of organ-on-a-chip platforms. As highlighted by 
Vunjak-Novakovic et al. in their review on the 
progress of organ-on-a-chip[87], organ-on-a-chip 
systems constructed using engineering methods like 
microfluidics can provide a more dynamic and 
controlled microenvironment for cell and tissue 
culture. Specifically for brain organoids, the BOoC 
platform can achieve fine-tuned control over their 
culture microenvironment, such as simulating 
physiological blood flow through perfusion systems, 
applying precise mechanical stimuli (e.g., shear 
stress), and easily integrating various sensors for 
real-time online monitoring of cell viability and key 
parameters[88-92]. For example, the practice by Cho et 
al. of integrating brain extracellular matrix with 

microfluidics to construct a blood-brain barrier model 
successfully promoted the structural and functional 
maturation of human brain organoids[93]. This 
demonstrated that this engineering method could 
effectively overcome challenges in traditional 
organoid culture related to imprecise environmental 
control, restricted nutrient transport, and difficulty in 
standardization, providing a powerful tool for 
constructing more functionally stable and 
physiologically relevant in vitro brain models (Table 
2). 

This strategy of integrating brain organoids with 
on-chip technology has shown great potential in 
addressing key bottlenecks in brain disease research 
and drug development, particularly in simulating the 
BBB and studying drug delivery. By co-culturing 
brain organoids with key cell types like brain 
endothelial cells, pericytes, and astrocytes on a chip, it 
is possible to build BBB models that are structurally 
more realistic and functionally more complete[94]. 
These BOoC-BBB models can not only highly mimic 
core physiological functions like BBB structural 
integrity and selective permeability but can also be 
used for dynamic studies of nanoparticle transcytosis 
mechanisms and efficiency. For instance, existing 
research constructed a multi-cellular co-culture 
system on a chip incorporating brain endothelial cells, 
pericytes, and a 3D astrocyte network, successfully 
recapitulating key structural and functional 
characteristics of the BBB, including tight barrier 
function, specific gene expression profiles, and 
physiologically relevant astrocyte polarization. 
Importantly, this platform could precisely track the 
3D distribution of nanoparticles within the vascular 
and perivascular regions and reveal the mechanisms 
of cellular uptake and BBB penetration mediated by 
receptor-mediated transcytosis[94]. This undoubtedly 
provides a crucial in vitro evaluation tool for 
developing novel nanomedicines capable of 
effectively crossing physiological barriers. 

 

Table 2. Summary of Brain-Organoid-on-a-Chip (BOoC) technologies 

Platform Key components Method Core advantage Primary application Key research goal Ref 
Basic BOoC Brain Organoid + 

Microfluidic Chip 
Integrating organoids 
into a perfused 
microfluidic chip. 

Overcomes static culture limitations 
(e.g., nutrient diffusion, necrotic 
cores); provides a dynamic, 
controlled microenvironment. 

Enhanced, long-term 
brain modeling. 

Improving model fidelity 
for studying 
neuropathology. 

[93] 

BOoC-BBB Model BOoC + BBB-specific 
cells (endothelial 
cells, pericytes, 
astrocytes). 

Co-culture of organoids 
with key BBB cell types 
on a single chip. 

Recreates a functional BBB in vitro; 
enables dynamic study of 
nanoparticle transcytosis. 

Testing drug and 
nanoparticle delivery 
across the BBB. 

Modeling neurovascular 
unit (NVU) dysfunction; 
studying transport 
mechanisms. 

[94] 

Multi-Organon-a-Chip BOoC fluidically 
linked with other 
organ modules (e.g., 
liver, kidney). 

Creating 
interconnected, 
multi-organ systems on 
a chip. 

Simulates systemic drug effects 
(ADMET) and inter-organ crosstalk, 
providing greater physiological 
relevance. 

Pharmacokinetic 
(PK/PD) modeling; 
systemic toxicology 
screening. 

Understanding whole-body 
response and off-target 
effects of nanomedicines. 

[95] 
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Figure 2. The evolution of preclinical models toward high-fidelity theranostic platforms. (A) Traditional in vitro models provide low-fidelity diagnostic data. Simple 
2D cultures and Transwell systems, while foundational, suffer from a lack of 3D architecture, oversimplified cell interactions, and poor barrier function. These limitations severely 
reduce their predictive power for in vivo performance, yielding unreliable diagnostic information for candidate selection. (B) Animal models offer systemic context but with poor 
translatability. In vivo models present significant challenges, including interspecies differences, high costs, and ethical considerations. Crucially, they often fail to predict 
human-specific responses (e.g., nanoparticle accumulation in the liver instead of the brain), making them a poorly translated platform for developing human-targeted theranostics. 
(C) Brain organoids represent a leap toward human-relevant theranostic modeling. Derived from human iPSCs or ESCs, brain organoids recapitulate key features of human brain 
development, including human-specific genetics and complex cellular diversity. This enables high-fidelity disease modeling, offering a far more relevant context for evaluating 
nanomedicines. However, limitations such as a lack of vascular perfusion and limited standardization still hamper their full potential as robust theranostic platforms. (D) 
Brain-Organoid-on-a-Chip (BOoC) systems emerge as integrated theranostic platforms. By integrating organoids into microfluidic devices, BOoC technology overcomes many 
limitations of static cultures. It provides a controlled, perfused microenvironment, enables the integration of an engineered BBB, and allows for real-time monitoring. These 
features establish BOoC systems as the most advanced preclinical platforms for high-throughput, physiologically relevant screening of brain-targeted nanotheranostics. 
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Besides simulating the BBB and specific 
neurological diseases, a key development direction 
for BOoC technology is the construction of 
multi-organ interconnected systems comprising 
modules of multiple organoids or different tissue 
types, thereby more comprehensively mimicking 
complex physiological and pathological processes of 
the human body in vitro. The behavior of 
nanomedicines in the body often involves complex 
communication and interactions among multiple 
organs, which is difficult to fully capture with 
single-organ models[95]. By integrating key organ 
modules such as brain, liver, and kidney on a chip, 
researchers can more realistically simulate drug 
Absorption, Distribution, Metabolism, and Excretion 
(ADMET) processes and evaluate their efficacy and 
potential systemic toxicity in different organs[96-98]. 
These multi-organ interconnected BOoC systems 
provide an unprecedented platform, offering greater 
physiological relevance, for deeply understanding the 
overall behavior of nanomedicines in complex 
biological systems, revealing the interaction patterns 
between them and different cell types and distal 
organ microenvironments—that is, effectively 
addressing the complexity and unpredictability of 
nano-bio interactions[99-101]. 

