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Abstract

Rationale: Increased levels of advanced glycation end products (AGEs) have been observed in the brain tissues of patients with
Alzheimer's disease (AD). Methylglyoxal (MGO) is a potent precursor of AGEs. To date, there have been no reports of utilizing
deep learning (DL) technologies to target MGO scavengers for the development of AD therapeutics. Therefore, DL-driven
approaches may play a crucial role in identifying potential MGO scavengers and candidates for Alzheimer's treatment.

Methods: We developed "DeepMGO," a novel DL-based MGO scavenging activity prediction model, trained on 2,262 MGO
scavenging activity assays from 660 compounds. Using this approach, we identified and validated TP-41 as a potential MGO
scavenger in a mouse model of memory impairment.

Results: DeepMGO demonstrated robust predictive performance and identified novel compounds with high MGO scavenging
activity. TP-41 ameliorated depression symptoms and memory deficits in mouse models.

Conclusions: Using DeepMGO, we identified TP-41 as a potential therapeutic agent for AD.

Keywords: methylglyoxal, Alzheimer’s disease, deep learning, memory impairment, drug discovery

Introduction

Alzheimer's disease (AD) is a neurodegenerative
disorder that poses significant global health
challenges, characterized by progressive cognitive
decline and memory impairment impacting millions
worldwide [1]. Despite extensive research efforts into
AD pathogenesis, effective treatments remain elusive
and current therapies only provide limited
symptomatic relief and fail to halt disease
progression. AD is becoming increasingly prevalent
owing to the aging global population, highlighting the

need for more effective interventions. Advancements
in research, particularly in targeting the underlying
mechanisms such as advanced glycation end products
(AGEs), amyloid plaques, tau phosphorylation, and
neuroinflammation, are crucial for developing
treatments that can slow or prevent the onset of AD
[2].

Recent studies emphasize the role of
methylglyoxal (MGO), a dicarbonyl compound, in AD
pathogenesis [3]. MGO induces cellular damage,
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inflammation, cytotoxicity, and apoptosis through
reactive oxygen species (ROS) generation [4, 5]. MGO
is implicated in cellular damage associated with
hallmark features of AD, such as neurofibrillary
tangles, amyloid  (AP) plaques, and the formation of
AGEs [6, 7]. Moreover, AGEs are formed during the
glycolysis process through the non-enzymatic
reaction of dicarbonyl compounds (such as MGO)
with amino acids in proteins [8]. In individuals with
AD, abnormal accumulation of MGO has been
observed in various tissues, including cerebral fluids
and organs [9-17], suggesting its potential as a
therapeutic target.

Despite growing recognition of MGO's role in
AD, current therapeutic approaches remain limited.
MGO-scavenging strategies have emerged as
potential interventions for AD treatment [18, 19], and
aim to reduce oxidative stress and inhibit AGE
formation associated with MGO. Compounds such as
aminoguanidine, tryptophan (Trp), tryptamine, and
5-hydroxytryptophan (5-HTP) have shown promise in
this regard [20, 21].

Deep learning (DL) algorithms have been
applied to screen vast libraries of compounds to
identify new drug candidates targeting AD [22]. DL
has been successfully used in the identification of
small molecules capable of modulating the
acetylcholinesterase enzyme, which plays a key role
in AD pathology, leading to the discovery of several
promising drug leads [23]. Therefore, we aimed to
identify the most efficient MGO scavenger molecules
using a novel DL technique.

The majority of DL models utilize large assay
data from chemical libraries to facilitate virtual drug
screening and prioritization of candidate compounds
[24]. For MGO scavenger identification, constructing a
DL model using a dataset derived from chemical
properties and MGO scavenging activity assays holds
great potential for the rapid identification of
promising novel MGO scavengers while minimizing
the need for extensive assays on numerous new
compounds.

To address this knowledge gap, our study
introduces an innovative approach using DL to
develop an MGO scavenging activity screening
prediction model called "DeepMGO." In addition, we
evaluated and validated the predictive performance
of our model using an independent test set collected
from the assay results of diverse publications. We
used this novel DL model to prioritize previously
unknown compounds as application data for
identifying TP-41 as a novel MGO scavenger derived
from Trp. We further sought to validate findings from
the DL model and investigated the top candidate
molecules’ impacts on AD-related phenotypes in
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mouse models exposed to high-dose MGO [2].

Methods
MGO scavenging activity assay

MGO scavenging activity assay was performed
to analyze the interactions between MGO and
compounds during 0, 1, and 6 days, according to the
protocol of Nemet et al. with slight modification [25].
MGO in the presence (or absence) of 660 compounds
(natural compounds [482 species], FDA-approved
drugs [159 species], and amino acids [19 species])
were incubated in PBS at pH 7.4 and 0.02% sodium
azide for 1 week at 37 “C. The affinity of the combined
MGO and compound was evaluated by measuring the
fluorescence  intensity at  excitation/emission
wavelengths of 355/460 nm using a VICTOR™ X3
multilabel plate reader (PerkinElmer, MA, USA).

In-house data for construction of MGO
scavenging activity prediction model

The in-house data consisted of 2,262 MGO
scavenging activity values from MGO scavenging
activity assays, including 660 compounds at
concentrations ranging from 0.001 to 1,000 pM (Figure
S1). Molecular feature calculations were performed
for these data using the PaDEL Descriptor [26].
Specifically, molecular feature vectors of compounds
were determined by utilizing the simplified
molecular-input line-entry system format of the
compounds as input. The min-max normalization
method was employed to process individual
molecular features, while Z-normalization was used
to standardize the MGO scavenging activity values.
The Z-normalized MGO scavenging activity value
was considered the MGO scavenging activity score.
The in-house data were divided into training,
validation, and test datasets at a ratio of 8:1:1 (Figure
S1). The higher score indicates a stronger affinity.

Construction of MGO scavenging activity
prediction models using DL

A convolutional neural network architecture was
employed to predict the MGO scavenging activity and
generate a DL algorithm, named DeepMGO.
Convolutional layers and deep neural network
(dense) layers were used for molecular features, with
a concatenated dense layer for screening the
concentration of the last layer of molecular features.
From the concatenation of the molecular features and
screening concentrations, we added two dense layers
to achieve the predicted output (Figure S2 and Table
S1).

Herein, we assume that for DeepMGO, x is the
input for each layer of the convolutional network and
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conv(x)jm is the output of the layer, where j is the index
of the output position and m is the index of the
kernels.

Conv(x) jm = F(BIXiZ6 ™ WI"Xj4m + bjm])  (Eq. 1)

In Eq. 1, bj is a bias term, w™; the m-th weight in
the I-th kernel tensor, L represents the tensor size,
B(") is a batch-normalization function, and F(-) is an
activation function [27, 28].

The performance of the DeepMGO architecture
was compared to that of the DeepIC50 [29] and
ResNet18 [30] models. A concatenation layer was
added between the screening concentration layer and
the last convolutional layer for the molecular features
(Tables S2 and S3 for DeeplC50 and ResNetlS,
respectively).

