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Abstract

Rationale: Circulating hybrid cells expressing both epithelial and immune markers have emerged as indicators of dynamic tumor-
immune interactions. This study aimed to characterize circulating hybrid cells co-expressing KRT18 (pan-cytokeratin) and PTPRC (CD45),
termed KP_Pos, in metastatic prostate cancer (mPCa), and to assess their molecular features, tumor microenvironmental (TME) origins,
and clinical relevance.

Methods: Imaging mass cytometry (IMC) was used to examine spatial relationships between CK* tumor and CD45* immune cells in
metastatic prostate tissues. Single-cell RNA sequencing (scRNA-seq) datasets from mPCa were analyzed to identify KP_Pos cells and
characterize their transcriptional heterogeneity across epithelial and immune lineages. Differentially expressed genes (DEGs) between
KP_Pos and other cells were used to generate predictive gene signatures. Random forest (RF) and extreme gradient boosting (XGB)
models were applied to evaluate metastatic classification performance, and high-performing signatures were validated in bulk RNA-seq
datasets and correlated with clinical parameters.

Results: IMC revealed frequent spatial proximity between tumor and immune compartments, supporting a TME-derived hybrid
phenotype. KP_Pos cells were detected across multiple immune and epithelial clusters, showing heterogeneity and enrichment of immune
response and epithelial-mesenchymal transition (EMT)-related genes. Machine learning—based classifiers using KP_Pos-derived DEGs
achieved high predictive accuracy (AUC 2 0.7) for metastasis, and selected combinations further improved performance in internal
validation sets. Signature scores significantly correlated with PSA and Gleason grade, and CD45* hybrid circulating cells were more
abundant in patients with advanced disease burden.

Conclusions: CD45" KRT18" hybrid circulating cells (KP_Pos) represent biologically distinct populations shaped by tumor—immune
interactions within the TME. Their transcriptomic features and derived gene signatures may serve as biomarkers of metastatic potential
and indicators of disease progression in prostate cancer. However, their causal role in metastasis and impact on survival remain to be
determined.
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Introduction

Prostate cancer (PCa) is the most frequently  over 1.4 million new cases and approximately 375,000
diagnosed cancer and the fifth leading cause of deaths each year [1]. The distinction between
cancer-related death among men worldwide, with  localized and metastatic disease is a pivotal
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determinant of therapeutic decision-making, as
metastatic PCa is associated with markedly worse
outcomes and limited curative options [2]. Early and
accurate prediction of metastasis could thus play a
crucial role in improving survival and reducing
treatment-related morbidity by enabling timely and
tailored interventions [3].

Although many prostate cancers are initially
indolent, a considerable proportion progress to
aggressive phenotypes, and up to 20% of patients
present with metastases at diagnosis [4]. Furthermore,
among patients with localized disease, recurrence and
subsequent progression to distant metastasis remain a
significant clinical concern [5]. While recent advances
in systemic therapies—including androgen receptor
signaling inhibitors, radionuclide therapies, and
immunotherapy —have transformed the management
of metastatic PCa, their success hinges upon accurate
risk stratification at an early stage [6]. Moreover, the
advent of PSMA PET-CT has significantly altered
diagnostic and therapeutic decision-making in
prostate cancer, further underscoring the need for
biomarkers that can complement advanced imaging
modalities [7].

In this context, the identification of robust
biomarkers or molecular signatures capable of
predicting metastatic potential is a pressing need.
Circulating tumor cells (CTCs) have emerged as a
promising non-invasive biomarker of metastasis in
various cancers [8]. Traditionally, CTCs are defined
by the expression of epithelial markers such as
cytokeratins and the absence of the pan-leukocyte
marker CD45. However, recent studies have
challenged this classical dichotomy by reporting
CTC-like cells that co-express both epithelial and
immune markers, including CD45. These hybrid
phenotypes may result from epithelial-mesenchymal
transition (EMT), tumor-immune cell fusion, or
immune mimicry mechanisms [9-11]. One proposed
mechanism underlying the emergence of such hybrid
CTC-like cells is spontaneous fusion between
neoplastic epithelial cells and tumor-associated
macrophages. This fusion gives rise to progeny that
co-express hematopoietic and epithelial markers and
exhibit enhanced migratory capacity, immune
evasion, and metastatic plasticity, as demonstrated in
both murine models and human tumors [12].