However, whether it is increasingly complex 
brain organoid models or precisely controlled brain 
organoid-on-a-chip systems, despite their immense 
potential in mimicking the real brain 
microenvironment and generating massive, 
high-dimensional, and dynamic biological data, 
challenges remained in efficiently leveraging this 
potential for large-scale drug screening and 
translating it into practical R&D breakthroughs. This 
collectively highlighted an urgent need: these 
high-fidelity in vitro models must be deeply integrated 
with high-throughput screening technologies and 
intelligent analysis platforms driven by artificial 
intelligence. 

3. Powering the theranostic workflow 
with high-throughput screening 
platforms 

To fully leverage brain organoids in drug 
development, a paradigm shift is required from 
traditional, manual, and low-throughput methods to 
integrated, automated platforms driven by 
High-Throughput Screening (HTS) and High-Content 
Screening (HCS) (Figure 3). The conventional 
approach (Figure 3A) is often plagued by high 
variability, labor-intensive workflows, and limited 

data dimensionality, which severely constrains its 
scalability and predictive power. In contrast, the new 
paradigm (Figure 3B) integrates automation for 
standardized organoid production and screening with 
advanced, multi-modal data acquisition systems, 
paving the way for robust data analysis and, 
ultimately, higher clinical translation efficiency.  

As discussed in the preceding chapter, while 
high-fidelity 3D cell models like brain organoids 
offered unprecedented physiological relevance 
compared to traditional methods, their application in 
drug development was hindered by several 
limitations when attempting large-scale screening. 
These prominently included the low throughput of 
existing culture and analysis methods, which made 
systematic large-scale drug screening infeasible; 
inherent challenges of the models themselves, such as 
cellular composition heterogeneity, size and 
morphological variability, lack of vascularization, and 
complex handling procedures[102]; and the difficulty 
in efficiently processing and extracting valuable 
information from the high-dimensional data they 
generated. These limitations severely constrained the 
application efficiency and data output of brain 
organoids in drug development. To overcome these 
challenges and accelerate the application of organoid 
models, the introduction of High-Throughput 
Screening (HTS) and High-Content Screening (HCS) 
technologies was essential. HTS, through its 
automation, miniaturization, and standardized 
workflows, significantly increased experimental 
volume, primarily breaking the throughput 
bottleneck in brain organoid research. HCS, on the 
other hand, further enabled the acquisition of rich, 
multi-dimensional phenotypic and mechanistic data 
from complex models. The integration of HTS and 
HCS thus brought unprecedented opportunities for 
understanding complex brain function and tackling 
neurological diseases by creating a powerful platform 
to leverage the potential of organoid models.  

3.1 Scaling up theranostic discovery with 
high-throughput screening 

The core capability of HTS is primarily reflected 
in its significant contribution to scaling up brain 
organoid research. By integrating automated culture 
systems, advanced microfluidic technology, and 
innovative methods like brain organoid-on-a-chip, 
researchers can now achieve large-scale generation, 
standardized maintenance, and precise manipulation 
of brain organoids, greatly overcoming the 
throughput bottleneck of traditional methods.  
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Table 3. Achieving scale and depth in organoid screening with HTS/HCS. 

Technology Core function Challenge overcome Key applications Ref 
High-Throughput 
Screening (HTS) 

Enables scale and automation to generate, 
culture, and process thousands of organoids 
in a standardized manner. 

Throughput Bottleneck: Overcomes the 
low-volume, manual limitations of 
traditional organoid research. 

Large-scale chemical/drug screening; 
high-throughput evaluation of nanomedicines 
(e.g., BBB permeability, toxicity). 

[103] 

High-Content 
Screening (HCS) 

Enables deep and quantitative data 
acquisition by automatically capturing 
complex, multi-dimensional phenotypic data. 

Lack of Data Depth: Moves beyond simple 
viability readouts to capture rich, 
multi-parameter biological information. 

Multi-modal phenotyping (imaging, 
electrophysiology); quantitative analysis of 
complex disease pathologies (e.g., Aβ/p-tau). 

[105] 

HTS/HCS + 
Single-Cell Omics 

Reaches molecular-level resolution by 
revealing cellular responses and mechanisms 
for individual cells. 

Cellular Heterogeneity: Dissects 
cell-type-specific responses that are masked 
in bulk analysis. 

Drug target identification and validation (e.g., 
CRISPR screens); deciphering gene regulatory 
networks. 

[106] 

 

 
Figure 3. From manual screening to an automated theranostic platform. (A) The Traditional Manual Screening Workflow is inadequate for theranostic R&D. This 
process is characterized by manual handling, leading to low yield, high variability, and poor reproducibility. The reliance on labor-intensive, low-throughput analysis provides only 
limited, low-dimensional data, making it impossible to systematically evaluate the complex interactions required for developing effective theranostics. (B) The Automated 
HTS/HCS Platform Powers a Modern Theranostic Workflow. This integrated paradigm begins with the standardized, automated production of uniform organoid arrays, often 
from gene-edited hiPSCs. An automated HTS/HCS platform then screens large compound libraries against these cultures. The automated, multi-modal data acquisition generates 
large-scale, high-dimensional datasets, which serve as the 'diagnostic' input for analysis and modeling. This allows for the identification of biological patterns and the selection of 
optimal candidates, directly connecting the diagnostic screening to therapeutic development and significantly improving clinical translation efficiency. 
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A prominent example is the "Hi-Q" brain 
organoid culture method developed by Ramani et al., 
which can efficiently and reproducibly generate 
thousands of brain organoids and has been 
successfully applied to high-throughput drug 
screening[54], providing a solid methodological 
foundation for large-scale evaluation of nanomedicine 
behavior in complex 3D brain models (such as BBB 
permeability simulation, targeting efficiency, efficacy, 
and toxicity). This fully demonstrated how HTS 
technology, through standardized culture and 
handling procedures, overcomes the bottleneck of 
scalability in traditional brain organoid research. 
Additionally, Renner et al. reported a fully automated 
high-throughput workflow for chemical screening 
using human midbrain organoids[103], which 
achieved complete automation from organoid 
generation and maintenance to optical analysis in 
standard 96-well plates, significantly improving 
experimental efficiency and reproducibility. This fully 
demonstrated how HTS technology, through 
standardized culture and handling procedures, 
overcomes the bottleneck of scalability in traditional 
brain organoid research (Table 3).  