The parameter options in DeepMGO, DeepIC50,
and ResNet18 were set to 200 for the training epoch
and 50 for the batch size. The learning rate was set to
0.0002 using the Adam optimizer. As the prediction
was regression-based, the root mean square error
(RMSE) was used as a loss function, and the activation
functions were either the hyperbolic tangent or
rectified linear activation (ReLU) functions. All DL
models were generated using the keras v2.1.0 package
in a Python environment.

Construction of MGO scavenging activity
prediction models using machine learning
(ML)

For the ML models, we utilized lasso, ridge,
random forest (RF), and support vector regression
(SVR), and each ML method employed the scikit-learn
Python package. The optimal hyperparameters for the
lasso, ridge, RF, and SVR were selected while
searching for the best performance in a set of
hyperparameter values (Table S4).

The hypopt Python package was used for
hyperparameter optimization with the training and
validation  datasets. Using DeepMGO, the
MGO-scavenging effects of various Trp derivatives
were predicted, with further analysis of the
compounds’ structure-activity relationships.

Feature selection

In the training dataset, the feature importance
was evaluated using univariate linear regression tests.
Hence, from all the features, we selected the top 10%,
30%, 50%, 70%, and 90% important features. DL and
ML models were built using the training dataset
according to the selected features.

Evaluation of DeepMGO using an independent
test dataset

Additional validation of DeepMGO was
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performed using an independent test dataset
comprising 61 compounds from literature sources that
were identified as being in 50 active and 11 non-active
states to bind MGO or AGEs (Table S5). The
molecular features of each compound were
determined wusing the PaDEL Descriptor. The
screening concentration for DeepMGO was set at 400
uM, which was the screening concentration in the
in-house data.

Metrics for performance comparisons

To compare the performance of the MGO
scavenging activity prediction models, the RMSE and
R? were calculated using the predicted and observed
MGO scavenging activity scores in the test set as
follows:

RMSE = \/% Yi=1(k —P)?  (Eq.2)

= Zk=10k—PK)*
R2=1 - m (Eq 3)
where 7 is the number of cases, y is the k-th observed
MGO scavenging activity score, and pr is the
predicted MGO scavenging activity score for the k-th
case. Thus, ¥ is the overall mean of all yi's.

The RMSE was transformed to log2(RMSE). The
calculated R? and log>(RMSE) values were visualized
as an integrated heatmap with a dot plot using the
ggplot and ggpubr packages in R. Scatter plots and
Pearson’s correlation coefficient (PCC) values were
generated using GraphPad Prism (version 10). For
model validation using the independent dataset, we
calculated the area under the receiver operating
characteristic curve (AUROC) and the optimal cutoff
value via the multipleROC package in R.

Identification of TP-41 as a putative MGO
scavenger for AD using application data

For the application data consisting of previously
unknown compounds, we generated the molecular
features of 40 novel and 4 putative MGO scavengers
for AD treatment (Figure S3).

In silico prediction of blood-brain barrier (BBB)
permeability

To evaluate the potential of TP-41 and the
reference compounds (5-HTP and 5-HT) as known to
cross the BBB, we performed an in-silico prediction by
the BBB permeability prediction model in
LogBB_Pred [31] and ADMET-AI [32]. The
logBB_Pred model gives predicted logBB value
(logBB > -1, BBB permeable). The ADMET-AI
provides a BBB permeability score, where a score
closer to 1 suggests higher permeability.
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An eXplainable Al (XAIl) analysis using
SHapley Additive exPlanations (SHAP)

To understand which features the model used
for the MGO scavenging activity prediction, we
employed SHAP for XAI technique [33, 34]. We
utilized a model-agnostic KernelExplainer from the
shap library in Python. The explainer was initialized
with a background dataset comprising 100 instances
randomly sampled from the training data to serve as a
baseline for predictions. Subsequently, we calculated
SHAP values for each feature across the entire test set
to evaluate the model's behavior on unseen data. The
global importance of each feature was quantified by
calculating the mean of the absolute SHAP values
across all test instances.

Data acquisition in UHPLC-qTOF-MS analysis

The diluted samples were centrifuged, and the
clear supernatant was used for analysis. 2 pL aliquots
were injected. HRMS data were obtained using an
Agilent Revident LC coupled to an Agilent Revident
LC/Q-TOF MS (G6575A; Santa Clara, USA). Mass
spectrometry analysis and chemical profiling were
carried out in positive electrospray ionization (ESI)
with full-scan MS1, using an m/z 20-1700 scan range.
UHPLC runs were performed on an Agilent ZORBAX
RRHD Eclipse Plus Cis column (2.1 x 100 mm, 1.8 pm;
PN 959758-902) set at 40 °C. The mobile phases were
A = water + 0.1% formic acid and B = acetonitrile +
0.1% formic acid at a flow rate of 0.30 mL min™ with
the following gradient: 0.0-0.5 min, 10% B (A 90% /B
10%) — 10.0 min, 100% B (A 0% /B 100%) — 12.0-15.0
min, 10% B (re-equilibration). The ESI source was
operated at a gas temperature of 320 °C with a drying
gas flow of 10 L min™; the nebulizer was set to 35
psig; the sheath gas temperature and flow were 350 °C

and 11 L min™, respectively; and the capillary voltage
was 3500 V.

Data processing in UHPLC—qTOF-MS analysis

Raw LC-QTOF data were processed in Agilent
MassHunter Qualitative Analysis (Agilent
Technologies). Analyses used MSl-only data.
Extracted-ion chromatograms (EICs) were generated
with a extraction window under positive ion mode for
the following exact masses: TP-41 (m/z 378.17), the
proposed TP-41-MGO Schiff-base intermediate (m/z
486.21), and a rearranged product (1m/z 484.15). For the
positive-control experiment, EICs were additionally
generated for tryptophan (m/z 205.05) and a putative
Trp-MGO  adduct (m/z 254.01). Comparative
assessments were performed across TP41 (or
tryptophan) alone, Day(0 (immediately after mixing
with MGO), and Day3. Retention-time windows and
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intensity scales used for plotting matched those
reported in the corresponding figure legends (Figure
S4).

MGO-induced memory impairment mouse
model

Institute of Cancer Research (ICR) mice
(7-weeks-old, male) were obtained from Orient Bio
Inc. (Gyeonggi-do, Korea) and acclimated for one
week before the start of the experiments under 12/12
h light/dark cycles (temperature of 23 +1 °C and 60 +
5% humidity). The mice were fed a laboratory diet
(AIN-76A) and provided with water ad libitum. After
adaptation, the mice were randomly divided into four
groups (five mice per group): control (CON),
MGO-treated (MGO, 60 mg/kg), MGO-co-treated
with  TP-41 40 mg/kg/d, TP-41), and
MGO-co-treated with Trp (40 mg/kg/d). MGO
(dissolved in 30% v/v glycerol in pH 7.4 PBS, Sigma,
St. Louis, MO, USA) was administered to twice per
week at 60 mg/kg via rectal injection, following the
protocol of Md Samsuzzaman et al. (2024), which
demonstrated stable systemic absorption of MGO
through rectal delivery in mice [2]. TP-41 and Trp
(Sigma, St. Louis, MO, USA) were dissolved in saline
and orally administered daily for 2 weeks. Mice were
randomly assigned to experimental groups. All
behavioral scoring and histological quantification
were performed by investigators blinded to the
treatment conditions. All animal experiments were
conducted in accordance with the Care and Use of
Laboratory Animals guidelines and approved by the
IACUC of Gachon University (approval no.
GU1-2022-1A0046).

