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Abstract 

Rationale: Increased levels of advanced glycation end products (AGEs) have been observed in the brain tissues of patients with 
Alzheimer's disease (AD). Methylglyoxal (MGO) is a potent precursor of AGEs. To date, there have been no reports of utilizing 
deep learning (DL) technologies to target MGO scavengers for the development of AD therapeutics. Therefore, DL-driven 
approaches may play a crucial role in identifying potential MGO scavengers and candidates for Alzheimer's treatment. 
Methods: We developed "DeepMGO," a novel DL-based MGO scavenging activity prediction model, trained on 2,262 MGO 
scavenging activity assays from 660 compounds. Using this approach, we identified and validated TP-41 as a potential MGO 
scavenger in a mouse model of memory impairment. 
Results: DeepMGO demonstrated robust predictive performance and identified novel compounds with high MGO scavenging 
activity. TP-41 ameliorated depression symptoms and memory deficits in mouse models. 
Conclusions: Using DeepMGO, we identified TP-41 as a potential therapeutic agent for AD. 

Keywords: methylglyoxal, Alzheimer’s disease, deep learning, memory impairment, drug discovery 

Introduction 
Alzheimer's disease (AD) is a neurodegenerative 

disorder that poses significant global health 
challenges, characterized by progressive cognitive 
decline and memory impairment impacting millions 
worldwide [1]. Despite extensive research efforts into 
AD pathogenesis, effective treatments remain elusive 
and current therapies only provide limited 
symptomatic relief and fail to halt disease 
progression. AD is becoming increasingly prevalent 
owing to the aging global population, highlighting the 

need for more effective interventions. Advancements 
in research, particularly in targeting the underlying 
mechanisms such as advanced glycation end products 
(AGEs), amyloid plaques, tau phosphorylation, and 
neuroinflammation, are crucial for developing 
treatments that can slow or prevent the onset of AD 
[2]. 

Recent studies emphasize the role of 
methylglyoxal (MGO), a dicarbonyl compound, in AD 
pathogenesis [3]. MGO induces cellular damage, 
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inflammation, cytotoxicity, and apoptosis through 
reactive oxygen species (ROS) generation [4, 5]. MGO 
is implicated in cellular damage associated with 
hallmark features of AD, such as neurofibrillary 
tangles, amyloid β (Aβ) plaques, and the formation of 
AGEs [6, 7]. Moreover, AGEs are formed during the 
glycolysis process through the non-enzymatic 
reaction of dicarbonyl compounds (such as MGO) 
with amino acids in proteins [8]. In individuals with 
AD, abnormal accumulation of MGO has been 
observed in various tissues, including cerebral fluids 
and organs [9-17], suggesting its potential as a 
therapeutic target. 

Despite growing recognition of MGO's role in 
AD, current therapeutic approaches remain limited. 
MGO-scavenging strategies have emerged as 
potential interventions for AD treatment [18, 19], and 
aim to reduce oxidative stress and inhibit AGE 
formation associated with MGO. Compounds such as 
aminoguanidine, tryptophan (Trp), tryptamine, and 
5-hydroxytryptophan (5-HTP) have shown promise in 
this regard [20, 21]. 

Deep learning (DL) algorithms have been 
applied to screen vast libraries of compounds to 
identify new drug candidates targeting AD [22]. DL 
has been successfully used in the identification of 
small molecules capable of modulating the 
acetylcholinesterase enzyme, which plays a key role 
in AD pathology, leading to the discovery of several 
promising drug leads [23]. Therefore, we aimed to 
identify the most efficient MGO scavenger molecules 
using a novel DL technique. 

The majority of DL models utilize large assay 
data from chemical libraries to facilitate virtual drug 
screening and prioritization of candidate compounds 
[24]. For MGO scavenger identification, constructing a 
DL model using a dataset derived from chemical 
properties and MGO scavenging activity assays holds 
great potential for the rapid identification of 
promising novel MGO scavengers while minimizing 
the need for extensive assays on numerous new 
compounds. 

To address this knowledge gap, our study 
introduces an innovative approach using DL to 
develop an MGO scavenging activity screening 
prediction model called "DeepMGO." In addition, we 
evaluated and validated the predictive performance 
of our model using an independent test set collected 
from the assay results of diverse publications. We 
used this novel DL model to prioritize previously 
unknown compounds as application data for 
identifying TP-41 as a novel MGO scavenger derived 
from Trp. We further sought to validate findings from 
the DL model and investigated the top candidate 
molecules’ impacts on AD-related phenotypes in 

mouse models exposed to high-dose MGO [2].  

Methods 
MGO scavenging activity assay 

MGO scavenging activity assay was performed 
to analyze the interactions between MGO and 
compounds during 0, 1, and 6 days, according to the 
protocol of Nemet et al. with slight modification [25]. 
MGO in the presence (or absence) of 660 compounds 
(natural compounds [482 species], FDA-approved 
drugs [159 species], and amino acids [19 species]) 
were incubated in PBS at pH 7.4 and 0.02% sodium 
azide for 1 week at 37 °C. The affinity of the combined 
MGO and compound was evaluated by measuring the 
fluorescence intensity at excitation/emission 
wavelengths of 355/460 nm using a VICTORTM X3 
multilabel plate reader (PerkinElmer, MA, USA). 

In-house data for construction of MGO 
scavenging activity prediction model 

The in-house data consisted of 2,262 MGO 
scavenging activity values from MGO scavenging 
activity assays, including 660 compounds at 
concentrations ranging from 0.001 to 1,000 μM (Figure 
S1). Molecular feature calculations were performed 
for these data using the PaDEL Descriptor [26]. 
Specifically, molecular feature vectors of compounds 
were determined by utilizing the simplified 
molecular-input line-entry system format of the 
compounds as input. The min-max normalization 
method was employed to process individual 
molecular features, while Z-normalization was used 
to standardize the MGO scavenging activity values. 
The Z-normalized MGO scavenging activity value 
was considered the MGO scavenging activity score. 
The in-house data were divided into training, 
validation, and test datasets at a ratio of 8:1:1 (Figure 
S1). The higher score indicates a stronger affinity. 

Construction of MGO scavenging activity 
prediction models using DL 

A convolutional neural network architecture was 
employed to predict the MGO scavenging activity and 
generate a DL algorithm, named DeepMGO. 
Convolutional layers and deep neural network 
(dense) layers were used for molecular features, with 
a concatenated dense layer for screening the 
concentration of the last layer of molecular features. 
From the concatenation of the molecular features and 
screening concentrations, we added two dense layers 
to achieve the predicted output (Figure S2 and Table 
S1). 

Herein, we assume that for DeepMGO, x is the 
input for each layer of the convolutional network and 
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conv(x)jm is the output of the layer, where j is the index 
of the output position and m is the index of the 
kernels. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥)𝑗𝑗𝑗𝑗 = 𝐹𝐹�𝐵𝐵[∑ 𝑤𝑤𝑙𝑙𝑚𝑚𝑥𝑥𝑗𝑗+𝑚𝑚 + 𝑏𝑏𝑗𝑗𝑗𝑗]𝑙𝑙=𝐿𝐿−1
𝑙𝑙=0 �    (Eq. 1) 

In Eq. 1, bjm is a bias term, wml the m-th weight in 
the l-th kernel tensor, L represents the tensor size, 
B(·) is a batch-normalization function, and F(·) is an 
activation function [27, 28]. 

The performance of the DeepMGO architecture 
was compared to that of the DeepIC50 [29] and 
ResNet18 [30] models. A concatenation layer was 
added between the screening concentration layer and 
the last convolutional layer for the molecular features 
(Tables S2 and S3 for DeepIC50 and ResNet18, 
respectively). 