3.2 Gaining deep theranostic insights with 
high-content screening 

However, achieving scalability alone is 
insufficient; extracting valuable insights from large 
sample sets requires deep data. The complexity of 3D 
cell models necessitates HCS to capture rich, 
multi-parameter data, going beyond simple endpoint 
indicators[102]. In this regard, HCS plays a central 
role on the HTS platform. It transforms complex 
biological processes into precisely quantifiable and 
deeply analyzable data, achieving deep data 
generation for brain organoid research. HCS can 
rapidly and automatically acquire and quantify 
complex biological data from large numbers of brain 
organoid samples, including fine details of cellular 
morphology, localization of specific molecular 
markers, and cellular network states, far surpassing 
traditional single biochemical or viability metrics. 
Collectively, this rich, multi-parameter dataset 
constitutes a 'theranostic signature' of the 
nanoparticle's interaction with the biological system, 
providing the crucial information needed for 
subsequent AI-driven prediction. 

Combining HCS with other functional 
high-throughput analysis methods enables a more 
comprehensive characterization of the brain 
organoid's biological state. In the automated 
workflow by Renner et al., multiple high-throughput 
analysis methods were integrated, including 
High-Content Imaging (HCI) for evaluating brain 

organoid cellular composition and neurite 
morphology, multi-electrode array (MEA) technology 
for measuring electrophysiological activity, and 
calcium imaging for single-cell neuronal activity 
analysis[103]. This multi-modal HTS integration 
method captured complex information from 
morphological, functional, and other levels in brain 
organoids, greatly improving the efficiency and depth 
of quantitative analysis of brain organoid phenotypes. 
The study also emphasized that by optimizing tissue 
clearing protocols and using thin-section brain 
organoid (SFEBs) models, they overcame the 
challenge of imaging thick tissues, achieving 
high-content imaging with single-cell resolution 
across the entire brain organoid, simplifying 
cumbersome steps like traditional sectioning and 
further improving throughput. Durens et al. similarly 
developed an integrated high-throughput workflow 
that applied HCI, MEA, and calcium imaging to 
hiPSC-derived brain organoids, revealing information 
on neuronal activity and cellular composition through 
multimodal analysis and further demonstrating the 
power of high-throughput methods in brain organoid 
research[104]. 

Particularly for complex neurological diseases, 
HCS can quantify disease-related complex 
phenotypes or pathological features, making them 
directly applicable to drug screening and evaluation. 
For instance, Park et al. constructed a HCS platform 
based on human iPSC-derived brain organoids, 
utilizing 1300 brain organoids from 11 participants 
(including CRISPR-Cas9 edited isogenic lines) for 
large-scale testing of FDA-approved blood-brain 
barrier permeable drugs[105]. Using HCS, they 
successfully quantified Alzheimer's disease 
(AD)-related pathological features, such as Aβ and 
p-tau protein deposition and cell viability. This study 
not only demonstrated the feasibility and efficiency of 
quantitatively evaluating complex disease 
phenotypes using HCS on large numbers of brain 
organoid samples but also combined mathematical 
modeling and network analysis to guide drug 
selection, providing strong support for drug screening 
and precision medicine strategies based on brain 
organoids. This ability to convert biological 
phenomena into structured data not only enhances 
the objectivity and reproducibility of research but, 
more importantly, provides a solid data foundation 
for subsequent complex computational analysis, AI 
modeling, and intelligent decision-making. 

3.3 Reaching molecular resolution in 
theranostic profiling with single-cell omics 

At a deeper molecular level, modern HCS 
platforms are further integrating high-throughput 
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omics technologies, particularly single-cell omics, to 
reveal molecular-level biological responses and 
mechanisms at single-cell resolution. This integration 
significantly enhances the depth and resolution of 
information obtained from brain organoid models, 
enabling an unprecedented fine-grained 
understanding of drug effects on cellular subtypes 
and molecular responses of specific cell types. These 
methods, applied to models like brain organoids, are 
helping us understand drug action at the cellular and 
molecular mechanisms with unprecedented detail. 
This powerful potential for deep mechanistic 
investigation provides unprecedented cellular and 
molecular level insights for brain-targeted drug 
development, directly guiding more precise and 
effective drug design and screening. For example, a 
recent study utilized CRISPR-Cas9 for 
high-throughput genetic perturbation of various brain 
disease-related genes in human brain organoids and, 
through single-cell RNA sequencing, deeply 
investigated the impact of gene functional loss on cell 
fate determination, cellular state, and gene regulatory 
networks[106]. This work demonstrated the capability 
to acquire and analyze complex single-cell molecular 
profiles in brain organoid HTS, revealing disease 
mechanisms and the vulnerability of cellular subtypes 
with unprecedented depth, providing new avenues 
for drug target identification and validation. Another 
study obtained dense time-point single-cell 
transcriptome and chromatin accessibility data during 
human brain organoid development and constructed 
gene regulatory networks to decipher molecular 
mechanisms of human brain development[107]. By 
combining high-throughput genetic perturbation with 
single-cell readout, they validated key transcription 
factors in cell fate determination. These two studies 
collectively emphasized the strong potential of 
utilizing HTS strategies to acquire high-dimensional 
single-cell molecular data from brain organoids, a 
physiologically relevant model, and combining this 
with computational methods for deep mechanistic 
investigation. 

Consequently, the integration of HTS (providing 
scalability and automation) and HCS (providing 
high-content data and multi-modal analysis) 
constitutes a data platform capable of generating 
massive, high-quality, high-dimensional biological 
data, addressing the bottleneck in data analysis for 3D 
model HCS. This data, especially single-cell omics and 
network data, is key for training powerful AI 
algorithms. It can help us uncover complex 
interaction patterns between "nanomedicines and 
brain organoids," build precise predictive models, and 
ultimately guide rational nanomedicine design and 
virtual screening, further enhancing the intelligence 

level of drug development. However, to truly 
transform this powerful platform into a mature drug 
development tool, further in-depth and systematic 
investigation is needed concerning the correlation 
between the key in vitro phenotypes generated and 
clinical biomarkers, as well as the predictive 
applicability of high-throughput screening results for 
clinical efficacy[108]. 