5xFAD mouse model

The male 5xFAD transgenic mouse line (10
weeks old at purchase; B6SJL-Tg(APPSwFILon,
PSEN1*M146L*L.286V)6799Vas/Mmjax; The Jackson
Laboratory, USA) was maintained by crossing
hemizygous 5xFAD males with B6SJL F1 females.
After a 2-month treatment period with MGO, TP-41,
or Trp, animals were analyzed at 18 weeks of age
(approximately 4.5 months). Mice were housed under
standard conditions (22 + 2 °C, 50-60% humidity, 12-h
light/dark cycle) with free access to food and water.
Experimental groups included WT and 5xFAD
animals treated with vehicle, MGO, TP-41, or Trp (n =
5-7 per group). Mice were randomly assigned to
experimental groups, and all behavioral scoring and
histological quantification were performed by
investigators blinded to the treatment conditions.
Behavioral tests were performed in the following
order, with a minimum 24 h interval between tests to
avoid carry-over effects: NORT — Y-maze — Barnes
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maze. All procedures were approved by the IACUC
of Gachon University (approval no.
GU1-2025-IA0008).

Open field test (OFT)

For assessing the locomotor, exploratory and
anxiety-like behaviors in MGO-induced mice model,
The OFT was performed in an open black box (60 x 60
x 60 cm). Mice were individually placed in the center
of an open box and observed for 5 min [35]. The total
distance traveled was analyzed using the SMART
v3.0, video tracking system (Panlab; Harvard
Apparatus, Barcelona, Spain).

Tail suspension test (TST)

To find the improvement in the depression by
treating TP-41 in MGO-induced mice model, TST was
performed in a TST chamber (60 cm length, 60 cm
height, 11.5 cm depth, and 15 cm width), and each
mouse was suspended using painless tape fixation.
Before recording, all mice were acclimated to the TST
chamber for 2 min. Subsequently, the immobility time
of each mouse was recorded for 4 min [35] and
analyzed using the SMART v3.0 video tracking
system.

Forced swim test (FST)

To investigate the anti-depression effect of TP-41
in MGO-induced mice model, FST was performed in
an FST chamber (50 cm height x 20 cm diameter) filled
with water (up to 30 cm) at room temperature (RT).
Before recording, all mice were adapted to the FST
chamber for 2 min. The time spent immobile for each
mouse was measured in the subsequent 4 mins [36].
The immobility time was analyzed with the SMART
v3.0 video tracking system.

Novel object recognition test (NORT)

To evaluate the spatial memory in the
MGO-induced mice model by treating TP-41, NORT
was performed in an open black box (60 cm x 60 cm *
60 cm). On the training day, the mice were placed in
an open box with two different kinds of identical
objects for 3 min [37]. The next day, the mice were
placed in the same box, in which one of the identical
objects had been replaced with a novel object. The
percentage of recognition (%) was calculated as (time
spent exploring the novel object) / (total time spent
exploring both objects) x 100. The NORT results,
including the total distance traveled, were analyzed
using the SMART v3.0, video tracking system.

Y-maze test

Working memory was evaluated in a Y-shaped
maze composed of three arms (30 cm x 5 cm % 15 cm)
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placed 120° apart [38]. At the start of each session,
mice were released from the end of one arm and
allowed to explore the maze for 8 min. An alternation
was scored when the animal entered all three arms
consecutively without revisiting a previously chosen
arm. The alternation (%) was calculated as (number of
alteration) / (total arm entries - 2) x 100. An
alternation was defined as entries into all three arms
consecutively (e.g., ABC, BCA, or CAB). Behavioral
parameters, including arm entries and alternation
percentage, were quantified using the SMART 3.0
SUPER PACK system.

Barnes maze test (BM)

The Barnes maze apparatus was constructed
from polyethylene and consisted of a circular
platform (45 cm in diameter) with 20 equally spaced
holes (4.5 c¢cm in diameter) arranged around its
perimeter [2]. The platform was elevated 50 cm above
the floor, and an escape box (35 x 25 x 15 cm) was
positioned beneath one designated target hole. Each
mouse was placed in the central starting zone and
trained to locate the escape box over four consecutive
days. The mean latency to reach the target hole was
recorded and analyzed using SMART 3.0 SUPER
PACK software.

Enzyme-linked immunosorbent assay (ELISA)
analysis

The levels of pro-inflammatory cytokines
(interleukin-1f [IL-1p], interleukin-6 [IL-6], and tumor
necrosis factor alpha [TNF-a]) and cortisol from
mouse serum and lysate brain measured with ELISA
kits (R&D Systems, Minneapolis, MN, USA). Those
assays were quantified using colorimetric or
quantification R&D systems assay kits according to
the manufacturer’s instructions.

Free form levels of MGO in serum analysis

MGO levels were analyzed as previously
described, with slight modifications [39]. Briefly, each
serum sample was incubated with 0.45 N perchloric
acid for one day, and then reacted with 10 mM
o-phenylenediamine (0-PD) for one day at RT. The
reacted samples were centrifuged at 12,000 rpm for 30
min. The supernatant was filtered using 0.2 pm filters
(Whatman, Dassel, Germany) and injected into a
high-performance liquid chromatography system
(Waters Corporation, Milford, MA, USA) equipped
with a photodiode array detector (315 nm). Injected
samples (10 uL) were processed with a constant flow
rate (1.0 mL/min). The sample was analyzed using a
Kromasil C!8 column (250 mm X 4.6 mm, 5 pm) with
20% acetonitrile to induce an isocratic condition.
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Immunohistochemistry (IHC) for GR

Glucocorticoid receptor (GR) expression in the
paraventricular nucleus (PVN; bregma —0.70 to —0.90
mm) was assessed by IHC. Brain sections were rinsed
in PBS, incubated in 1% hydrogen peroxide for 15
min, and blocked in PBS (pH 7.4) containing 3%
normal goat serum and 1% BSA. Sections were
incubated overnight at 4 °C with mouse anti-GR
antibody (1:500; Santa Cruz Biotechnology) in 0.3%
Triton X-100. After PBS washes, sections were
incubated with biotinylated anti-goat IgG (1:500) for 1
h, followed by the avidin-biotin complex (ABC, 1:100;
Vector Laboratories) for 1 h at room temperature.
Immunoreactivity was visualized with
3,3’-diaminobenzidine (DAB) in Tris-buffered saline
(pH 7.6). Slides were mounted with DPX medium,
and images were obtained at 100% magnification
using an Olympus BX51 microscope.