The parameter options in DeepMGO, DeepIC50, 
and ResNet18 were set to 200 for the training epoch 
and 50 for the batch size. The learning rate was set to 
0.0002 using the Adam optimizer. As the prediction 
was regression-based, the root mean square error 
(RMSE) was used as a loss function, and the activation 
functions were either the hyperbolic tangent or 
rectified linear activation (ReLU) functions. All DL 
models were generated using the keras v2.1.0 package 
in a Python environment.  

Construction of MGO scavenging activity 
prediction models using machine learning 
(ML) 

For the ML models, we utilized lasso, ridge, 
random forest (RF), and support vector regression 
(SVR), and each ML method employed the scikit-learn 
Python package. The optimal hyperparameters for the 
lasso, ridge, RF, and SVR were selected while 
searching for the best performance in a set of 
hyperparameter values (Table S4).  

The hypopt Python package was used for 
hyperparameter optimization with the training and 
validation datasets. Using DeepMGO, the 
MGO-scavenging effects of various Trp derivatives 
were predicted, with further analysis of the 
compounds’ structure-activity relationships.  

Feature selection 
In the training dataset, the feature importance 

was evaluated using univariate linear regression tests. 
Hence, from all the features, we selected the top 10%, 
30%, 50%, 70%, and 90% important features. DL and 
ML models were built using the training dataset 
according to the selected features. 

Evaluation of DeepMGO using an independent 
test dataset 

Additional validation of DeepMGO was 

performed using an independent test dataset 
comprising 61 compounds from literature sources that 
were identified as being in 50 active and 11 non-active 
states to bind MGO or AGEs (Table S5). The 
molecular features of each compound were 
determined using the PaDEL Descriptor. The 
screening concentration for DeepMGO was set at 400 
µM, which was the screening concentration in the 
in-house data. 

Metrics for performance comparisons 
To compare the performance of the MGO 

scavenging activity prediction models, the RMSE and 
R2 were calculated using the predicted and observed 
MGO scavenging activity scores in the test set as 
follows: 

RMSE =�1
n
∑ (y𝑘𝑘 − 𝑝𝑝k)2n
k=1     (Eq. 2) 

R2 = 1 − ∑ (y𝑘𝑘−p𝑘𝑘)2n
k=1
∑ (y𝑘𝑘−y�)2n
k=1

     (Eq. 3) 

where n is the number of cases, yk is the k-th observed 
MGO scavenging activity score, and pk is the 
predicted MGO scavenging activity score for the k-th 
case. Thus, y� is the overall mean of all yk’s. 

The RMSE was transformed to log2(RMSE). The 
calculated R2 and log2(RMSE) values were visualized 
as an integrated heatmap with a dot plot using the 
ggplot and ggpubr packages in R. Scatter plots and 
Pearson’s correlation coefficient (PCC) values were 
generated using GraphPad Prism (version 10). For 
model validation using the independent dataset, we 
calculated the area under the receiver operating 
characteristic curve (AUROC) and the optimal cutoff 
value via the multipleROC package in R. 

Identification of TP-41 as a putative MGO 
scavenger for AD using application data 

For the application data consisting of previously 
unknown compounds, we generated the molecular 
features of 40 novel and 4 putative MGO scavengers 
for AD treatment (Figure S3).  

In silico prediction of blood-brain barrier (BBB) 
permeability 

To evaluate the potential of TP-41 and the 
reference compounds (5-HTP and 5-HT) as known to 
cross the BBB, we performed an in-silico prediction by 
the BBB permeability prediction model in 
LogBB_Pred [31] and ADMET-AI [32]. The 
logBB_Pred model gives predicted logBB value 
(logBB > -1, BBB permeable). The ADMET-AI 
provides a BBB permeability score, where a score 
closer to 1 suggests higher permeability.  
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An eXplainable AI (XAI) analysis using 
SHapley Additive exPlanations (SHAP) 

To understand which features the model used 
for the MGO scavenging activity prediction, we 
employed SHAP for XAI technique [33, 34]. We 
utilized a model-agnostic KernelExplainer from the 
shap library in Python. The explainer was initialized 
with a background dataset comprising 100 instances 
randomly sampled from the training data to serve as a 
baseline for predictions. Subsequently, we calculated 
SHAP values for each feature across the entire test set 
to evaluate the model's behavior on unseen data. The 
global importance of each feature was quantified by 
calculating the mean of the absolute SHAP values 
across all test instances. 

Data acquisition in UHPLC–qTOF–MS analysis 
The diluted samples were centrifuged, and the 

clear supernatant was used for analysis. 2 μL aliquots 
were injected. HRMS data were obtained using an 
Agilent Revident LC coupled to an Agilent Revident 
LC/Q-TOF MS (G6575A; Santa Clara, USA). Mass 
spectrometry analysis and chemical profiling were 
carried out in positive electrospray ionization (ESI) 
with full-scan MS1, using an m/z 20–1700 scan range. 
UHPLC runs were performed on an Agilent ZORBAX 
RRHD Eclipse Plus C18 column (2.1 × 100 mm, 1.8 μm; 
PN 959758-902) set at 40 °C. The mobile phases were 
A = water + 0.1% formic acid and B = acetonitrile + 
0.1% formic acid at a flow rate of 0.30 mL min⁻¹ with 
the following gradient: 0.0–0.5 min, 10% B (A 90%/B 
10%) → 10.0 min, 100% B (A 0%/B 100%) → 12.0–15.0 
min, 10% B (re-equilibration). The ESI source was 
operated at a gas temperature of 320 °C with a drying 
gas flow of 10 L min⁻¹; the nebulizer was set to 35 
psig; the sheath gas temperature and flow were 350 °C 
and 11 L min⁻¹, respectively; and the capillary voltage 
was 3500 V. 

Data processing in UHPLC–qTOF–MS analysis 
Raw LC–QTOF data were processed in Agilent 

MassHunter Qualitative Analysis (Agilent 
Technologies). Analyses used MS1-only data. 
Extracted-ion chromatograms (EICs) were generated 
with a extraction window under positive ion mode for 
the following exact masses: TP-41 (m/z 378.17), the 
proposed TP-41–MGO Schiff-base intermediate (m/z 
486.21), and a rearranged product (m/z 484.15). For the 
positive-control experiment, EICs were additionally 
generated for tryptophan (m/z 205.05) and a putative 
Trp–MGO adduct (m/z 254.01). Comparative 
assessments were performed across TP41 (or 
tryptophan) alone, Day0 (immediately after mixing 
with MGO), and Day3. Retention-time windows and 

intensity scales used for plotting matched those 
reported in the corresponding figure legends (Figure 
S4). 

MGO-induced memory impairment mouse 
model 

Institute of Cancer Research (ICR) mice 
(7-weeks-old, male) were obtained from Orient Bio 
Inc. (Gyeonggi-do, Korea) and acclimated for one 
week before the start of the experiments under 12/12 
h light/dark cycles (temperature of 23 ± 1 °C and 60 ± 
5% humidity). The mice were fed a laboratory diet 
(AIN-76A) and provided with water ad libitum. After 
adaptation, the mice were randomly divided into four 
groups (five mice per group): control (CON), 
MGO-treated (MGO, 60 mg/kg), MGO-co-treated 
with TP-41 (40 mg/kg/d, TP-41), and 
MGO-co-treated with Trp (40 mg/kg/d). MGO 
(dissolved in 30% v/v glycerol in pH 7.4 PBS, Sigma, 
St. Louis, MO, USA) was administered to twice per 
week at 60 mg/kg via rectal injection, following the 
protocol of Md Samsuzzaman et al. (2024), which 
demonstrated stable systemic absorption of MGO 
through rectal delivery in mice [2]. TP-41 and Trp 
(Sigma, St. Louis, MO, USA) were dissolved in saline 
and orally administered daily for 2 weeks. Mice were 
randomly assigned to experimental groups. All 
behavioral scoring and histological quantification 
were performed by investigators blinded to the 
treatment conditions. All animal experiments were 
conducted in accordance with the Care and Use of 
Laboratory Animals guidelines and approved by the 
IACUC of Gachon University (approval no. 
GU1-2022-IA0046). 