4 Orchestrating the theranostic paradigm with 
artificial intelligence 

The convergence of high-fidelity biological 
models with advanced computational methods gives 
rise to a powerful new R&D engine driven by 
Artificial Intelligence (AI). In this paradigm, complex, 
high-dimensional data generated from brain 
organoid-HTS/HCS platforms—including 
histological images, high-content imaging data, and 
multi-omics readouts—are fed into AI systems for 
processing and analysis. The AI then serves a dual 
purpose: it builds models to predict the complex 
biological behavior of nanomedicines and provides 
rational guidance for the de novo design and 
optimized synthesis of new therapeutic candidates, 
creating a powerful loop between data generation and 
intelligent design (Figure 4). Building upon the robust 
data platform enabled by high-fidelity organoid 
models and HTS/HCS, AI takes center stage as the 
intelligent engine driving the design and screening of 
brain-targeted nanomedicines. AI, particularly 
through data-driven ML/DL methods, offers 
unprecedented capabilities for developing predictive 
models that accurately forecast the complex behavior 
and properties of nanomedicines within the brain. 
This includes predicting critical parameters such as 
BBB permeability, brain distribution, cell targeting, 
binding affinity to specific targets, and essential 
ADMET/PK characteristics. This powerful predictive 
capacity fundamentally transforms the R&D 
workflow, enabling a more intelligent and rational 
approach that directly guides the optimization of 
nanomedicine structure and composition towards 
desired brain targeting (Table 4). 

4.1 Extracting theranostic signatures from 
complex data using AI 

The first crucial function of AI in this integrated 
paradigm is the efficient processing and extraction of 
meaningful insights from the massive, high-quality, 
high-dimensional biological data generated by the 
brain organoid and HTS/HCS platforms. This 
complex, human-relevant dataset is indispensable for 
training powerful AI algorithms to recognize 
biologically relevant patterns that would be 
imperceptible to human analysis.  
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Figure 4. The AI engine orchestrating the theranostic workflow. The theranostic workflow is fueled by high-dimensional data generated from brain organoid-HTS/HCS 
platforms. This data, serving as the diagnostic input, is processed by an AI engine that performs two synergistic functions: Theranostic Prediction: AI models are trained to predict 
the complex in vivo behavior of nanomedicines. This includes forecasting their physical properties, protein corona formation, brain targeting efficiency, interactions with 
regulatory systems (e.g., immune cells), and overall efficacy and toxicity. These predictions form a comprehensive diagnostic profile for each candidate. Therapeutic Guidance: 
Based on the diagnostic insights, AI provides rational guidance for creating new and improved nanotherapeutics. This can involve high-throughput virtual screening, modular 
synthon-based design, or de novo design of novel molecular structures. This AI-guided cycle, which continuously refines therapeutic design based on diagnostic prediction, 
accelerates the discovery of effective and safe brain-targeted therapies. 

 

Table 4. AI's role in orchestrating the brain-targeted nanomedicine R&D workflow. 

AI-driven phase Core function & purpose Key AI technologies Ref 
Data Processing & 
Feature Extraction 

Process massive, high-dimensional HTS/HCS data (images, omics) to extract 
meaningful biological features for model training. 

Convolutional Neural Networks (CNNs) for image analysis; 
algorithms for segmenting and quantifying cellular features. 

[113] 

Predictive Modeling & 
Rational Design 

Build predictive models for nanomedicine properties (e.g., BBB permeability, 
toxicity) and guide the de novo or rational design of new candidates. 

QSNAP for self-assembly prediction; AI-enhanced Virtual 
Screening (VLS); Modular Synthon-Based Design. 

[119] 

Closed-Loop 
Theranostic Cycle 

Create a self-optimizing "Design-Build-Test-Learn" cycle by integrating 
AI-driven design, automated synthesis, and HTS/HCS testing. 

Generative AI for de novo design; ML-integrated 
High-Throughput Experimentation (HTE); robotic synthesis 
platforms. 

[139] 

Overarching 
Challenges 

- Data Scarcity & Quality; Model Interpretability (the "black box" problem); High Computational Cost. 
- 

[134] 
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For example, Convolutional Neural Networks 
(CNNs) are adept at processing high-content imaging 
data and can automatically identify subtle changes in 
cell morphology, subcellular structures, and even 
cellular network activity patterns[109-111]. Lampart et 
al., in their review, mentioned the use of CNNs for 
processing and analyzing brain organoid image data 
from HCS platforms[112], and Gritti et al. developed 
MOrgAna[113], a tool that uses machine learning for 
automatic segmentation and quantification of brain 
organoid images. AI has also been used to interpret 
and understand more complex biological response 
data. For instance, the study by Tebon et al. used 
machine learning-based image segmentation and 
classification algorithms to successfully achieve 
label-free, longitudinal quantitative monitoring of the 
biological mass changes of thousands of brain 
organoids, thereby revealing the heterogeneity of 
treatment resistance at single-organoid 
resolution[114]. 

Beyond image data, AI also excels at processing 
other high-dimensional data. For example, 
multi-layer perceptron models can efficiently process 
large-scale fluorescence data generated by 
high-throughput droplet screening, quantifying the 
impact of different chemical compositions on complex 
biological reaction systems[115]. When dealing with 
complex single-cell data, Ramos Zapatero et al. used 
the dendrogram analysis method Trellis for analyzing 
complex single-cell data, achieving fine-grained 
analysis of drug effects on post-translational 
modification (PTM) signals, DNA damage, cell cycle, 
and apoptosis across multiple dimensions from a 
high-throughput mass cytometry platform[116]. 
These AI algorithms can automatically learn and 
extract key biological features and patterns from these 
diverse types of high-throughput, high-content data, 
laying a solid foundation for subsequent predictive 
model building. In this phase, the core role of AI is to 
efficiently and accurately extract key biological 
features and patterns from high-throughput 
experimental data, transforming biological 
phenomena into precisely quantifiable and deeply 
analyzable data[102], setting the stage for subsequent 
intelligent prediction and design. 

4.2 Guiding therapeutic design with AI-driven 
theranostic prediction 

Leveraging the rich features extracted from the 
high-fidelity brain organoid models via HTS and 
HCS, data-driven AI/DL methods unlock significant 
potential in brain-targeted nanomedicine 
development[117]. Their core strength lies in building 
predictive models that accurately forecast 
nanomedicine behavior and properties within the 

complex human brain environment, encompassing 
key factors like BBB permeability, distribution, 
targeting, binding affinity, and ADMET/PK 
profiles[118]. This powerful predictive capacity is 
reshaping the R&D landscape, enabling a more 
intelligent and rational approach that directly guides 
the design and optimization of nanomedicines for 
effective brain targeting. 