IHC for amyloid precursor protein (APP) and
AB

Brains were fixed in 10% neutral-buffered
formalin for 24h at 4 °C, dehydrated in graded
ethanol, cleared in xylene, embedded in paraffin, and
sagittally sectioned at 4 pm. After deparaffinization,
sections were incubated overnight at 4 °C with
antibodies against APP (1:200; Invitrogen, «cat.
14974982), APi4 monomer (mAPi4, 1:200;
Invitrogen, MA5-36246), and oligomeric AP (0Ap,
1:200; Invitrogen, AHB0052). Detection was
performed using the avidin-biotin horseradish
peroxidase complex (Vector Laboratories), and
immunoreactivity was visualized with DAB. Images
were captured at 100x magnification with a Nikon
Eclipse 80i microscope.

Confocal immunofluorescence

Paraffin-embedded brain sections (4 pm) were
incubated with the primary antibody against AP
(6E10, mouse, 1:500; Biolegend) and Ibal (rabbit,
1:500; Wako) overnight at 4 °C. After washing, the
sections were incubated with donkey anti-mouse

Alexa Fluor 555 (1:500; Invitrogen, A-31570,
RRID:AB_2536190) for AP, and donkey anti-rabbit
Alexa Fluor 488 (1:500; Invitrogen, A-21206,
RRID:AB_2535792)  for  Iba-1. Nuclei  were

counterstained with DAPIL. Images were acquired
using a Nikon Al+ laser scanning confocal
microscope and analyzed with NIS-Elements
software.

Western blotting assay

Whole brains collected from mice were lysed in
PRO-PREP protein extraction solution (iNtRON,
Seoul, Korea) at -20°C for 24 h. Tissue lysates were
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separated by centrifugation at 12,000 rpm for 30 min,
and protein content was determined using the
Bradford assay. The Bradford assay was performed a
colorimetric change of at 595 nm in microplate reader
by using bovine serum albumin as standard. Proteins
(30-50 pg) were separated by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis and
transferred to polyvinylidene fluoride membranes.
Membranes were incubated with primary antibodies,
receptors of advanced glycation end products (RAGE)
(1:500, Santa Cruz Biotechnology Inc., Santa Cruz,
California, USA, cat. sc365154), APP (1:1000,
Invitrogen, Carlsbad, CA, USA, cat. 14974982),
mApPie (1:1000, Invitrogen, cat. MA5-36246), oAp

(1:1000, Invitrogen, Carlsbad, CA, USA, «cat.
AHBO0052), tau (total form, 1:1000, Abcam,
Cambridge, MA, USA, cat. Ab109390),
phosphorylated-tau  including monomer and

oligomer types (1:1000, Abcam, cat. Ab254256), and
a-tubulin (1:1000, Invitrogen, cat. A11126), at 4 °C for
1 d. Following incubation, the membranes were
washed and incubated with secondary antibodies at
RT for 2 h. Protein bands were measured using a
ChemiDoc™ XRS+ imaging system (Bio-Rad
Laboratories, Hercules, CA, USA).

Statistical analysis

Statistical analyses were performed using
one-way ANOVA followed by Tukey’s post hoc test
for multiple comparisons, except for the NORT which
was analyzed using two-way ANOVA (treatment x
object) with Tukey’s post hoc test. Data are expressed
as the mean + SEM, and differences were considered
statistically significant at P < 0.05. Animals were
randomly assigned to treatment groups, and
behavioral scoring and image quantification were
performed in a blinded manner.

Results

Using data from 2,262 MGO scavenging activity
assays with 660 diverse compounds, including natural
compounds, FDA-approved drugs, and amino acids,
DeepMGO predicts the MGO scavenging activity
scores of compounds by considering their molecular
features and concentrations as inputs (Figure 1).
Molecular features are represented as vectors with
binary values (i.e., presence or absence) of specific
submolecular structures and continuous values,
including molecular weight, polarizability, acidity,
solubility, atom counts, and topological indices
(Figure S1). We also compared the performance of
DeepMGO with those of other DL and ML models
(Figure 1) to confirm the utility of DeepMGO for the
discovery of novel MGO scavengers.
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In-house data
2,262 MGO scavenging
activity assays

with GWounds

. Solution
Light source  In cuvette Detector

Compound
molecular features &
oncentration
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Figure 1. Study design. Using deep learning, our aim is to screen compounds (MGO scavengers) that bind to MGO with high affinity, finally scavenging MGO. Thus, we
constructed a DL model for predicting MGO scavenging activity scores by scavenger compounds. First, we performed an MGO scavenging activity assay using in-house
compounds to generate our own screening dataset for training an MGO scavenging activity prediction DL model, DeepMGO. We designed DeepMGO taking the molecular
features and concentration of a compound as input, in order to obtain the MGO scavenging activity score of the compound. In addition, we compared the performance of
DeepMGO with those of other DL models regarding MGO scavenging activity prediction of scavenger compounds. We also applied DeepMGO to identify a novel MGO
scavenger from a compound library and inspected its therapeutic effect on AD by in vitro and in vivo experiments.

Structure and training of DeepMGO

To construct DeepMGO, we designed its
architecture to consist of three convolutional and
three dense layers (Figure 2A and Figure S2). The
DeepMGO model was constructed using training and
validation datasets with a full set of features, and its
performance was subsequently evaluated using the
test dataset. In subsequent experiments, feature
selection was applied to optimize the performance of
the model. However, the results in this section are
based on a full set of features. For evaluation of
DeepMGO in the test dataset, the PCC was calculated
between the observed values in the test dataset and
the values predicted by DeepMGO, resulting in a
coefficient of 0.94, with a P value of 2.2 x 10-1¢ (Figure
2B). The performance of DeepMGO was compared to
other models by determining R? and logx(RMSE)
values, wherein a higher R? and lower logx(RMSE)
indicate better performance. The R? value for
DeepMGO was 0.939, and the log>(RMSE) was -3.921
(pink bars in Figure 2C—D, Tables 56 —S7).

DeepMGO showed competitive performance
compared to other DL and ML models

To compare the MGO scavenging activity
prediction performance of DeepMGO, we constructed
DL models using the architectures of DeeplC50 [29]
and ResNet18 [30]. For ML models, we utilized lasso,
ridge, RF, and SVR to construct four prediction
models with hyperparameter optimization. We
compared the performance of each of the seven
constructed models using a test dataset. In the ML
models, lasso had an R? of -0.026 and log>(RMSE) of
-1.878; ridge had an R? of -3.53, log>(RMSE) of -0.808;
RF had an R? of 0.889 and log>(RMSE) of -3.474; and
SVR had an R?of 0.158 and log>(RMSE) of -2.023. In
the DL models, ResNetl8 had an R2 of -2.754 and a
log2(RMSE) of -0.943, whereas DeepIC50 had an R? of
0.640 and a logx(RMSE) of -2.635 (Figure 2C—D,
Tables S6—S57). Collectively, DeepMGO exhibited the
best performance compared with the other models.

https://www.thno.org
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Feature selection for DL and ML models

Furthermore, we aimed to verify whether the
performance of the MGO scavenging activity
prediction model was improved through feature
selection by reducing overfitting. To achieve this, the
feature importance was evaluated using univariate
linear regression tests. Subsequently, the 10, 30, 50, 70,
and 90% important features, among all the features in
the training dataset were selected to construct the ML
and DL models. The performance of each model was
evaluated using a test dataset (Figure S1).