5xFAD mouse model 
The male 5xFAD transgenic mouse line (10 

weeks old at purchase; B6SJL-Tg(APPSwFlLon, 
PSEN1*M146L*L286V)6799Vas/Mmjax; The Jackson 
Laboratory, USA) was maintained by crossing 
hemizygous 5xFAD males with B6SJL F1 females. 
After a 2-month treatment period with MGO, TP-41, 
or Trp, animals were analyzed at 18 weeks of age 
(approximately 4.5 months). Mice were housed under 
standard conditions (22 ± 2 °C, 50–60% humidity, 12-h 
light/dark cycle) with free access to food and water. 
Experimental groups included WT and 5xFAD 
animals treated with vehicle, MGO, TP-41, or Trp (n = 
5–7 per group). Mice were randomly assigned to 
experimental groups, and all behavioral scoring and 
histological quantification were performed by 
investigators blinded to the treatment conditions. 
Behavioral tests were performed in the following 
order, with a minimum 24 h interval between tests to 
avoid carry-over effects: NORT → Y-maze → Barnes 
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maze. All procedures were approved by the IACUC 
of Gachon University (approval no. 
GU1-2025-IA0008). 

Open field test (OFT) 
For assessing the locomotor, exploratory and 

anxiety-like behaviors in MGO-induced mice model, 
The OFT was performed in an open black box (60 × 60 
× 60 cm). Mice were individually placed in the center 
of an open box and observed for 5 min [35]. The total 
distance traveled was analyzed using the SMART 
v3.0, video tracking system (Panlab; Harvard 
Apparatus, Barcelona, Spain). 

Tail suspension test (TST) 
To find the improvement in the depression by 

treating TP-41 in MGO-induced mice model, TST was 
performed in a TST chamber (60 cm length, 60 cm 
height, 11.5 cm depth, and 15 cm width), and each 
mouse was suspended using painless tape fixation. 
Before recording, all mice were acclimated to the TST 
chamber for 2 min. Subsequently, the immobility time 
of each mouse was recorded for 4 min [35] and 
analyzed using the SMART v3.0 video tracking 
system. 

Forced swim test (FST) 
To investigate the anti-depression effect of TP-41 

in MGO-induced mice model, FST was performed in 
an FST chamber (50 cm height × 20 cm diameter) filled 
with water (up to 30 cm) at room temperature (RT). 
Before recording, all mice were adapted to the FST 
chamber for 2 min. The time spent immobile for each 
mouse was measured in the subsequent 4 mins [36]. 
The immobility time was analyzed with the SMART 
v3.0 video tracking system. 

Novel object recognition test (NORT) 
To evaluate the spatial memory in the 

MGO-induced mice model by treating TP-41, NORT 
was performed in an open black box (60 cm × 60 cm × 
60 cm). On the training day, the mice were placed in 
an open box with two different kinds of identical 
objects for 3 min [37]. The next day, the mice were 
placed in the same box, in which one of the identical 
objects had been replaced with a novel object. The 
percentage of recognition (%) was calculated as (time 
spent exploring the novel object) / (total time spent 
exploring both objects) × 100. The NORT results, 
including the total distance traveled, were analyzed 
using the SMART v3.0, video tracking system. 

Y-maze test 
Working memory was evaluated in a Y-shaped 

maze composed of three arms (30 cm × 5 cm × 15 cm) 

placed 120° apart [38]. At the start of each session, 
mice were released from the end of one arm and 
allowed to explore the maze for 8 min. An alternation 
was scored when the animal entered all three arms 
consecutively without revisiting a previously chosen 
arm. The alternation (%) was calculated as (number of 
alteration) / (total arm entries – 2) × 100. An 
alternation was defined as entries into all three arms 
consecutively (e.g., ABC, BCA, or CAB). Behavioral 
parameters, including arm entries and alternation 
percentage, were quantified using the SMART 3.0 
SUPER PACK system. 

Barnes maze test (BM) 
The Barnes maze apparatus was constructed 

from polyethylene and consisted of a circular 
platform (45 cm in diameter) with 20 equally spaced 
holes (4.5 cm in diameter) arranged around its 
perimeter [2]. The platform was elevated 50 cm above 
the floor, and an escape box (35 × 25 × 15 cm) was 
positioned beneath one designated target hole. Each 
mouse was placed in the central starting zone and 
trained to locate the escape box over four consecutive 
days. The mean latency to reach the target hole was 
recorded and analyzed using SMART 3.0 SUPER 
PACK software. 

Enzyme-linked immunosorbent assay (ELISA) 
analysis 

The levels of pro-inflammatory cytokines 
(interleukin-1β [IL-1β], interleukin-6 [IL-6], and tumor 
necrosis factor alpha [TNF-α]) and cortisol from 
mouse serum and lysate brain measured with ELISA 
kits (R&D Systems, Minneapolis, MN, USA). Those 
assays were quantified using colorimetric or 
quantification R&D systems assay kits according to 
the manufacturer’s instructions. 

Free form levels of MGO in serum analysis 

MGO levels were analyzed as previously 
described, with slight modifications [39]. Briefly, each 
serum sample was incubated with 0.45 N perchloric 
acid for one day, and then reacted with 10 mM 
o-phenylenediamine (o-PD) for one day at RT. The 
reacted samples were centrifuged at 12,000 rpm for 30 
min. The supernatant was filtered using 0.2 μm filters 
(Whatman, Dassel, Germany) and injected into a 
high-performance liquid chromatography system 
(Waters Corporation, Milford, MA, USA) equipped 
with a photodiode array detector (315 nm). Injected 
samples (10 µL) were processed with a constant flow 
rate (1.0 mL/min). The sample was analyzed using a 
Kromasil C18 column (250 mm × 4.6 mm, 5 µm) with 
20% acetonitrile to induce an isocratic condition. 
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Immunohistochemistry (IHC) for GR 
Glucocorticoid receptor (GR) expression in the 

paraventricular nucleus (PVN; bregma −0.70 to −0.90 
mm) was assessed by IHC. Brain sections were rinsed 
in PBS, incubated in 1% hydrogen peroxide for 15 
min, and blocked in PBS (pH 7.4) containing 3% 
normal goat serum and 1% BSA. Sections were 
incubated overnight at 4 °C with mouse anti-GR 
antibody (1:500; Santa Cruz Biotechnology) in 0.3% 
Triton X-100. After PBS washes, sections were 
incubated with biotinylated anti-goat IgG (1:500) for 1 
h, followed by the avidin–biotin complex (ABC, 1:100; 
Vector Laboratories) for 1 h at room temperature. 
Immunoreactivity was visualized with 
3,3’-diaminobenzidine (DAB) in Tris-buffered saline 
(pH 7.6). Slides were mounted with DPX medium, 
and images were obtained at 100× magnification 
using an Olympus BX51 microscope. 

IHC for amyloid precursor protein (APP) and 
Aβ 

Brains were fixed in 10% neutral-buffered 
formalin for 24h at 4 °C, dehydrated in graded 
ethanol, cleared in xylene, embedded in paraffin, and 
sagittally sectioned at 4 µm. After deparaffinization, 
sections were incubated overnight at 4 °C with 
antibodies against APP (1:200; Invitrogen, cat. 
14974982), Aβ1-42 monomer (mAβ1-42, 1:200; 
Invitrogen, MA5-36246), and oligomeric Aβ (oAβ, 
1:200; Invitrogen, AHB0052). Detection was 
performed using the avidin–biotin horseradish 
peroxidase complex (Vector Laboratories), and 
immunoreactivity was visualized with DAB. Images 
were captured at 100× magnification with a Nikon 
Eclipse 80i microscope. 