4.2.1 Designing the molecular architecture of 
nanotheranostics 

AI's predictive capability and insights are 
reflected in various specific strategies for guiding 
nanomedicine design and screening. Firstly, AI can be 
used to predict the key formation and physical 
properties of nanostructures and guide component 
selection and design accordingly. For example, when 
designing nanomedicines formed by component 
self-assembly, the molecular structure of precursor 
molecules (such as the drug itself) plays a key role in 
their assembly behavior and the final nanoparticle 
size, but this is difficult to predict. In this regard, 
Shamay et al. developed the Quantitative 
Structure-Nanoparticle Assembly Prediction 
(QSNAP) model, which accurately predicted 
assembly behavior and size based on molecular 
descriptors of drug molecules and guided drug 
payload selection, successfully applied to the design 
of targeted nanomedicines[119].  

Secondly, structure-based virtual ligand 
screening (VLS) is a mature method using 
computational prediction to guide drug design[117]. 
Its principle involves computationally docking 
potential ligand molecules into the 3D structure of 
target proteins to predict binding modes and strength, 
thereby enabling the rapid identification of potential 
active molecules from vast chemical libraries. With 
the accessible chemical space expanding to billions or 
even trillions of molecules[23], efficient VLS 
strategies, increasingly leveraging AI and machine 
learning (ML) techniques, have become crucial for 
accelerating lead compound discovery. AI/ML 
enhances VLS by improving docking accuracy, 
filtering out less promising candidates early, and 
navigating ultra-large chemical spaces more 
effectively than traditional brute-force simulation. For 
example, there was research using ultra-large-scale 
virtual screening to successfully discover active 
molecules with novel chemical scaffolds from a 
library of hundreds of millions of compounds[120]. 

Furthermore, AI is also driving more 
principle-based rational design methods. Unlike 
virtual screening which searches existing chemical 
libraries, these methods focus on de novo design or 
building molecules from smaller units based on 
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fundamental principles. One such approach is 
Modular Synthon-Based Design, which involves 
using a predefined set of molecular fragments or 
"synthons" as building blocks to construct novel 
molecular structures. This method allows for the 
systematic exploration of a vast synthesizable chemical 
space by combining and optimizing these fragments. 
Modular Synthon-Based Design, such as exemplified 
by the V-SYNTHES methods[121], can efficiently 
generate lead compounds with high activity and 
diversity and avoid costly custom synthesis. AI 
significantly empowers Modular Synthon-Based 
Design by assisting in the selection and design of 
optimal synthons, guiding the efficient combinatorial 
assembly of fragments, predicting the properties and 
synthesizability of generated molecules, and 
navigating the vast combinatorial space. This type of 
AI-guided method provides important guidance for 
the rational design of components (such as active 
molecules and functional ligands) for brain-targeted 
nanomedicines, enabling the construction of NPs with 
tailored functionalities and improved properties.  

4.2.2 Predicting the biological fate and efficacy of 
nanotheranostics 

AI's predictive capabilities are crucial for 
understanding the complex biological interactions of 
nanomedicines at multiple levels, from molecules to 
cells. Accurately evaluating these interactions is vital 
for understanding how nanoparticles behave upon 
entering the body and how they affect specific 
biological components, which in turn influences their 
efficacy and potential off-target risks. 

At the molecular level, AI aids in predicting the 
interactions between nanomedicines (or their 
components) and biomolecules. A key focus here is 
the prediction of protein corona formation upon 
systemic administration. ML models are applied to 
predict the composition and characteristics of the 
protein corona formed around nanoparticles, crucial 
for understanding their subsequent biological identity 
and fate[122, 123]. Leveraging datasets from 
advanced techniques like mass spectrometry-based 
proteomics, ML models show promise in enabling 
efficient and reliable prediction of protein adsorption 
onto nanoparticles and their associated impacts[124, 
125]. Furthermore, AI is instrumental in accurately 
evaluating the binding interactions between 
nanomedicine components (such as drugs or targeting 
ligands) and specific biological target proteins. AI, 
especially deep learning models, can predict these 
binding events based on molecular and protein 
structures[126-128]. However, these models face 
challenges in generalizing to predict the binding 
behavior of novel molecules or proteins, sometimes 

learning "shortcuts" from training data. Advanced 
methods like AI-Bind are being developed to improve 
generalization and provide more reliable tools for 
precise design and safety assessment[129]. 

Moving to the cellular level, AI is applied to 
predict various nano-cellular interactions, 
encompassing processes such as cell recognition, 
adhesion, and uptake mechanisms, as well as the 
resulting cellular responses like toxicity. These 
interactions are highly dependent on both 
nanoparticle properties and the cellular 
microenvironment. ML approaches demonstrate 
strong capabilities in forecasting cellular association 
and uptake, and in identifying the influencing factors. 
For instance, a recent study utilized large-scale 
parallel screening and machine learning to 
systematically identify material properties and 
intrinsic cellular features (such as gene expression) 
that influence nanoparticle cellular uptake, 
constructing a genome-nanoparticle interaction 
network and identifying genetic biomarkers like 
SLC46A3[130]. This work effectively demonstrates 
how AI can leverage complex cellular data to predict 
nanoparticle absorption and pinpoint key influencing 
factors.  

Crucially, AI is proving powerful in predicting 
nanoparticle cytotoxicity, a vital outcome of these 
cellular interactions and a key concern for therapeutic 
development. Based on experimental data from 
cell-based assays, ML models offer various 
capabilities for toxicity prediction. These include 
quantitative predictions, such as gradient boosting 
regression models demonstrating high accuracy in 
forecasting the viability of nanoparticle-treated cell 
lines[131], and models providing quantitative 
cytotoxicity predictions across varying concentrations 
for inorganic nanomaterials[132]. Importantly, AI 
models also contribute to understanding the factors 
driving toxicity. By analyzing experimental data, they 
can identify key influencing attributes like size, 
surface properties, and experimental conditions, 
thereby highlighting the role of components such as 
nano-corona complexes in toxicity 
determination[133]. Leveraging these predictive and 
analytical capabilities, AI, often combined with 
techniques like genetic algorithms, enables 
high-throughput in silico screening. This allows for 
the rapid identification of selectively cytotoxic 
nanoparticles against specific cell lines[132], 
significantly accelerating the search for targeted 
therapeutic candidates. 

Understanding these intricate biological 
interactions across molecular and cellular scales 
through AI-driven prediction provides valuable 
insights into the fundamental mechanisms governing 
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nanoparticle behavior, thereby guiding the rational 
design of nanomedicines with desired targeting and 
reduced side effects. 

4.2.3 Addressing key challenges in AI-driven 
theranostic design 

However, despite the significant advancements 
and ongoing improvements in AI models for rational 
design and interaction prediction (as discussed in 
Section 4.2), building highly accurate predictive 
models with consistently good generalization ability 
across diverse chemical spaces and targets still faces 
significant challenges.  