DeepMGO performed superiorly (at 90%
selected features) compared to other models (refer to
the inset bar plots in Figure 2C—D, Figure S5, Tables
S56—57). The R? values of DeepMGO ranged from
0.790 to 0.952, with logx(RMSE) values ranging from
-4.083 to -3.023. The DeeplC50 values R?ranged from

0.615 to 0.842 and logx(RMSE) ranged from -3.224 to
-2.582, while R? of ResNet18 ranged between -2.754 to
0.821 and log>(RMSE) from -3.133 to -0.943. The R? of
the lasso ranged from -0.091 to -0.026, and the
log2(RMSE) ranged from -1.878 to -1.837. The R? of the
ridge ranged from -4.403 to 0.667, and log>(RMSE)
ranged from -2.690 to -0.680. R? of SVR ranged from
0.082 to 0.158, with log>(RMSE) values from -2.023 to
-1.960. The R? of the RF ranged from 0.797 to 0.949,
and the log»(RMSE) ranged from -4.059 to -3.047
(Figure 2C—D, Tables S6—S7). Among the ML
models, the RF models showed the best performance
but did not surpass DeepMGO. Overall, DeepMGO
consistently  outperformed the other models,
regardless of feature subset size, and reached optimal
results at 90% feature selection, which was adopted as
the final model (DeepMGO).
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Evaluation of DeepMGO using an independent
test dataset

To validate the performance of DeepMGO with
an independent test dataset, we curated 61 MGO
scavengers (50 active and 11 inactive to MGO) from
literature sources as an independent test dataset
(Figure 3A and Table S5) [40-64]. MGO scavenging
activity prediction scores were determined for 61
compounds for each MGO scavenging activity
prediction model (Figure 3A). The active state of the
investigated external compounds was assigned to a
value of 1, whereas the inactive state was assigned to
a value of 0. The AUROC was calculated for
evaluation.

The AUROC for DeepMGO was 0.820 (95%
confidence interval [CI]: 0.719-0.925). AUROC of the
RF model with 10% features had the second greatest
value at 0.396 (95% CI: 0.355-0.767; blue line in Figure
3B). Compounds were predicted to be active in
DeepMGO when the MGO scavenging activity score
was greater than -0.186, as determined by the AUROC
value.

Taken together, we selected DeepMGO using
features as the MGO scavenging activity
screening novel MGO

90%
prediction model for
scavengers.

TP-41 was prioritized by DeepMGO

We subsequently utilized the predictive
capabilities of DeepMGO (90% features) for MGO
scavenging activity to identify novel MGO scavengers
as potential AD therapeutics. Forty novel compounds
derived from Trp with the greatest affinity for MGO
and four putative MGO scavenger candidates, along
with reference 5-HT, Trp, tryptamine, and 5-HTP,
were prepared to compare their MGO-scavenging
effects (Figure 4A and Figure S3). Each compound
was screened at concentrations of 100, 400, 500, and
1,000 pM, and the predicted MGO scavenging activity

score was determined. The Trp-derived molecule
TP-41 (500 pM) exhibited the highest predicted score
(Figure 4B and Table S8).

To further assess TP-41's BBB permeability, we
used tools logBB_Pred [31] and ADMET-AI [32],
comparing the predicted BBB permeability of the
reference compounds 5-HTP and 5-HT (also known to
pass the BBB) [65, 66]. The logBB_Pred model
indicated that TP-41 (LogBB = -0.9758) was BBB
permeable (using a cutoff of LogBB < -1 for
non-permeable), similar to 5-HT (LogBB = -0.8031),
while 5-HTP (LogBB = -1.1640) was predicted to be
BBB non-permeable (Figure S6A). To further validate
this finding, we wused ADMET-AI, where the
predicted BBB score was 0.7737 for TP-41,
substantially higher than 5-HTP (0.6010) and 5-HT
(0.5580) (Figure S6B), strongly supporting its
suitability for in vivo studies targeting the brain.
Therefore, we further investigated the therapeutic
effects of TP-41 in an AD mouse model [2].

TP-41 attenuates Hypothalamic-Pituitary-
Adrenal (HPA) Axis Dysregulation and
Neuroinflammation in MGO-induced mouse

Based on the DeepMGO results, we examined
TP-41 as a promising MGO scavenger in an
MGO-induced mouse model of depression and
cognitive impairment (Figure 4C), focusing on HPA
axis dysregulation and neuroinflammation. MGO
administration increased the amounts of GR protein
expression in the hypothalamic paraventricular
nucleus (PVN) and cortisol levels in the serum (Figure
4D-E). To evaluate the effect of TP-41 in the
MGO-induced mouse model, we administered TP-41
(40 mg/kg) to mice and compared it to mice treated
with the antidepressant Trp (40 mg/kg) as a positive
control (PC) (see Figure 4C). Remarkably, the treated
TP-41 mice had reduced levels of GR in the PVN and
cortisol in the serum, similar to the levels in the
Trp-treated mice (Figure 4D-E).

https://www.thno.org
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Moreover, MGO administration increased the
levels of cytokines (IL-1B, IL-6, and TNF-a) in the
serum, which led to neuropsychiatric disorders and
depression as shown in behavior tests (i.e., OFT, TST,
and FST) (Figure 4F-H and Figure 5B-D). Levels of
the free form of MGO in the serum, and RAGE protein
expression levels in the mouse brain, were
significantly increased in MGO-treated mice,
indicating that MGO might be considered a more
potent biomarker for AD progression (Figure 41-]).

In addition, MGO-treated mice also significantly
increased pro-inflammatory cytokines (i.e., IL-1p, IL-6,
and TNF-a) and the free form of MGO in serum
(Figure 4F-I). Conversely, TP-41 administration
significantly reduced RAGE expression in the
MGO-induced mouse model, suggesting that TP-41
may attenuate MGO-induced changes by modulating
the RAGE pathway and consequently inhibiting
NF-xB activation [67] (Figure 4]).

TP-41 ameliorated the depression and
memory loss in MGO-treated mice

To clarify whether MGO affects cognitive and
depression-like behaviors in ICR mice, we performed
NORT experiments to evaluate memory loss. The
percentage of recognition after treatment with MGO
was significantly lower than that in the control (CON)
mice, implying that MGO induces memory
dysfunction (Figure 5A).