Confocal immunofluorescence 
Paraffin-embedded brain sections (4 µm) were 

incubated with the primary antibody against Aβ 
(6E10, mouse, 1:500; Biolegend) and Iba1 (rabbit, 
1:500; Wako) overnight at 4 °C. After washing, the 
sections were incubated with donkey anti-mouse 
Alexa Fluor 555 (1:500; Invitrogen, A-31570, 
RRID:AB_2536190) for Aβ, and donkey anti-rabbit 
Alexa Fluor 488 (1:500; Invitrogen, A-21206, 
RRID:AB_2535792) for Iba-1. Nuclei were 
counterstained with DAPI. Images were acquired 
using a Nikon A1+ laser scanning confocal 
microscope and analyzed with NIS-Elements 
software. 

Western blotting assay 
Whole brains collected from mice were lysed in 

PRO-PREP protein extraction solution (iNtRON, 
Seoul, Korea) at -20°C for 24 h. Tissue lysates were 

separated by centrifugation at 12,000 rpm for 30 min, 
and protein content was determined using the 
Bradford assay. The Bradford assay was performed a 
colorimetric change of at 595 nm in microplate reader 
by using bovine serum albumin as standard. Proteins 
(30–50 µg) were separated by sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis and 
transferred to polyvinylidene fluoride membranes. 
Membranes were incubated with primary antibodies, 
receptors of advanced glycation end products (RAGE) 
(1:500, Santa Cruz Biotechnology Inc., Santa Cruz, 
California, USA, cat. sc365154), APP (1:1000, 
Invitrogen, Carlsbad, CA, USA, cat. 14974982), 
mAβ1-42 (1:1000, Invitrogen, cat. MA5-36246), oAβ 
(1:1000, Invitrogen, Carlsbad, CA, USA, cat. 
AHB0052), tau (total form, 1:1000, Abcam, 
Cambridge, MA, USA, cat. Ab109390), 
phosphorylated-tau including monomer and 
oligomer types (1:1000, Abcam, cat. Ab254256), and 
α-tubulin (1:1000, Invitrogen, cat. A11126), at 4 °C for 
1 d. Following incubation, the membranes were 
washed and incubated with secondary antibodies at 
RT for 2 h. Protein bands were measured using a 
ChemiDoc™ XRS+ imaging system (Bio-Rad 
Laboratories, Hercules, CA, USA). 

Statistical analysis 
Statistical analyses were performed using 

one-way ANOVA followed by Tukey’s post hoc test 
for multiple comparisons, except for the NORT which 
was analyzed using two-way ANOVA (treatment × 
object) with Tukey’s post hoc test. Data are expressed 
as the mean ± SEM, and differences were considered 
statistically significant at P < 0.05. Animals were 
randomly assigned to treatment groups, and 
behavioral scoring and image quantification were 
performed in a blinded manner. 

Results 

Using data from 2,262 MGO scavenging activity 
assays with 660 diverse compounds, including natural 
compounds, FDA-approved drugs, and amino acids, 
DeepMGO predicts the MGO scavenging activity 
scores of compounds by considering their molecular 
features and concentrations as inputs (Figure 1). 
Molecular features are represented as vectors with 
binary values (i.e., presence or absence) of specific 
submolecular structures and continuous values, 
including molecular weight, polarizability, acidity, 
solubility, atom counts, and topological indices 
(Figure S1). We also compared the performance of 
DeepMGO with those of other DL and ML models 
(Figure 1) to confirm the utility of DeepMGO for the 
discovery of novel MGO scavengers. 
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Figure 1. Study design. Using deep learning, our aim is to screen compounds (MGO scavengers) that bind to MGO with high affinity, finally scavenging MGO. Thus, we 
constructed a DL model for predicting MGO scavenging activity scores by scavenger compounds. First, we performed an MGO scavenging activity assay using in-house 
compounds to generate our own screening dataset for training an MGO scavenging activity prediction DL model, DeepMGO. We designed DeepMGO taking the molecular 
features and concentration of a compound as input, in order to obtain the MGO scavenging activity score of the compound. In addition, we compared the performance of 
DeepMGO with those of other DL models regarding MGO scavenging activity prediction of scavenger compounds. We also applied DeepMGO to identify a novel MGO 
scavenger from a compound library and inspected its therapeutic effect on AD by in vitro and in vivo experiments. 

 
Structure and training of DeepMGO 

To construct DeepMGO, we designed its 
architecture to consist of three convolutional and 
three dense layers (Figure 2A and Figure S2). The 
DeepMGO model was constructed using training and 
validation datasets with a full set of features, and its 
performance was subsequently evaluated using the 
test dataset. In subsequent experiments, feature 
selection was applied to optimize the performance of 
the model. However, the results in this section are 
based on a full set of features. For evaluation of 
DeepMGO in the test dataset, the PCC was calculated 
between the observed values in the test dataset and 
the values predicted by DeepMGO, resulting in a 
coefficient of 0.94, with a P value of 2.2 x 10-16 (Figure 
2B). The performance of DeepMGO was compared to 
other models by determining R2 and log2(RMSE) 
values, wherein a higher R2 and lower log2(RMSE) 
indicate better performance. The R2 value for 
DeepMGO was 0.939, and the log2(RMSE) was -3.921 
(pink bars in Figure 2C—D, Tables S6—S7). 

DeepMGO showed competitive performance 
compared to other DL and ML models 

To compare the MGO scavenging activity 
prediction performance of DeepMGO, we constructed 
DL models using the architectures of DeepIC50 [29] 
and ResNet18 [30]. For ML models, we utilized lasso, 
ridge, RF, and SVR to construct four prediction 
models with hyperparameter optimization. We 
compared the performance of each of the seven 
constructed models using a test dataset. In the ML 
models, lasso had an R2 of -0.026 and log2(RMSE) of 
-1.878; ridge had an R2 of -3.53, log2(RMSE) of -0.808; 
RF had an R2 of 0.889 and log2(RMSE) of -3.474; and 
SVR had an R2 of 0.158 and log2(RMSE) of -2.023. In 
the DL models, ResNet18 had an R2 of -2.754 and a 
log2(RMSE) of -0.943, whereas DeepIC50 had an R2 of 
0.640 and a log2(RMSE) of -2.635 (Figure 2C—D, 
Tables S6—S7). Collectively, DeepMGO exhibited the 
best performance compared with the other models. 
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Figure 2. Construction of DeepMGO and model performance comparison. (A) DeepMGO takes the molecular features of a compound and its concentration (μM) as 
inputs to predict an MGO scavenging activity score. (B) Pearson’s correlation coefficient was calculated between the observed MGO scavenging activity score in the test set and 
the predicted MGO scavenging activity score by DeepMGO using the test set. (C) R2 and (D) log2(RMSE) of MGO scavenging activity prediction models using selected features 
by feature selection (10, 30, 50, 70, 90%) and all features (100%). The model with a higher R2 and lower log2(RMSE) value is considered to have good performance. R2 with a 0.0 
value includes the negative or zero R2 values. We labeled the model with the highest performance as '1st' and the model with the second-best performance as '2nd.’ 

 
Feature selection for DL and ML models 

Furthermore, we aimed to verify whether the 
performance of the MGO scavenging activity 
prediction model was improved through feature 
selection by reducing overfitting. To achieve this, the 
feature importance was evaluated using univariate 
linear regression tests. Subsequently, the 10, 30, 50, 70, 
and 90% important features, among all the features in 
the training dataset were selected to construct the ML 
and DL models. The performance of each model was 
evaluated using a test dataset (Figure S1). 