Firstly, a primary challenge stems from the 
availability and quality of training data. AI models are 
heavily reliant on large, high-quality datasets, yet 
data remains scarce, costly to acquire, and limited by 
privacy concerns and restricted sharing, especially for 
rare diseases or novel targets[134]. Available datasets 
often suffer from biases, errors, missing information, 
and inconsistent experimental results, further 
reducing AI reliability. This is particularly 
problematic for predicting novel structures or 
interactions with unknown targets, leading to poor 
performance[134]. As highlighted by some studies, 
this limitation is partly due to models sometimes 
tending to learn non-universal patterns or "shortcuts" 
from training data (for example, relying on the 
network topology of protein-ligand bipartite graphs 
rather than intrinsic molecular features)[117, 129], 
which fundamentally limits their predictive capacity 
for truly novel compounds. Furthermore, a general 
lack of representation of 'negative data' (e.g., 
unsuccessful experiments) in literature hinders a 
complete understanding[134]. 

Secondly, the interpretability and explainability 
of complex AI models remain a major hurdle. The 
"black box" nature of deep learning models makes it 
difficult to understand why a particular prediction is 
made, which is crucial for gaining biological insights, 
building trust among researchers and clinicians, and 
meeting regulatory requirements[134]. 

Thirdly, computational intensity poses another 
severe challenge. While AI assists in pre-filtering 
candidates, traditional simulations like molecular 
docking still face huge bottlenecks when exploring 
ultra-large chemical spaces. Furthermore, training 
complex AI models requires substantial 
computational resources, creating barriers 
particularly for smaller research teams[134]. 

Finally, balancing multiple objectives in the 
rational design phase (e.g., optimizing simultaneously 
for activity, selectivity, ADMET, and synthesizability) 
and developing robust, standardized evaluation 
processes for models across these diverse criteria 

remains complex[134]. 
In summary, while AI models have shown 

immense potential in predicting nanomedicine 
properties and interactions, effectively overcoming 
these multifaceted challenges is paramount. These 
hurdles necessitate innovative strategies that integrate 
computational predictions with experimental 
validation, forming a dynamic and iterative 
workflow. 

4.3 Creating a closed-loop theranostic system 
for iterative optimization 

Capitalizing on the enhanced predictive 
capability of AI, a natural synergy is formed with the 
screening and modeling platforms introduced in 
Sections 2 and 3. This potent combination is what 
closes the theranostic loop: AI processes the 
'diagnostic' data from the screening platforms to build 
predictive models, and then leverages these models to 
guide the rational design of the 'therapeutic' agent. 
This directly enables the building of a dynamic, 
self-optimizing R&D system. As highlighted in 
relevant reviews[117], closely integrating 
computational tools with experimental validation is 
considered crucial for driving the transformation of 
drug discovery processes, aiming to overcome the 
bottlenecks of traditional linear workflows and form a 
"virtuous cycle" where experimental data 
continuously refines computational models, and in 
turn, models guide experiments (Table 4).  

The core workflow of this AI-driven closed-loop 
system was envisioned as follows: 

AI Design and Prediction Phase: In this initial 
phase, AI models, leveraging prior knowledge and 
learned patterns (including those from biological 
atlases[118, 135, 136] and previous experimental 
cycles), predicted the potential performance of a series 
of virtually designed or initially screened 
nanomedicines or their components for brain 
targeting. Advanced generative models could even 
explore novel chemical spaces and propose 
innovative nanomedicine design solutions with 
predicted properties (as discussed in Section 4.2.1). 
These in silico predictions aimed to rapidly narrow 
down the potential design space, prioritizing 
candidates with the highest predicted potential based 
on properties like BBB permeability and target 
interaction (as discussed in Section 4.2.2). 

Automated Synthesis Phase: Subsequently, 
based on AI's predictions and rational design 
suggestions, the (automated) nanomedicine synthesis 
phase was initiated. This phase utilized automated 
synthesis platforms (such as robotic synthesisers) for 
high-throughput, high-precision synthesis of selected 
nanomedicine candidates, ensuring batch-to-batch 
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consistency and reproducibility[137, 138]. 
High-throughput synthesis was essential to generate 
the diverse set of candidates needed for the 
subsequent experimental evaluation. 

Experimental Testing (HTS/HCS) and 
AI-Integrated Optimization Phase: Next, these newly 
synthesized nanomedicines underwent systematic 
evaluation using high-fidelity experimental 
platforms. This involved applying HTS/HCS to 
large-scale brain organoid models or BOoC platforms 
and employing methods like high-content imaging, 
multi-omics analysis (including single-cell omics), 
and functional assays to comprehensively collect 
detailed experimental data on the interactions and 
effects of the nanomedicines within the complex brain 
organoid microenvironment. This experimental phase 
actively leveraged AI-integrated High-Throughput 
Experimentation (HTE) strategies not only for data 
acquisition but also for accelerated optimization and 
understanding structure-activity relationships (SARs) 
within the complex nanomedicine design space. 
Computation was integrated with HTE to guide the 
experimental design itself and analyze the resulting 
data for optimization. For instance, a landmark study 
demonstrated how the integration of machine 
learning with high-throughput experimentation 
enabled the rapid design and discovery of novel 
self-assembling nanoparticle formulations from a vast 
chemical space[139]. By computationally predicting 
promising drug-excipient combinations and then 
rapidly validating nanoparticle formation and 
properties using high-throughput methods, they 
effectively explored millions of potential 
formulations. Similarly, other work applied this 
integrated approach (HTS synthesis/screening 
combined with machine learning) to explore the 
design space of complex nanostructures like spherical 
nucleic acids (SNAs), revealing structure-activity 
relationships and identifying key design parameters 
influencing biological activity with significantly fewer 
tests than traditional methods[140]. These specific 
examples illustrate how the deep integration of AI and 
HTE within the experimental cycle overcomes 
complexity and inefficiency by allowing for 
data-driven exploration and optimization of the vast 
design space and facilitating the discovery of 
underlying design rules. 