Moreover, we conducted several depressive
behavior tests (OFT, TST, and FST). The OFT was
used to assess anxiety behavior, and the MGO-treated
mice groups showed a slight reduction in the total
distance traveled compared with the CON group
(Figure 5B). The TST, another technique used to
measure depression-like activity, demonstrated that
MGO-induced a longer immobility time in mice than
in the control group (Figure 5C). Notably, we found
that MGO strongly triggered immobility in ICR mice
in the FST. Collectively, all behavioral tests showed
that MGO-induced depression/anxiety and memory
loss in mice, possibly by increasing the levels of
inflammatory factors, including cytokines and RAGE
from serum and brain after sacrificing the mice
(Figure 5D).

AD is characterized by the accumulation of AP
and hyperphosphorylated tau protein in the mice
brains [68]. Thus, we verified AP and tau activation as
major pathological features of AD in this novel in vivo
model induced by MGO. MGO treatment in mice
considerably increased the expression of APP, mAp,
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and oAp in comparison with CON mice, and also
increased the expression of the phosphorylated-
oligomeric form of tau (p-oTau; Figure 5E-F).

The expression levels of the phosphorylated
monomeric form of tau (p-mTau) after treatment with
MGO were slightly higher than those in the CON
group (Figure 5F). Our results indicated that MGO
could induce tau phosphorylation and AP deposition
in the brains of mice.

We further analyzed the effects of TP-41 on
cognitive impairment and depressive behavior in
MGO-treated mice. In NORT, TP-41 rescued the
ability of mice to recognize new objects in
MGO-induced mice model (Figure 5A). In the OFT,
which  assesses  locomotor/exploratory  and
anxiety-like behaviors, TP-41 slightly increased the
total distance traveled compared to the MGO group
(Figure 5B). The immobility time was reduced in the
treated TP-41 mice group in the TST and FST,
comparing with MGO-induced group (Figure 5C-D).

To elucidate the mechanisms underlying
AD-related pathology, we evaluated the effect of
TP-41 on MGO-activated Ap types and tau
phosphorylation using western blotting and IHC
staining assays (Figure b5E-F). TP-41 strongly
suppressed MGO-induced APP and AP type
(monomer and oligomer) expression levels in both
western blotting and IHC assays (Figure 5E-F). These
results indicate that TP-41 protects mice from
MGO-induced memory loss via its MGO-scavenging
capacity, which further regulates RAGE expression,
inflammatory factors, and HPA axis-related markers.

In addition, TP-41 treatment significantly
reduced the expression level of p-oTau compared to
the MGO group (Figure 5F). Although p-mTau
expression also showed a decreasing trend, the large
inter-individual variability —prevented statistical
significance. These findings suggest that TP-41
contributes  to  the  suppression of tau
hyperphosphorylation, particularly p-oTau, which is
closely associated with synaptic impairment and
neuronal degeneration, thereby alleviating neuronal
dysfunction [69].

Depression is typically associated with short-
term memory problems. Dementia, including AD and
depression, are closely associated. Previous reports
have suggested that depression can also be a
symptom of AD, particularly in the early stages.
Therefore, TP-41 identified by DeepMGO may be a
novel therapeutic compound for the early stages of
AD.
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TP-41 ameliorates memory deficits and
modulates amyloid and tau in 5xFAD mice

To enhance translational relevance, we examined
the effects of TP-41 in the 5xFAD transgenic mouse
model of AD, which recapitulates amyloid and tau
pathology (Figure 6A). Oral administration of TP-41
(40 mg/kg) improved depressive-like behaviors in
5xFAD mice without affecting body weight (Figure
6B). Cognitive function was evaluated using the
NORT, Y-maze, and Barnes maze. In the NORT,
5xFAD mice showed a significantly lower exploration
ratio compared with WT controls, indicating impaired
recognition memory. MGO-induced WT mice also
exhibited poor exploration similar to 5xFAD mice.
TP-41 treatment improved recognition performance,
whereas Trp supplementation had only a modest
effect (Figure 6C). In the Y-maze, both 5xFAD and
MGO-induced WT mice displayed reduced
alternation behavior, reflecting working memory
deficits, suggesting that MGO exposure contributes to
memory dysfunction. TP-41 significantly increased
spontaneous alternation compared with
vehicle-treated =~ 5xFAD  mice,  while  Trp
supplementation was less effective (Figure 6D). In the
BM, 5xFAD and MGO-induced WT mice exhibited
prolonged escape latencies and impaired spatial
learning. TP-41-treated 5xFAD mice showed shorter
escape latencies and improved probe trial
performance, whereas Trp treatment provided only
partial improvement (Figure 6E).

At the molecular level, Western blot analysis
revealed increased APP, mAfie, 0Ap, and
phosphorylated tau in 5xFAD mice compared with
WT controls. Notably, MGO-induced WT mice
showed a pronounced increase in p-mTau expression,
suggesting that MGO primarily affects tau-related
rather than amyloid-related pathways. TP-41 reduced
APP and Af accumulation, and tau phosphorylation,
while Trp exerted only minor effects (Figure 6F).
These findings demonstrate that TP-41 improves
recognition, working, and spatial memory in 5xFAD
mice and alleviates amyloid and tau pathology, while
also underscoring the contribution of MGO to
tau-associated neurotoxicity.

TP-41 reduces amyloid deposition and
neuroinflammatory responses in the
hippocampus and cortex of 5xFAD mice

Amyloid deposition and neuroinflammation
were assessed in the hippocampus (HP) and cortex
(CX). Immunofluorescence revealed minimal AP
(6E10) and Iba-1 signals in WT controls, whereas both
MGO-induced WT and 5xFAD mice showed marked
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amyloid accumulation and microglial activation
(Figure 7A-C). Transgenic mice also exhibited strong
AP expression. Quantitative analysis confirmed
significant increases in amyloid-p and Iba-1 compared
with WT controls.

TP-41 treatment markedly reduced amyloid-p
deposition and Iba-1-positive microglial activation in
both HP and CX of 5xFAD mice, while Trp
supplementation showed only partial effects (Figure
7A-C). Consistently, cytokine profiling of brain
lysates revealed elevated TNF-a, IL-1pB, and IL-6 in
MGO-induced WT and 5xFAD groups, which were
significantly attenuated by TP-41 but only modestly
reduced by Trp (Figure 7D). These findings indicate
that TP-41 reduces amyloid burden and
neuroinflammatory responses in both hippocampal
and cortical regions, accompanied by suppression of
pro-inflammatory cytokine production.

Discussion

Increasing evidence indicates that MGO, a
glycolytic byproduct, plays a critical role in AD
pathogenesis [2]. Clinical studies have linked
hyperglycemia to depression and memory loss in
diabetic patients, while experimental models show
that MGO accelerates brain damage, cognitive
decline, and AD-like pathology [70, 71]. AGEs, which
are closely associated with AD, promote oxidative
stress and neuroinflammation, driving
neurodegeneration [72]. As a major precursor of
AGEs, MGO represents a critical pathogenic factor in
AD, beyond its role in AGE formation. Therefore,
targeting MGO offers a promising therapeutic
strategy to counteract cognitive dysfunction. To this
end, we developed DeepMGO, a novel DL-based
platform designed to identify candidate MGO
scavengers and establish MGO as a tractable
therapeutic pathway in AD (Figures 1-2).