DeepMGO performed superiorly (at 90% 
selected features) compared to other models (refer to 
the inset bar plots in Figure 2C—D, Figure S5, Tables 
S6—S7). The R2 values of DeepMGO ranged from 
0.790 to 0.952, with log2(RMSE) values ranging from 
-4.083 to -3.023. The DeepIC50 values R2 ranged from 

0.615 to 0.842 and log2(RMSE) ranged from -3.224 to 
-2.582, while R2 of ResNet18 ranged between -2.754 to 
0.821 and log2(RMSE) from -3.133 to -0.943. The R2 of 
the lasso ranged from -0.091 to -0.026, and the 
log2(RMSE) ranged from -1.878 to -1.837. The R2 of the 
ridge ranged from -4.403 to 0.667, and log2(RMSE) 
ranged from -2.690 to -0.680. R2 of SVR ranged from 
0.082 to 0.158, with log2(RMSE) values from -2.023 to 
-1.960. The R2 of the RF ranged from 0.797 to 0.949, 
and the log2(RMSE) ranged from -4.059 to -3.047 
(Figure 2C—D, Tables S6—S7). Among the ML 
models, the RF models showed the best performance 
but did not surpass DeepMGO. Overall, DeepMGO 
consistently outperformed the other models, 
regardless of feature subset size, and reached optimal 
results at 90% feature selection, which was adopted as 
the final model (DeepMGO). 



Theranostics 2026, Vol. 16, Issue 3 
 

 
https://www.thno.org 

1111 

 
Figure 3. Validation for applicability of the DeepMGO model using an independent dataset. (A) Scheme of validation for model applicability using an independent 
dataset. (B) AUROC curve of DeepMGO (with 90% selected features) and random forest (with 10% selected features).  

 
Evaluation of DeepMGO using an independent 
test dataset 

To validate the performance of DeepMGO with 
an independent test dataset, we curated 61 MGO 
scavengers (50 active and 11 inactive to MGO) from 
literature sources as an independent test dataset 
(Figure 3A and Table S5) [40-64]. MGO scavenging 
activity prediction scores were determined for 61 
compounds for each MGO scavenging activity 
prediction model (Figure 3A). The active state of the 
investigated external compounds was assigned to a 
value of 1, whereas the inactive state was assigned to 
a value of 0. The AUROC was calculated for 
evaluation. 

The AUROC for DeepMGO was 0.820 (95% 
confidence interval [CI]: 0.719–0.925). AUROC of the 
RF model with 10% features had the second greatest 
value at 0.396 (95% CI: 0.355–0.767; blue line in Figure 
3B). Compounds were predicted to be active in 
DeepMGO when the MGO scavenging activity score 
was greater than -0.186, as determined by the AUROC 
value. 

Taken together, we selected DeepMGO using 
90% features as the MGO scavenging activity 
prediction model for screening novel MGO 
scavengers. 

TP-41 was prioritized by DeepMGO 
We subsequently utilized the predictive 

capabilities of DeepMGO (90% features) for MGO 
scavenging activity to identify novel MGO scavengers 
as potential AD therapeutics. Forty novel compounds 
derived from Trp with the greatest affinity for MGO 
and four putative MGO scavenger candidates, along 
with reference 5-HT, Trp, tryptamine, and 5-HTP, 
were prepared to compare their MGO-scavenging 
effects (Figure 4A and Figure S3). Each compound 
was screened at concentrations of 100, 400, 500, and 
1,000 μM, and the predicted MGO scavenging activity 

score was determined. The Trp-derived molecule 
TP-41 (500 μM) exhibited the highest predicted score 
(Figure 4B and Table S8).  

To further assess TP-41's BBB permeability, we 
used tools logBB_Pred [31] and ADMET-AI [32], 
comparing the predicted BBB permeability of the 
reference compounds 5-HTP and 5-HT (also known to 
pass the BBB) [65, 66]. The logBB_Pred model 
indicated that TP-41 (LogBB = −0.9758) was BBB 
permeable (using a cutoff of LogBB < −1 for 
non-permeable), similar to 5-HT (LogBB = −0.8031), 
while 5-HTP (LogBB = −1.1640) was predicted to be 
BBB non-permeable (Figure S6A). To further validate 
this finding, we used ADMET-AI, where the 
predicted BBB score was 0.7737 for TP-41, 
substantially higher than 5-HTP (0.6010) and 5-HT 
(0.5580) (Figure S6B), strongly supporting its 
suitability for in vivo studies targeting the brain. 
Therefore, we further investigated the therapeutic 
effects of TP-41 in an AD mouse model [2]. 

TP-41 attenuates Hypothalamic-Pituitary- 
Adrenal (HPA) Axis Dysregulation and 
Neuroinflammation in MGO-induced mouse 

Based on the DeepMGO results, we examined 
TP-41 as a promising MGO scavenger in an 
MGO-induced mouse model of depression and 
cognitive impairment (Figure 4C), focusing on HPA 
axis dysregulation and neuroinflammation. MGO 
administration increased the amounts of GR protein 
expression in the hypothalamic paraventricular 
nucleus (PVN) and cortisol levels in the serum (Figure 
4D–E). To evaluate the effect of TP-41 in the 
MGO-induced mouse model, we administered TP-41 
(40 mg/kg) to mice and compared it to mice treated 
with the antidepressant Trp (40 mg/kg) as a positive 
control (PC) (see Figure 4C). Remarkably, the treated 
TP-41 mice had reduced levels of GR in the PVN and 
cortisol in the serum, similar to the levels in the 
Trp-treated mice (Figure 4D–E). 
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Figure 4. Identification and validation of TP-41 as a novel MGO scavenger and putative therapeutic compound for AD. (A) Scheme of virtual screening of 44 
compounds in the application data for prioritization and identification of a novel MGO scavenger. (B) Among the 44 compounds, the predicted MGO scavenging activity score 
of TP-41 was the highest. (C) Schematic diagram of the experimental plan for the MGO-induced depression and memory loss mouse model. (D) Immunostaining assays were 
performed to detect GR expression in the PVN. The GR-immunoreactive cells were quantified by GR-positive cells in the PVN. Scale bar = 500 µm. (E) Densitometry graph of 
serum cortisol levels measured using ELISA. (F–H) Densitometry graph of pro-inflammatory cytokine levels for IL-1β (F), IL-6 (G), and TNF-α (H) in serum was measured using 
ELISA. (I) Densitometry graph of detected MGO levels in serum analyzed using high-performance liquid chromatography. (J) The protein expression level of RAGE in mouse 
brains was analyzed by western blotting. Quantitative analysis of RAGE expression was normalized using α-tubulin as the loading control. Values are represented as mean ± SEM 
(N = 3–6). #P < 0.05, ##P < 0.01, and ###P < 0.001 vs. control group (CON). *P < 0.05, **P < 0.01, and ***P < 0.001 vs. MGO group (MGO). GR: glucocorticoid receptor; PVN: 
paraventricular nucleus of hypothalamus.  
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Moreover, MGO administration increased the 

levels of cytokines (IL-1β, IL-6, and TNF-α) in the 
serum, which led to neuropsychiatric disorders and 
depression as shown in behavior tests (i.e., OFT, TST, 
and FST) (Figure 4F–H and Figure 5B–D). Levels of 
the free form of MGO in the serum, and RAGE protein 
expression levels in the mouse brain, were 
significantly increased in MGO-treated mice, 
indicating that MGO might be considered a more 
potent biomarker for AD progression (Figure 4I–J). 

In addition, MGO-treated mice also significantly 
increased pro-inflammatory cytokines (i.e., IL-1β, IL-6, 
and TNF-α) and the free form of MGO in serum 
(Figure 4F–I). Conversely, TP-41 administration 
significantly reduced RAGE expression in the 
MGO-induced mouse model, suggesting that TP-41 
may attenuate MGO-induced changes by modulating 
the RAGE pathway and consequently inhibiting 
NF-κB activation [67] (Figure 4J). 