Data Feedback and AI Model Learning/Update 
Phase: The massive, high-quality, high-dimensional 
experimental data generated by the HTS/HCS 
platform, incorporating these AI-integrated HTE 
strategies, was then collected, processed, and 
standardized as HTS data feedback, which was 

subsequently "fed" to the AI system. The experimental 
data from advanced in vitro models like brain 
organoids or organoids-on-a-chip provided more 
biologically relevant data for training AI models (e.g., 
models for predicting ADMET/PK properties, 
cellular uptake, efficacy, or SARs), thereby 
significantly improving the quality and predictive 
power of the models compared to using less relevant 
data. Finally, in the AI model learning and update 
phase, AI models utilized this new stream of data for 
iterative optimization. They continuously updated 
their internal parameters and improved their 
predictive accuracy and understanding of complex 
biological laws governing nanomedicine behavior in 
the brain context. If the model's predictions for a 
tested nanomedicine did not match the experimental 
results, the AI model performed self-adjustment and 
refinement using the discrepancy as a learning signal. 
If the predictions matched, the model's confidence 
was further strengthened. 

The AI model, after learning and updating, was 
then used to guide the next round of nanomedicine 
design, prediction, and screening, potentially 
exploring modifications to the previous candidates or 
proposing entirely new designs based on the 
improved SAR understanding. This process formed a 
continuously iterative, spiraling upward closed-loop, 
where each cycle built upon the knowledge gained in 
the previous one, leading to progressively better 
designs and more accurate predictions, thereby 
accelerating the path to identifying promising 
candidates. 

5. Charting the path toward personalized 
nanotheranostics 

The preceding sections detailed the complexity 
of brain diseases and the challenges of brain-targeted 
nanomedicine delivery. We explored the significant 
potential of three key areas: high-fidelity brain 
organoid models; HTS/HCS technologies which 
generating rich, multi-dimensional data; and AI that 
serves as a core engine for extracting insights and 
guiding rational design. These technologies, 
developed independently or synergistically, together 
lay a solid foundation for the future development of 
brain-targeted nanomedicine, heralding a new era of 
therapy that is more precise, efficient, and even 
tailored to individuals. Deeply integrating these 
cutting-edge technologies is expected to overcome 
current bottlenecks in brain nanomedicine R&D, 
significantly improving clinical translation efficiency 
and treatment success rate (Table 5). 
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Table 5. The path to precise and personalized brain nanomedicine. 

Future application Key enabling technologies Landmark example discussed Theranostic goal Ref 
Precision Design & 
Delivery 

AI Models + High-Resolution Brain 
Cell Atlases + High-Fidelity 
Organoids 

Comprehensive Brain Atlases: Single-cell atlases of 
human brain and vasculature provide molecular maps 
for targeting. 

Achieve nanomedicine delivery with cell-type and 
subcellular precision, maximizing efficacy and 
minimizing off-target effects. 

[118] 

Accelerated R&D 
Pipeline 

AI-driven Closed-Loop 
"Design-Validate" Platforms 

AI-Discovered TNIK Inhibitor: An AI platform 
identified a novel target and guided inhibitor design, 
which rapidly advanced to clinical trials. 

Significantly shorten discovery-to-clinic timelines, 
reduce costs, and increase the success rate of 
brain-targeted nanomedicines. 

[141] 

Individualized 
Theranostics 

Patient-Specific Organoid Models 
("Digital Twins") + AI-driven 
Analysis 

Individualized Patient Tumor Organoids (IPTOs): 
Patient-derived models accurately predicted clinical 
responses to therapy (TMZ). 

Enable true personalized medicine by selecting or 
designing the optimal nanomedicine for each 
individual patient's disease. 

[143] 

 
5.1 Advancing the precision of nanomedicine 
through a theranostic approach 

Looking ahead, AI-driven intelligent design and 
screening engines will be deeply coupled with 
high-fidelity brain organoid models, greatly 
enhancing the precision of predicting the behavior 
and delivery of brain-targeted nanomedicines in the 
complex brain environment. The high complexity of 
brain structure, cellular heterogeneity across different 
brain regions, disease heterogeneity, and the strict 
limitations of the Blood-Brain Barrier (BBB) require 
nanomedicines to precisely cross the BBB, reach 
specific brain regions, and specifically target diseased 
cells or subcellular structures while avoiding impact 
on healthy brain tissue. Achieving this high level of 
precision particularly relies on gaining deep 
understanding of the molecular characteristics of 
various cell types and subtypes making up brain 
tissue, as well as their features in different brain 
regions and physiological/pathological states. 
Recently, large-scale single-cell genomics research has 
made breakthroughs, constructing a comprehensive 
brain cell atlas covering major human brain regions, 
developmental stages, and disease states[118], as well 
as high-resolution atlases specifically for the human 
brain vasculature[135, 136]. These atlases revealed 
with unprecedented detail the wide diversity of brain 
cell types and subtypes, region-specific differences 
across brain regions, and disease-specific molecular 
alterations, providing a key reference for precisely 
defining the cell types and subtypes that need to be 
targeted and understanding their molecular basis. 
Utilizing the molecular details revealed by these 
human brain cell atlases, combined with AI predictive 
models, researchers can precisely predict their BBB 
permeability, brain distribution patterns, and 
interactions with and uptake efficiency by specific 
brain cell types like neurons, glial cells, and vascular 
endothelial cells based on nanomedicine structural 
parameters (e.g., size, surface chemical modification, 
charge), drug loading properties, and characteristics 
of the simulated brain microenvironment. Further 
combining diverse brain organoid models with 
high-content screening to validate these predictions 
will enable the design of brain-targeted 

nanomedicines to truly achieve precise control from 
macroscopic distribution to microscopic 
cell/subcellular localization, maximizing efficacy and 
minimizing off-target effects. 

5.2 Streamlining the R&D pipeline for faster 
theranostic development 

Besides enhancing the precision of drug 
delivery, the application of AI is driving a significant 
transformation in the entire drug development 
process, significantly improving efficiency and 
effectiveness in key areas including virtual screening, 
ADMET prediction, and synthesis planning[141]. In 
the field of brain nanomedicines, which is 
characterized by a long R&D cycle and high costs, the 
AI-driven closed-loop learning and iterative 
optimization workflow discussed earlier is the core 
approach to achieving efficiency breakthroughs. 
Unlike the traditional lengthy linear R&D model, the 
AI-enabled workflow can rapidly perform 
computational prediction and rational design, 
significantly narrowing down the range of candidates 
before entering the experimental stage and 
prioritizing nanomedicine formulations and 
compositions with high potential for success. This 
rapid computation-experiment iterative cycle 
significantly reduces unproductive experiments, 
greatly shortening the cycle time from lead 
compounds to preclinical candidates, lowering R&D 
costs, and thereby accelerating the discovery and 
translation of brain-targeted nanomedicines. 