DeepMGOQO'’s superior performance arises from
its parsimonious architecture, comprising only 0.22
million parameters, which is particularly well-suited
for our high-dimensional biochemical assay dataset (p
> n; the number of features, 2,756, exceeds the number
of samples, 2,262), a situation commonly encountered
in quantitative structure-activity relationship (QSAR)
studies [73, 74]. High-dimensional datasets are
inherently prone to the curse of dimensionality,
making them susceptible to overfitting, especially
when models possess excessive capacity. Indeed,
complex models such as DeepIC50 (32.45 million
parameters) and ResNet18 (3.88 million parameters)
were observed to learn noise rather than meaningful
patterns [75].
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changes during the experimental period. (C) In the novel object recognition test (NORT), the exploration ratio (%) was analyzed. $$P < 0.01 and %$%P < 0.001 vs. familiar object
group (two-way ANOVA). (D) In the Y-maze test, the percentage of spontaneous alternation and total entries were measured. (E) In the Barnes maze (BM), escape latency and
total distance were recorded. (F) The protein expression levels of APP, mABi.42, oAB, and Tau, and p-mTau in mouse brains were analyzed by western blotting. Quantitative
western blot analysis of each protein included normalization with a-tubulin as a loading control. Values are represented as the mean £ SEM (N = 4-7). #P < 0.05 and #P < 0.01
vs. WT control (WT-V). *P < 0.05 and “P < 0.01 vs. 5xFAD-vehicle (5xFAD-V).
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Figure 7. TP-41 reduces amyloid deposition and neuroinflammatory responses in the hippocampus and cortex of 5xFAD mice. (A-C) Immunofluorescence
staining was performed to detect AB (6E10) and Iba-1 expression in the HP and CX. Representative images show A (red) and Iba-1 (green) immunofluorescent signals. Scale bar:
100 pm (10% magnification) — 200 pm (4x magnification). Quantitative analysis of fluorescence intensity in HP and CX regions was expressed as region of interest (ROI) intensity
ratios (%). (D) Cytokine levels of IL-1B, IL-6, and TNF-a, in whole brain lysates were measured. Values are represented as the mean + SEM (N = 4-6). ##P < 0.001 vs. WT control

(WT-V). *P < 0.01 and **P < 0.001 vs. 5xFAD-vehicle (5xFAD-V).
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This was evident in our feature selection
experiments —a standard diagnostic for overfitting in
QSAR modeling [74] —where ResNet18's performance
dramatically improved, with its R? value increasing
from —2.754 to 0.821 when using only 10% of features
compared to all features (Figure 2C-D, Tables S6-57).
In contrast, DeepMGO'’s streamlined design functions
as implicit structural regularization, meaning that the
architecture itself constrains model complexity and
prevents overfitting, enabling it to capture true
underlying patterns and achieve stable, high
performance (R? = 0.952 with 90% of features) without
learning noise. While deeper architectures may be
beneficial for larger datasets in the future,
dimensionality =~ reduction strategies such as
autoencoders could also be considered [76].

To interpret the major features DeepMGO used
over other models, an XAl using SHAP inspected
which features contributed to the model performance
(Figure S7). DeepMGO bases its predictions on a
balanced set of fundamental physicochemical
properties, including structural complexity based on
valence paths (VP-1), polarity derived from atomic
properties (BCUTp-1h), and molecular 3D shape
(SpMin4_Bhm) (Table S9), demonstrating a
chemically intuitive and robust learning approach. In
contrast, DeepIC50 relies heavily on a single
structural feature (nTDHeteroRing: hexagonal ring
structures), indicating a simplistic, less generalizable
strategy. ResNetl8 showed near-zero feature
contributions, indicating that it failed to extract
meaningful patterns from the descriptors. This
suggests the model relied on noise rather than signal,
leading to  poor  predictive  performance.
Consequently, ResNetl8 is inferior to DeepMGO in
both interpretability and robustness.

Overall, these results demonstrate that
DeepMGO provides a robust and generalizable
framework for virtual screening, particularly in
emerging pathogenic pathways like MGO in AD,
where biochemical assay data for training deep
learning models are limited.

DeepMGO analysis revealed that high-affinity
indole derivatives, including TP-41, TP-20, and TP-3,
commonly carry electron-donating substituents (-OH
or -OCHs) at the 5-position of the indole ring and
flexible amino group-containing side chains (Figure
4B and Figure S3). TP-41 showed the highest
predicted affinity, likely due to its
spermidine-conjugated structure providing multiple
nucleophilic sites [25, 77]. This structure-activity
relationship This structure-activity relationship
highlights the importance of both indole core
modifications and amino group-containing side
chains for optimizing MGO scavengers. Consistent
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with  these predictions, TP-41 ameliorated
depression-like behaviors and cognitive deficits in
MGO-induced mice (Figures 3-5). These findings
support MGO scavenging as a potential therapeutic
strategy for AD and establish a DL-guided
biochemical screening framework for accelerating
MGO-targeted drug discovery [18-21, 78, 79].

In our model, MGO not only elevated
depression-related markers such as GR and cortisol
but also increased free MGO and pro-inflammatory
cytokines (IL-1(3, IL-6, TNF-a), implicating activation
of inflammatory  pathways that  underlie
psychoneuroimmunity-related depression.
Consistently, MGO treatment markedly upregulated
RAGE and downstream NF-xB signaling, further
driving cytokine production (Figure 5F). Although
TP-41 more effectively lowered serum MGO levels
than Trp, reductions in IL-1 and IL-6 did not strictly
mirror this effect, suggesting additional contributions
from  Trp-related  metabolic = pathways or
tissue-specific inflammatory cascades. Collectively,
these findings support MGO as a pathogenic driver of
depressive behavior and memory loss, reinforcing our
hypothesis that MGO can promote cognitive decline
alongside depression and AD-like pathology in this
mouse model.

At the molecular level, MGO markedly increased
APP, mApfi4, and o0AP expression in the
hippocampus and cortex. Since AP plaques are a
pathological hallmark of AD [80, 81], our findings,
together with previous data, indicate that MGO is
closely linked to AD biomarkers, including APP,
mAQp, tau, and oAP [2]. These results suggest that
MGO accelerates AP aggregation and deposition,
supporting glycotoxin regulation as a potential
therapeutic strategy for AD. In addition, tau
hyperphosphorylation, a key driver of synaptic
dysfunction in oAp-mediated pathology [82], was
strongly induced by MGO, consistent with prior
reports implicating RAGE and AGEs formation [69].
Thus, targeting MGO may help prevent both AP
accumulation and tau hyperphosphorylation in
AD-like pathology.