TP-41 ameliorated the depression and 
memory loss in MGO-treated mice 

To clarify whether MGO affects cognitive and 
depression-like behaviors in ICR mice, we performed 
NORT experiments to evaluate memory loss. The 
percentage of recognition after treatment with MGO 
was significantly lower than that in the control (CON) 
mice, implying that MGO induces memory 
dysfunction (Figure 5A). 

Moreover, we conducted several depressive 
behavior tests (OFT, TST, and FST). The OFT was 
used to assess anxiety behavior, and the MGO-treated 
mice groups showed a slight reduction in the total 
distance traveled compared with the CON group 
(Figure 5B). The TST, another technique used to 
measure depression-like activity, demonstrated that 
MGO-induced a longer immobility time in mice than 
in the control group (Figure 5C). Notably, we found 
that MGO strongly triggered immobility in ICR mice 
in the FST. Collectively, all behavioral tests showed 
that MGO-induced depression/anxiety and memory 
loss in mice, possibly by increasing the levels of 
inflammatory factors, including cytokines and RAGE 
from serum and brain after sacrificing the mice 
(Figure 5D). 

AD is characterized by the accumulation of Aβ 
and hyperphosphorylated tau protein in the mice 
brains [68]. Thus, we verified Aβ and tau activation as 
major pathological features of AD in this novel in vivo 
model induced by MGO. MGO treatment in mice 
considerably increased the expression of APP, mAβ, 

and oAβ in comparison with CON mice, and also 
increased the expression of the phosphorylated- 
oligomeric form of tau (p-oTau; Figure 5E–F). 

The expression levels of the phosphorylated 
monomeric form of tau (p-mTau) after treatment with 
MGO were slightly higher than those in the CON 
group (Figure 5F). Our results indicated that MGO 
could induce tau phosphorylation and Aβ deposition 
in the brains of mice. 

We further analyzed the effects of TP-41 on 
cognitive impairment and depressive behavior in 
MGO-treated mice. In NORT, TP-41 rescued the 
ability of mice to recognize new objects in 
MGO-induced mice model (Figure 5A). In the OFT, 
which assesses locomotor/exploratory and 
anxiety-like behaviors, TP-41 slightly increased the 
total distance traveled compared to the MGO group 
(Figure 5B). The immobility time was reduced in the 
treated TP-41 mice group in the TST and FST, 
comparing with MGO-induced group (Figure 5C–D). 

To elucidate the mechanisms underlying 
AD-related pathology, we evaluated the effect of 
TP-41 on MGO-activated Aβ types and tau 
phosphorylation using western blotting and IHC 
staining assays (Figure 5E–F). TP-41 strongly 
suppressed MGO-induced APP and Aβ type 
(monomer and oligomer) expression levels in both 
western blotting and IHC assays (Figure 5E–F). These 
results indicate that TP-41 protects mice from 
MGO-induced memory loss via its MGO-scavenging 
capacity, which further regulates RAGE expression, 
inflammatory factors, and HPA axis-related markers. 

In addition, TP-41 treatment significantly 
reduced the expression level of p-oTau compared to 
the MGO group (Figure 5F). Although p-mTau 
expression also showed a decreasing trend, the large 
inter-individual variability prevented statistical 
significance. These findings suggest that TP-41 
contributes to the suppression of tau 
hyperphosphorylation, particularly p-oTau, which is 
closely associated with synaptic impairment and 
neuronal degeneration, thereby alleviating neuronal 
dysfunction [69]. 

Depression is typically associated with short–
term memory problems. Dementia, including AD and 
depression, are closely associated. Previous reports 
have suggested that depression can also be a 
symptom of AD, particularly in the early stages. 
Therefore, TP-41 identified by DeepMGO may be a 
novel therapeutic compound for the early stages of 
AD. 
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Figure 5. Investigation of TP-41 administration in an MGO-induced depression and memory loss mouse model. (A) In the NORT, the total distance and 
recognition percentage were recorded and analyzed. (B) In the OFT, the total distance was analyzed. (C–D) In TST and FST, the immobility times were analyzed. (E) 
Immunostaining assay was performed to detect APP, mAβ1-42, and oAβ expression in both the hippocampus and cortex. (F) The protein expression levels of APP, mAβ1-42, oAβ, 
Tau, p-oTau, and p-mTau in mouse brains were analyzed by western blotting. Quantitative western blot analysis of each protein included normalization with α-tubulin as a loading 
control. Values are represented as the mean ± SEM (N = 3–6). #P < 0.05 and ##P < 0.01 vs. control group (CON). *P < 0.05, **P < 0.01, and ***P < 0.001 vs. MGO group (MGO). 
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TP-41 ameliorates memory deficits and 
modulates amyloid and tau in 5xFAD mice 

To enhance translational relevance, we examined 
the effects of TP-41 in the 5xFAD transgenic mouse 
model of AD, which recapitulates amyloid and tau 
pathology (Figure 6A). Oral administration of TP-41 
(40 mg/kg) improved depressive-like behaviors in 
5xFAD mice without affecting body weight (Figure 
6B). Cognitive function was evaluated using the 
NORT, Y-maze, and Barnes maze. In the NORT, 
5xFAD mice showed a significantly lower exploration 
ratio compared with WT controls, indicating impaired 
recognition memory. MGO-induced WT mice also 
exhibited poor exploration similar to 5xFAD mice. 
TP-41 treatment improved recognition performance, 
whereas Trp supplementation had only a modest 
effect (Figure 6C). In the Y-maze, both 5xFAD and 
MGO-induced WT mice displayed reduced 
alternation behavior, reflecting working memory 
deficits, suggesting that MGO exposure contributes to 
memory dysfunction. TP-41 significantly increased 
spontaneous alternation compared with 
vehicle-treated 5xFAD mice, while Trp 
supplementation was less effective (Figure 6D). In the 
BM, 5xFAD and MGO-induced WT mice exhibited 
prolonged escape latencies and impaired spatial 
learning. TP-41-treated 5xFAD mice showed shorter 
escape latencies and improved probe trial 
performance, whereas Trp treatment provided only 
partial improvement (Figure 6E). 

At the molecular level, Western blot analysis 
revealed increased APP, mAβ1-42, oAβ, and 
phosphorylated tau in 5xFAD mice compared with 
WT controls. Notably, MGO-induced WT mice 
showed a pronounced increase in p-mTau expression, 
suggesting that MGO primarily affects tau-related 
rather than amyloid-related pathways. TP-41 reduced 
APP and Aβ accumulation, and tau phosphorylation, 
while Trp exerted only minor effects (Figure 6F). 
These findings demonstrate that TP-41 improves 
recognition, working, and spatial memory in 5xFAD 
mice and alleviates amyloid and tau pathology, while 
also underscoring the contribution of MGO to 
tau-associated neurotoxicity. 

TP-41 reduces amyloid deposition and 
neuroinflammatory responses in the 
hippocampus and cortex of 5xFAD mice 

Amyloid deposition and neuroinflammation 
were assessed in the hippocampus (HP) and cortex 
(CX). Immunofluorescence revealed minimal Aβ 
(6E10) and Iba-1 signals in WT controls, whereas both 
MGO-induced WT and 5xFAD mice showed marked 

amyloid accumulation and microglial activation 
(Figure 7A–C). Transgenic mice also exhibited strong 
Aβ expression. Quantitative analysis confirmed 
significant increases in amyloid-β and Iba-1 compared 
with WT controls. 

TP-41 treatment markedly reduced amyloid-β 
deposition and Iba-1–positive microglial activation in 
both HP and CX of 5xFAD mice, while Trp 
supplementation showed only partial effects (Figure 
7A–C). Consistently, cytokine profiling of brain 
lysates revealed elevated TNF-α, IL-1β, and IL-6 in 
MGO-induced WT and 5xFAD groups, which were 
significantly attenuated by TP-41 but only modestly 
reduced by Trp (Figure 7D). These findings indicate 
that TP-41 reduces amyloid burden and 
neuroinflammatory responses in both hippocampal 
and cortical regions, accompanied by suppression of 
pro-inflammatory cytokine production. 