The potential of AI to transform and accelerate 
the entire drug discovery and development pipeline 
has been clearly demonstrated by successful cases, 
even outside the specific realm of nanomedicine. For 
example, a compelling recent case illustrated how an 
AI platform was used to identify TNIK as a potential 
therapeutic target for fibrosis[141, 142]. Subsequently, 
through an AI-assisted structure-based design 
workflow, a small molecule inhibitor targeting TNIK 
was rationally designed and optimized. This 
AI-driven design process considered molecular 
structural features, predicted binding modes with the 
target, and predicted ADMET/PK properties. The 
lead compound identified through this 
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computationally guided process was effectively 
validated in subsequent in vitro and in vivo 
experiments, demonstrating favorable efficacy and 
safety profiles, and was ultimately successfully 
advanced to clinical trials. This demonstrably 
successful AI-driven drug development workflow, 
while applied to a small molecule drug, highly 
aligned with the principles of AI-driven design 
proposed in this review for brain-targeted 
nanomedicines, leveraging computational guidance 
for rational design and accelerated progression 
through the pipeline. This case validated AI's 
potential in guiding drug discovery and optimization 
across the entire pipeline, a principle directly 
applicable to accelerating the development of brain 
nanomedicines within the proposed new paradigm. 

5.3 Realizing personalized theranostics for 
individual patient care 

Ultimately, combining AI-driven intelligent 
design, efficient screening, and high-fidelity models is 
expected to achieve precise treatment for individual 
patients with brain diseases (Figure 5). Brain diseases 
commonly exhibit significant inter-patient variability, 
reflected in genetic background, pathological features, 
disease progression, and treatment response, making 
traditional "one-size-fits-all" treatment approaches 
difficult to be effective. Achieving individualized 
medicine requires developing treatment plans based 
on the patient's unique biological characteristics. By 
combining patient genomic, clinical imaging, and 
liquid biopsy data, as well as data from 
patient-specific brain organoid models[143, 144], AI 
models can deeply learn and model patient-level 
disease features and response patterns to different 
nanomedicines. This approach effectively transforms 
each patient-derived organoid into a 'theranostic 
digital twin.' This powerful in vitro proxy allows 
clinicians to computationally screen and rationally 
design the optimal nanomedicine for that specific 
individual before administration, seamlessly 
integrating personalized diagnosis and treatment. 
Recently, researchers developed individualized 
patient tumor organoid (IPTO) models, constructed 
by co-culturing patient tumor tissue with brain 
organoids. These models faithfully preserved the 
human brain tumor microenvironment and cellular 
heterogeneity and were proven capable of accurately 
predicting patient clinical response to therapies like 
temozolomide (TMZ) in prospective clinical studies 
and revealing potential resistance mechanisms[143]. 
This breakthrough achievement validated the 
feasibility of using high-fidelity individualized 
models to predict real patient treatment response. In 
the future, combined with AI's deep analysis, pattern 

learning, and prediction of data generated from these 
individualized models, AI will be able to provide 
decision support for clinicians, assisting in selecting 
the most suitable brain-targeted nanomedicine 
formulation and treatment plan for specific patients, 
thereby truly achieving precise treatment for 
individualized brain diseases, maximizing efficacy 
and minimizing side effects. 

6. Conclusion 
Developing effective therapies for CNS diseases 

remains a formidable challenge, primarily due to the 
brain's biological complexity, the stringent BBB, and 
the limitations of traditional R&D models. This 
review has presented an integrated paradigm 
leveraging cutting-edge technologies to overcome 
these hurdles. The core of this approach lies in the 
synergy between high-fidelity brain organoid models 
(including organoid-on-a-chip platforms), HTS/HCS, 
and AI. 

This powerful technological system enables a 
dynamic, self-optimizing closed-loop R&D workflow. 
High-fidelity models generate biologically relevant, 
high-dimensional data on nanomedicine interactions 
within a complex brain-like environment. AI serves as 
the intelligent engine, processing this data to build 
predictive models, inform rational nanomedicine 
design, and guide rapid experimental validation via 
HTS/HCS. 

The adoption of this integrated paradigm 
promises to significantly accelerate brain-targeted 
nanomedicine discovery and improve its precision. It 
allows for more accurate prediction of nanomedicine 
behavior, including BBB permeation, tissue 
distribution, and cell-specific targeting. By 
intelligently navigating the vast design space and 
iteratively refining candidates based on experimental 
feedback, the R&D cycle can be substantially 
shortened, reducing costs and increasing success 
rates. Furthermore, the potential to integrate 
patient-specific data and models offers a 
transformative pathway towards truly individualized 
brain disease treatment. 

While the convergence of these fields marks a 
pivotal shift, the path toward realizing this fully 
integrated paradigm is not without significant 
hurdles that require concerted effort to overcome. Key 
challenges remain in standardizing the highly 
complex and multi-modal experimental data 
generated from diverse organoid platforms to ensure 
quality and enable robust cross-platform validation. A 
potential solution lies in collaborative, 
community-wide efforts to establish standardized 
data formats and build open-access, federated 
databases. 
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Figure 5. The proposed workflow for personalized brain theranostics. This figure illustrates the future of individualized patient care, enabled by a closed-loop 
theranostic workflow. The cycle begins with an individual patient, from whom clinical and biological data (e.g., genomic, pathology reports) are collected. This information is used 
to engineer a 'theranostic digital twin'-a patient-specific brain organoid model that recapitulates the individual's disease. This high-fidelity model is then subjected to an AI-driven 
high-throughput screening platform, which performs two key tasks: (1) 'diagnosing' the organoid's response to a library of nanomedicines and (2) 'guiding' the rational design of 
an optimal, personalized nanotherapeutic. Finally, the resulting tailor-made nanomedicine is administered to the patient, completing the patient-centric theranostic cycle from 
diagnosis to precision treatment. 

 
 

Concurrently, enhancing AI model 
generalization and interpretability is paramount; 
overcoming the "black box" nature of deep learning is 
critical for building trust and deriving actionable 
biological insights. The development and application 
of explainable AI (XAI) will be essential in this 
regard[145]. Perhaps most critically, we must ensure 
the clinical relevance of this entire workflow by 
rigorously validating that the insights gleaned from 
these in vitro systems possess true predictive power 
for outcomes in human patients. This will require 
systematic studies correlating organoid-derived 
biomarkers and therapeutic responses with 
real-world clinical data. Despite these challenges, this 
AI-driven, integrated approach provides a robust 
framework and unprecedented tools for developing 
precise, efficient, and personalized brain-targeted 
nanomedicines, holding great promise for addressing 
devastating neurological conditions in the future. 
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