An important finding is that TP-41, the top
candidate identified by DeepMGO, effectively
reduced AD-related pathology and cognitive
dysfunction in the MGO-induced mouse model. Both
TP-41 and Trp improved recognition memory in the
NORT and restored locomotor activity and
immobility times in the OFT, TST, and FST. At the
molecular level, TP-41 significantly reduced p-oTau
expression,  suppressed GR, cortisol, and
pro-inflammatory cytokines (IL-1p, IL-6, TNF-a), and
decreased RAGE expression, suggesting attenuation
of HPA axis hyperactivation and neuroinflammation.
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Notably, the anti-depressant-like effects of Trp are
likely attributable to a dual mechanism, involving
both MGO scavenging and its role as a serotonin
precursor. In contrast, TP-41 achieved comparable
efficacy primarily through direct glycotoxin
neutralization, underscoring its potential as a more
specific  anti-glycotoxin  therapeutic = candidate.
Furthermore, TP-41 significantly lowered serum
MGO levels, supporting the concept that targeting
glycotoxins represents a promising therapeutic
approach for both depression and AD.

Building upon these findings, we validated
TP-41 in the 5xFAD transgenic model, which
recapitulates amyloid and tau pathology (Figures 6
and 7). TP-41 significantly improved recognition,
working, and spatial memory in the NORT, Y-maze,
and Barnes maze (Figures 6). At the molecular level,
TP-41 decreased  APP, mAp, 0ApB, and
phosphorylated tau. Furthermore, it more effectively
attenuated amyloid deposition, microglial activation,
and pro-inflammatory cytokines (TNF-a, IL-1p3, IL-6)
than Trp (Figure 7). Collectively, these results
demonstrate that TP-41 exerts multimodal therapeutic
actions by improving cognition and suppressing
amyloid/tau pathology and neuroinflammation in
AD models.

Interestingly, exogenous MGO administration in
WT mice produced severe cognitive deficits than
those observed in 5xFAD mice (Figures 6 and 7). Yet,
immunohistochemistry showed only minimal A
deposition in the hippocampus and cortex, suggesting
that these impairments were not primarily
amyloid-driven. Instead, MGO markedly increased
pro-inflammatory cytokines and microglial activation,

indicating ~ that  glycotoxin  stress  induces
neuropsychiatric and cognitive symptoms
predominantly through neuroinflammatory

pathways. These results highlight MGO as a distinct
pathogenic factor linking metabolic stress to mood
and cognitive dysfunction, complementing the
amyloid-centric pathology of AD.

RAGE has been reported to bind AP, with
receptor expression elevated in AD patients [83].
Consistent with this, MGO increased APP, mApi.4,
and oA in the hippocampus and cortex, which were
attenuated by TP-41 or Trp (Figure 5E). Notably,
TP-41 also reduced p-oTau levels, indicating its ability
to inhibit MGO-induced tau hyperphosphorylation

and thereby mitigate oAp-mediated synaptic
dysfunction [82].
Despite these promising results, several

mechanistic questions remain. Although TP-41
demonstrated in vivo MGO scavenging activity, its
direct molecular interaction with MGO should be
clarified using structural biology. The precise
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signaling cascade linking MGO scavenging to
behavioral improvements also remains unresolved,
and potential off-target pathways require evaluation
through selective inhibition studies. In addition,
structure-activity relationship analyses will be
necessary to define the pharmacophores of TP-41 and
guide further optimization. Finally, the small sample
size (n = 4-7 per group) limits statistical power,
underscoring the need for larger studies to confirm
the robustness and reproducibility of these findings.

Although the MGO dose used here (60 mg/kg)
exceeds physiological levels, it was selected to induce
reproducible pathology and enable mechanistic
interrogation of glycotoxin-driven
neurodegeneration. LC analysis (Figure S8) confirmed
that TP-41 and Trp directly quenched free-form MGO,
validating their specific mode of action. To enhance
translational relevance, we further tested TP-41 in the
5xFAD model, where it significantly ameliorated
behavioral deficits, amyloid/tau pathology, and
neuroinflammation. These findings support TP-41 as
an effective MGO scavenger with disease-relevant
efficacy. Nonetheless, future studies employing
lower-dose, chronic MGO exposure or
metabolic/diet-induced models are required to
approximate physiological conditions and exclude
potential off-target effects. Beyond MGO, other
aldehydes such as  4-hydroxynonenal and
formaldehyde also contribute to AD pathology, and
extending the DeepMGO framework to identify their
scavengers could broaden therapeutic scope.
Importantly, MGO holds wunique pathogenic
relevance as both a direct cytotoxin and a major
precursor of AGESs, linking it to oxidative stress,
neuroinflammation, and tau/Ap  pathology.
Moreover, its depletion is closely tied to Trp
metabolism and  depression-like  phenotypes,
highlighting its dual role in neuropsychiatric and
neurodegenerative processes.

In this study, a fluorescence-based assay was
used as a rapid screening tool to assess compound
reactivity toward MGO, and its predictive value was
validated by LC analysis (Figure S8). We recognize
that this assay is optimized for detecting
carboline-type products arising from Trp-MGO
interactions, but it does not fully capture
non-fluorescent imine-forming scavengers such as
carnosine. To address this limitation, we performed
chemical profiling of the fluorescence readout
products based on LC-qTOF-MS analysis (Figure 54).
In this experiment, we confirmed that TP-41 and Trp
directly quenched free-form MGO via Pictet-Spengler
reaction and  spontaneous  dehydrogenation,
suggesting a plausible molecular mechanism of MGO
scavenging activity of TP-41 and Trp. This combined
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approach strengthens confidence in our findings and
underscores the need to consider both fluorescent and
non-fluorescent  pathways  when  evaluating
anti-glycotoxin activity.

Indole-derived natural products and analogues
showed similar effects, further supporting the assay’s
utility. Consistent with our previous findings [2], Trp
exhibited the highest reactivity among amino acids
and was depleted under high-dose MGO exposure,
contributing to neuropsychiatric impairments.
Supplementation restored these deficits, underscoring
the Dbiological significance of stoichiometric
scavenging. Although such mechanisms may limit
large-scale clinical translation, they remain useful for
identifying and ranking anti-glycotoxin scaffolds.
Importantly, TP-41 also demonstrated efficacy in the
5xFAD transgenic model, extending its therapeutic
potential beyond the artificial MGO-induced system
to genetically driven amyloid and tau pathology.

Given that MGO and its downstream effectors
(e.g., RAGE, phosphorylated tau) were consistently
modulated in our study, these molecules may also
serve as theragnostic biomarkers to monitor disease
progression and therapeutic response. Thus, TP-41
has potential not only as a therapeutic agent but also
within a theragnostic framework, where patient
stratification and treatment efficacy could be guided
by MGO-related biomarker profiling.

In summary, through DL-guided drug
discovery, we identified a novel compound, TP-41,
that targets MGO activity for AD treatment. We also
demonstrated the feasibility of DL-guided drug
discovery in a unique human disease, where a
DL-based drug screening strategy had not previously
been established owing to a lack of biochemical assay
screening data for training DL models. Finally, we
propose that TP-41 is a suitable lead compound for
further research and development of
symptom-ameliorating AD medications.
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