Discussion 
Increasing evidence indicates that MGO, a 

glycolytic byproduct, plays a critical role in AD 
pathogenesis [2]. Clinical studies have linked 
hyperglycemia to depression and memory loss in 
diabetic patients, while experimental models show 
that MGO accelerates brain damage, cognitive 
decline, and AD-like pathology [70, 71]. AGEs, which 
are closely associated with AD, promote oxidative 
stress and neuroinflammation, driving 
neurodegeneration [72]. As a major precursor of 
AGEs, MGO represents a critical pathogenic factor in 
AD, beyond its role in AGE formation. Therefore, 
targeting MGO offers a promising therapeutic 
strategy to counteract cognitive dysfunction. To this 
end, we developed DeepMGO, a novel DL-based 
platform designed to identify candidate MGO 
scavengers and establish MGO as a tractable 
therapeutic pathway in AD (Figures 1–2).  

DeepMGO’s superior performance arises from 
its parsimonious architecture, comprising only 0.22 
million parameters, which is particularly well-suited 
for our high-dimensional biochemical assay dataset (p 
> n; the number of features, 2,756, exceeds the number 
of samples, 2,262), a situation commonly encountered 
in quantitative structure–activity relationship (QSAR) 
studies [73, 74]. High-dimensional datasets are 
inherently prone to the curse of dimensionality, 
making them susceptible to overfitting, especially 
when models possess excessive capacity. Indeed, 
complex models such as DeepIC50 (32.45 million 
parameters) and ResNet18 (3.88 million parameters) 
were observed to learn noise rather than meaningful 
patterns [75].  
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Figure 6. TP-41 ameliorates memory deficits and modulates amyloid and tau in 5xFAD mice. (A) Schematic diagram of experimental design. (B) Body weight 
changes during the experimental period. (C) In the novel object recognition test (NORT), the exploration ratio (%) was analyzed. $$P < 0.01 and $$$P < 0.001 vs. familiar object 
group (two-way ANOVA). (D) In the Y-maze test, the percentage of spontaneous alternation and total entries were measured. (E) In the Barnes maze (BM), escape latency and 
total distance were recorded. (F) The protein expression levels of APP, mAβ1-42, oAβ, and Tau, and p-mTau in mouse brains were analyzed by western blotting. Quantitative 
western blot analysis of each protein included normalization with α-tubulin as a loading control. Values are represented as the mean ± SEM (N = 4–7). #P < 0.05 and ##P < 0.01 
vs. WT control (WT-V). *P < 0.05 and **P < 0.01 vs. 5xFAD-vehicle (5xFAD-V). 
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Figure 7. TP-41 reduces amyloid deposition and neuroinflammatory responses in the hippocampus and cortex of 5xFAD mice. (A–C) Immunofluorescence 
staining was performed to detect Aβ (6E10) and Iba-1 expression in the HP and CX. Representative images show Aβ (red) and Iba-1 (green) immunofluorescent signals. Scale bar: 
100 μm (10× magnification) – 200 μm (4× magnification). Quantitative analysis of fluorescence intensity in HP and CX regions was expressed as region of interest (ROI) intensity 
ratios (%). (D) Cytokine levels of IL-1β, IL-6, and TNF-α, in whole brain lysates were measured. Values are represented as the mean ± SEM (N = 4–6). ###P < 0.001 vs. WT control 
(WT-V). **P < 0.01 and ***P < 0.001 vs. 5xFAD-vehicle (5xFAD-V). 
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This was evident in our feature selection 
experiments—a standard diagnostic for overfitting in 
QSAR modeling [74]—where ResNet18's performance 
dramatically improved, with its R² value increasing 
from −2.754 to 0.821 when using only 10% of features 
compared to all features (Figure 2C–D, Tables S6–S7). 
In contrast, DeepMGO’s streamlined design functions 
as implicit structural regularization, meaning that the 
architecture itself constrains model complexity and 
prevents overfitting, enabling it to capture true 
underlying patterns and achieve stable, high 
performance (R² = 0.952 with 90% of features) without 
learning noise. While deeper architectures may be 
beneficial for larger datasets in the future, 
dimensionality reduction strategies such as 
autoencoders could also be considered [76].  

To interpret the major features DeepMGO used 
over other models, an XAI using SHAP inspected 
which features contributed to the model performance 
(Figure S7). DeepMGO bases its predictions on a 
balanced set of fundamental physicochemical 
properties, including structural complexity based on 
valence paths (VP-1), polarity derived from atomic 
properties (BCUTp-1h), and molecular 3D shape 
(SpMin4_Bhm) (Table S9), demonstrating a 
chemically intuitive and robust learning approach. In 
contrast, DeepIC50 relies heavily on a single 
structural feature (nTDHeteroRing: hexagonal ring 
structures), indicating a simplistic, less generalizable 
strategy. ResNet18 showed near-zero feature 
contributions, indicating that it failed to extract 
meaningful patterns from the descriptors. This 
suggests the model relied on noise rather than signal, 
leading to poor predictive performance. 
Consequently, ResNet18 is inferior to DeepMGO in 
both interpretability and robustness. 

Overall, these results demonstrate that 
DeepMGO provides a robust and generalizable 
framework for virtual screening, particularly in 
emerging pathogenic pathways like MGO in AD, 
where biochemical assay data for training deep 
learning models are limited. 

DeepMGO analysis revealed that high-affinity 
indole derivatives, including TP-41, TP-20, and TP-3, 
commonly carry electron-donating substituents (–OH 
or –OCH3) at the 5-position of the indole ring and 
flexible amino group–containing side chains (Figure 
4B and Figure S3). TP-41 showed the highest 
predicted affinity, likely due to its 
spermidine-conjugated structure providing multiple 
nucleophilic sites [25, 77]. This structure–activity 
relationship This structure–activity relationship 
highlights the importance of both indole core 
modifications and amino group–containing side 
chains for optimizing MGO scavengers. Consistent 

with these predictions, TP-41 ameliorated 
depression-like behaviors and cognitive deficits in 
MGO-induced mice (Figures 3–5). These findings 
support MGO scavenging as a potential therapeutic 
strategy for AD and establish a DL-guided 
biochemical screening framework for accelerating 
MGO-targeted drug discovery [18-21, 78, 79].  

In our model, MGO not only elevated 
depression-related markers such as GR and cortisol 
but also increased free MGO and pro-inflammatory 
cytokines (IL-1β, IL-6, TNF-α), implicating activation 
of inflammatory pathways that underlie 
psychoneuroimmunity-related depression. 
Consistently, MGO treatment markedly upregulated 
RAGE and downstream NF-κB signaling, further 
driving cytokine production (Figure 5F). Although 
TP-41 more effectively lowered serum MGO levels 
than Trp, reductions in IL-1β and IL-6 did not strictly 
mirror this effect, suggesting additional contributions 
from Trp-related metabolic pathways or 
tissue-specific inflammatory cascades. Collectively, 
these findings support MGO as a pathogenic driver of 
depressive behavior and memory loss, reinforcing our 
hypothesis that MGO can promote cognitive decline 
alongside depression and AD-like pathology in this 
mouse model.  

At the molecular level, MGO markedly increased 
APP, mAβ1-42, and oAβ expression in the 
hippocampus and cortex. Since Aβ plaques are a 
pathological hallmark of AD [80, 81], our findings, 
together with previous data, indicate that MGO is 
closely linked to AD biomarkers, including APP, 
mAβ, tau, and oAβ [2]. These results suggest that 
MGO accelerates Aβ aggregation and deposition, 
supporting glycotoxin regulation as a potential 
therapeutic strategy for AD. In addition, tau 
hyperphosphorylation, a key driver of synaptic 
dysfunction in oAβ-mediated pathology [82], was 
strongly induced by MGO, consistent with prior 
reports implicating RAGE and AGEs formation [69]. 
Thus, targeting MGO may help prevent both Aβ 
accumulation and tau hyperphosphorylation in 
AD-like pathology. 