Such phenotypically hybrid cells have been
observed in several malignancies and are often
enriched in patients with metastatic disease [13-15]. In
prostate cancer, while CTCs are generally CD45-,
recent findings suggest that CD45 expression in
circulating epithelial-like cells may be associated with
increased metastatic potential [11]. A similar
phenomenon has been described in breast cancer,
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where CD45-overexpressing tumor cells exhibit
enhanced migratory and immune-evasive properties
[16]. These findings indicate that the appearance of
atypically expressed cells in circulation may serve as a
sensitive indicator of metastatic dissemination.

Concurrently, transcriptomic analysis has
revolutionized the field of precision oncology by
enabling comprehensive characterization of the tumor
microenvironment and metastatic programs [17]. In
parallel, genetic testing is now increasingly
recommended in prostate cancer to refine risk
stratification and guide precision treatment decisions
[18]. Bulk and single-cell RNA sequencing allow for
the identification of gene expression signatures linked
to invasion, EMT, immune evasion, and metastasis
[19, 20]. Such transcriptome-based approaches have
shown promise in stratifying patients, predicting
treatment response, and uncovering mechanisms of
progression [21, 22].

In this study, we hypothesized that circulating
tumor cell (CTC)-like populations co-expressing
epithelial and immune markers may reflect
underlying metastatic programs shaped by the tumor
microenvironment. To test this, we conducted an
integrative analysis that combines single-cell RNA
sequencing (scRNA-seq)-based signature discovery
from primary prostate tumors with validation in bulk
RNA-seq datasets from metastatic prostate cancer
tissues. By evaluating the predictive value of these
transcriptomic signatures for metastatic status, we
aim to identify robust biomarkers associated with
tumor aggressiveness. We note that such associations
do not imply direct causation, which would require
functional validation beyond the scope of this study.
This approach provides a foundation for a novel
biomarker framework aligned with personalized and
metastasis-informed management strategies in
prostate cancer.

Materials and Methods

Sample acquisition

Peripheral blood mononuclear cells (PBMCs)
and tissue samples were collected from prostate
cancer patients as part of a study approved by the
Institutional Review Board of Severance Hospital,
Yonsei University College of Medicine (IRB numbers:
4-2022-0710, 4-2021-0276). All participants provided
written informed consent after being appropriately
informed that their peripheral blood and tissue
samples would be used for research purposes.
Peripheral blood samples (5 mL) were obtained from
82 patients via venipuncture using a 21-gauge needle
and collected into EDTA-coated Vacutainer tubes
(Becton, Dickinson and Company, Franklin Lakes, NJ)
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for circulating cell analysis. Peripheral blood
mononuclear cells (PBMCs) were isolated from seven
patients with metastatic prostate cancer (M1 stage) for
single-cell RNA sequencing (scRNA-seq) analysis. For
comparative purposes, biopsy tissues from five
additional patients with clinically and radio-
graphically confirmed metastatic prostate cancer (M1
stage) were also collected and processed for
scRNA-seq. Because patient consent prohibited paired
blood-tissue collection, the PBMC and biopsy cohorts
were analyzed independently. In addition, biopsy
specimens from 234 prostate cancer patients—
including both non-metastatic (M0) and metastatic
(M1) cases —were subjected to bulk RNA sequencing.

Circulating cell isolation

Circulating cell isolation was performed using
the CTCeptor system (CTCELLS, Daegu, South
Korea), a fully automated Continuous Centrifugal
Microfluidics-Circulating ~ Tumor  Cell  Disc
(CCM-CTCD) platform [23, 24]. This system employs
a rotating microfluidic disc to separate blood
components based on their density. A synchronized
laser-controlled motor activates an internal valve to
release a thin layer enriched with tumor-derived and
white blood cells into a designated chamber, where
circulating cells are selectively captured through
antibody-based surface binding. The isolated cells
were subjected to immunofluorescence staining using
the following antibodies: anti-pan-cytokeratin
(PanCK; eBioscience, San Diego, CA), anti-CD45
(BioLegend, San Diego, CA), and anti-
prostate-specific antigen (PSA; Invitrogen, Waltham,
MA). Stained cells were imaged and analyzed to
distinguish epithelial-derived cells (PanCK*/CD457),
immune-origin cells (CD45%), and hybrid phenotypes
(PanCK*/CD45%), reflecting the cellular heterogeneity
of circulating populations in prostate cancer.