An important finding is that TP-41, the top 
candidate identified by DeepMGO, effectively 
reduced AD-related pathology and cognitive 
dysfunction in the MGO-induced mouse model. Both 
TP-41 and Trp improved recognition memory in the 
NORT and restored locomotor activity and 
immobility times in the OFT, TST, and FST. At the 
molecular level, TP-41 significantly reduced p-oTau 
expression, suppressed GR, cortisol, and 
pro-inflammatory cytokines (IL-1β, IL-6, TNF-α), and 
decreased RAGE expression, suggesting attenuation 
of HPA axis hyperactivation and neuroinflammation. 
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Notably, the anti-depressant-like effects of Trp are 
likely attributable to a dual mechanism, involving 
both MGO scavenging and its role as a serotonin 
precursor. In contrast, TP-41 achieved comparable 
efficacy primarily through direct glycotoxin 
neutralization, underscoring its potential as a more 
specific anti-glycotoxin therapeutic candidate. 
Furthermore, TP-41 significantly lowered serum 
MGO levels, supporting the concept that targeting 
glycotoxins represents a promising therapeutic 
approach for both depression and AD. 

Building upon these findings, we validated 
TP-41 in the 5xFAD transgenic model, which 
recapitulates amyloid and tau pathology (Figures 6 
and 7). TP-41 significantly improved recognition, 
working, and spatial memory in the NORT, Y-maze, 
and Barnes maze (Figures 6). At the molecular level, 
TP-41 decreased APP, mAβ, oAβ, and 
phosphorylated tau. Furthermore, it more effectively 
attenuated amyloid deposition, microglial activation, 
and pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) 
than Trp (Figure 7). Collectively, these results 
demonstrate that TP-41 exerts multimodal therapeutic 
actions by improving cognition and suppressing 
amyloid/tau pathology and neuroinflammation in 
AD models.  

Interestingly, exogenous MGO administration in 
WT mice produced severe cognitive deficits than 
those observed in 5xFAD mice (Figures 6 and 7). Yet, 
immunohistochemistry showed only minimal Aβ 
deposition in the hippocampus and cortex, suggesting 
that these impairments were not primarily 
amyloid-driven. Instead, MGO markedly increased 
pro-inflammatory cytokines and microglial activation, 
indicating that glycotoxin stress induces 
neuropsychiatric and cognitive symptoms 
predominantly through neuroinflammatory 
pathways. These results highlight MGO as a distinct 
pathogenic factor linking metabolic stress to mood 
and cognitive dysfunction, complementing the 
amyloid-centric pathology of AD.  

RAGE has been reported to bind Aβ, with 
receptor expression elevated in AD patients [83]. 
Consistent with this, MGO increased APP, mAβ1-42, 
and oAβ in the hippocampus and cortex, which were 
attenuated by TP-41 or Trp (Figure 5E). Notably, 
TP-41 also reduced p-oTau levels, indicating its ability 
to inhibit MGO-induced tau hyperphosphorylation 
and thereby mitigate oAβ-mediated synaptic 
dysfunction [82]. 

Despite these promising results, several 
mechanistic questions remain. Although TP-41 
demonstrated in vivo MGO scavenging activity, its 
direct molecular interaction with MGO should be 
clarified using structural biology. The precise 

signaling cascade linking MGO scavenging to 
behavioral improvements also remains unresolved, 
and potential off-target pathways require evaluation 
through selective inhibition studies. In addition, 
structure–activity relationship analyses will be 
necessary to define the pharmacophores of TP-41 and 
guide further optimization. Finally, the small sample 
size (n = 4–7 per group) limits statistical power, 
underscoring the need for larger studies to confirm 
the robustness and reproducibility of these findings. 

Although the MGO dose used here (60 mg/kg) 
exceeds physiological levels, it was selected to induce 
reproducible pathology and enable mechanistic 
interrogation of glycotoxin-driven 
neurodegeneration. LC analysis (Figure S8) confirmed 
that TP-41 and Trp directly quenched free-form MGO, 
validating their specific mode of action. To enhance 
translational relevance, we further tested TP-41 in the 
5xFAD model, where it significantly ameliorated 
behavioral deficits, amyloid/tau pathology, and 
neuroinflammation. These findings support TP-41 as 
an effective MGO scavenger with disease-relevant 
efficacy. Nonetheless, future studies employing 
lower-dose, chronic MGO exposure or 
metabolic/diet-induced models are required to 
approximate physiological conditions and exclude 
potential off-target effects. Beyond MGO, other 
aldehydes such as 4-hydroxynonenal and 
formaldehyde also contribute to AD pathology, and 
extending the DeepMGO framework to identify their 
scavengers could broaden therapeutic scope. 
Importantly, MGO holds unique pathogenic 
relevance as both a direct cytotoxin and a major 
precursor of AGEs, linking it to oxidative stress, 
neuroinflammation, and tau/Aβ pathology. 
Moreover, its depletion is closely tied to Trp 
metabolism and depression-like phenotypes, 
highlighting its dual role in neuropsychiatric and 
neurodegenerative processes.  

In this study, a fluorescence-based assay was 
used as a rapid screening tool to assess compound 
reactivity toward MGO, and its predictive value was 
validated by LC analysis (Figure S8). We recognize 
that this assay is optimized for detecting 
carboline-type products arising from Trp-MGO 
interactions, but it does not fully capture 
non-fluorescent imine-forming scavengers such as 
carnosine. To address this limitation, we performed 
chemical profiling of the fluorescence readout 
products based on LC-qTOF-MS analysis (Figure S4). 
In this experiment, we confirmed that TP-41 and Trp 
directly quenched free-form MGO via Pictet-Spengler 
reaction and spontaneous dehydrogenation, 
suggesting a plausible molecular mechanism of MGO 
scavenging activity of TP-41 and Trp. This combined 
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approach strengthens confidence in our findings and 
underscores the need to consider both fluorescent and 
non-fluorescent pathways when evaluating 
anti-glycotoxin activity. 

Indole-derived natural products and analogues 
showed similar effects, further supporting the assay’s 
utility. Consistent with our previous findings [2], Trp 
exhibited the highest reactivity among amino acids 
and was depleted under high-dose MGO exposure, 
contributing to neuropsychiatric impairments. 
Supplementation restored these deficits, underscoring 
the biological significance of stoichiometric 
scavenging. Although such mechanisms may limit 
large-scale clinical translation, they remain useful for 
identifying and ranking anti-glycotoxin scaffolds. 
Importantly, TP-41 also demonstrated efficacy in the 
5xFAD transgenic model, extending its therapeutic 
potential beyond the artificial MGO-induced system 
to genetically driven amyloid and tau pathology. 

Given that MGO and its downstream effectors 
(e.g., RAGE, phosphorylated tau) were consistently 
modulated in our study, these molecules may also 
serve as theragnostic biomarkers to monitor disease 
progression and therapeutic response. Thus, TP-41 
has potential not only as a therapeutic agent but also 
within a theragnostic framework, where patient 
stratification and treatment efficacy could be guided 
by MGO-related biomarker profiling. 

In summary, through DL-guided drug 
discovery, we identified a novel compound, TP-41, 
that targets MGO activity for AD treatment. We also 
demonstrated the feasibility of DL-guided drug 
discovery in a unique human disease, where a 
DL-based drug screening strategy had not previously 
been established owing to a lack of biochemical assay 
screening data for training DL models. Finally, we 
propose that TP-41 is a suitable lead compound for 
further research and development of 
symptom-ameliorating AD medications.  
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