Imaging mass cytometry

Formalin-fixed, paraffin-embedded (FFPE)
prostate tissue sections from 21 tissue microarrays
(TMAs) of metastatic prostate cancer were depara-
ffinized, rehydrated, subjected to antigen retrieval,
and blocked with 3% BSA. The slides were then
incubated with metal-conjugated antibodies labeled
using Maxpar X8 Antibody Labeling Kits (Standard
BioTools, South San Francisco, CA), purified, and
quantified using NanoDrop spectrophotometry
(Thermo Fisher Scientific, Waltham, MA), followed by
storage at 4°C until use. A Standard BioTools-verified
antibody panel targeting tumor and immune-related
markers —including cytokeratin, CD45, CD14, and
CD16—was applied for staining. Imaging Mass
Cytometry (IMC) was performed using the Hyperion
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Imaging System (Standard BioTools), with laser
ablation and data acquisition conducted at JCBio
(Seoul, South Korea). Regions of interest (1000 x 1000
um) were selected based on tissue morphology, and
the acquired data were processed using CyTOF
software v7.0 (Standard BioTools, South San
Francisco, CA). Image quality was assessed prior to
exporting the data as multilayer OME-TIFF files,
which were analyzed using HALO Imaging Analysis
Software (v3.5, Indica Labs, Albuquerque, NM). The
Highplex FL module was used for cell segmentation
and marker quantification, while spatial tissue
analyses —including nearest neighbor and proximity-
based interaction mapping—were performed to
characterize tumor-immune interactions. Co-regis-
tration of serial sections and the generation of density
heatmaps enabled detailed spatial visualization of
immune and epithelial cell populations. Morpho-
metric quantification of CK*CD45* double-positive
cells was performed using cell segmentation masks
generated in HALO. Cell and cytoplasmic area
distributions were binned (10 pm? per bin), and
bin-wise percent values were calculated for each
group. To enable quantitative comparison across
groups, cumulative proportions (“AUC_percent”)
were computed as the sum of percent values within
the defined small-size range (<250 pm?), representing
the relative enrichment of smaller cells.

RNA sequencing

Single-cell RNA sequencing

Freshly obtained primary tumor biopsy
specimens from metastatic prostate cancer patients
(M1 stage) were processed to generate single-cell
suspensions. Enzymatic dissociation was performed
using in-house optimized protocols developed by
DCGEN (Seoul, South Korea). Following filtration
through a 40 pm cell strainer (Corning, Corning, NY)
and viability assessment using an automated cell
counter (Countess II, Thermo Fisher Scientific,
Waltham, MA), single cells were encapsulated and
barcoded using the Chromium Controller system (10x
Genomics, Pleasanton, CA) operated at Macrogen
(Seoul, South Korea). cDNA synthesis, amplification,
and library construction were conducted according to
the manufacturer’s protocol (10x Genomics). Libraries
were quality-checked with a Bioanalyzer (Agilent
Technologies, Santa Clara, CA) and a Qubit
fluorometer (Thermo Fisher Scientific, Waltham, MA),
and sequenced on Illumina NovaSeq 6000 or NextSeq
2000 platforms (Illumina, San Diego, CA). The raw
sequencing data were processed using Cell Ranger
software (10x Genomics) to generate gene expression
matrices for downstream analyses, including tumor
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microenvironment (TME) characterization and
ligand-receptor interaction mapping. Peripheral
blood mononuclear cells (PBMCs) were isolated from
seven patients with metastatic prostate cancer (M1
stage) and subjected to single-cell RNA sequencing
(scRNA-seq) to profile circulating immune-cell
transcriptomes. After cell isolation and viability
assessment, single-cell encapsulation and barcoding
were performed using the Chromium Controller
system (10x Genomics, Pleasanton, CA). Library
preparation, including c¢DNA synthesis and
amplification, was conducted according to the
manufacturer’s protocol. Sequencing was performed
by Eyeoncell (Gwangju, South Korea) on Illumina
NovaSeq 6000 or NextSeq 2000 platforms (Illumina,
San Diego, CA). Raw sequencing data were processed
using Cell Ranger software (10x Genomics) to
generate gene-cell count matrices for downstream
analyses.

Bulk RNA sequencing

Total RNA was extracted from biopsy tissues
using TRIzol reagent (Thermo Fisher Scientific,
Waltham, MA) or the RNeasy Mini Kit (Qiagen,
Hilden, Germany). RNA integrity was verified using a
Bioanalyzer (Agilent Technologies, Santa Clara, CA),
and RNA concentrations were measured using a
Qubit fluorometer (Thermo Fisher Scientific,
Waltham, MA). Only samples with an RNA Integrity
Number (RIN) greater than 7.0 were used for library
preparation with the TruSeq Stranded mRNA Library
Prep Kit (Illumina, San Diego, CA). Sequencing was
performed on the Illumina NovaSeq 6000 or NextSeq
2000 platforms (Illumina, San Diego, CA) using 100-
150 bp paired-end reads, with a target depth of 20-50
million reads per sample. Raw reads were aligned to
the reference genome using STAR or HISAT2, and
gene expression was quantified using featureCounts
or HTSeq-count.

Single-cell transcriptomic analysis and
differential gene expression

Single-cell RNA-seq data were analyzed using R
(v4.3.2) and the Seurat package. For integrated
analyses, scRNA-seq datasets from five metastatic
prostate cancer cases were merged using the
anchor-based integration workflow implemented in
Seurat v4. Briefly, each dataset was log-normalized,
and the top 2,000 variable features were identified.
Integration anchors were calculated using
FindIntegrationAnchors with default parameters, and
the datasets were aligned into a shared expression
space via IntegrateData, which corrects for
patient-specific batch effects while preserving
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biological variability. This integration enabled direct
comparison of identical cell types across patients,
enhanced the detection of rare populations (e.g.,
KP_Pos cells), and improved the robustness of
downstream clustering, annotation, and differential
expression analyses. Cell type annotation was
performed using six complementary approaches: (1)
SingleR-based methods, including (i) cell-level
annotation using the HumanPrimaryCellAtlasData
reference, (ii) cluster-level majority voting, defined as
assigning the most frequent SingleR-derived cell-type
label within each Seurat-defined cluster, and (iii)
cluster-to-cell-type mapping; (2) CellTypist-based
annotation using the Immune_All Low pretrained
model; (3) canonical marker-based annotation using
curated cell type-specific gene sets; and (4) cell
subtype-specific marker scoring using lineage-
relevant markers for regulatory, cytotoxic, exhausted,
memory, and helper T cells, B-cell subsets,
macrophages, and epithelial cells. Marker gene sets
used for annotation are listed in Supplementary
Tables S7-1 (cell types) and S7-2 (cell subtypes). In this
study, no single annotation approach was designated
as the “gold standard.” Instead, all six methods were
applied to capture complementary perspectives on
cell identity, acknowledging that each can yield
distinct yet biologically meaningful results. For
downstream analyses and visualization in the main
text, we selected the SingleR cluster-level
majority-voting annotation as the representative
strategy because it provided clearer cluster separation
in two-dimensional embeddings and minimized
figure complexity. This choice was made solely for
presentation clarity and does not indicate analytical
preference or bias. To ensure interpretability and
reproducibility, all differential expression analyses
and subsequent signature construction steps were
based on a unified DEG pool that combined the
results from all annotation approaches, thereby
incorporating both overlapping and method-specific
DEGs. KP_Pos cells were defined as those
co-expressing KRT18 and PTPRC (normalized
expression > 0.1), with all other cells categorized as
“Others.” DEG analysis comparing KP_Pos versus
Others was conducted using the Wilcoxon rank-sum
test implemented in Seurat’s FindMarkers function,
applying a log, fold-change threshold > 0.25 and
requiring expression in at least 10% of cells per group.
Significant DEGs were selected based on an adjusted
p-value < 0.05. Two DEG strategies were performed:
(i) cluster-based analysis within our metastatic
prostate cancer scRNA-seq dataset, and (ii)
metastasis-specific analysis incorporating benign and
localized prostate cancer samples from GSE193337.
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Cell-cell interaction analysis

Cell-cell communication was analyzed using the
CellChat R package (v1.6.1). Raw count matrices from
Seurat-integrated single-cell RNA-seq data of PBMCs
from metastatic prostate cancer patients were merged
into a unified Seurat object. Cell types were annotated
using SingleR with the HumanPrimaryCellAtlasData
reference, and the resulting labels were incorporated
into the CellChat metadata. A CellChat object was
constructed using the merged count matrix and
cell-type annotations and analyzed with the
CellChatDB.human ligand-receptor database.
Overexpressed genes and interactions were identified
using the functions identifyOverExpressedGenes()
and identifyOverExpressedInteractions().
Communication probabilities were computed via
computeCommunProb() and
computeCommunProbPathway(), considering only
cell types containing 210 cells. The resulting network
strengths were aggregated with aggregateNet() and
visualized using circular and heatmap layouts.
Sender-receiver  (incoming/outgoing)  signaling
analyses were performed for six major immune
populations —monocytes, macrophages, T cells, NK
cells, B cells, and CMPs—to quantify intercellular
signaling strength and relative communication

topology.

Signature-based classification and model
evaluation

To identify transcriptomic signatures predictive
of metastasis (M0 vs. M1), we implemented a machine
learning workflow based on gene expression-derived
features. Each signature was evaluated using a
three-way data partitioning strategy (training/
validation/test) with five different random seeds to
ensure robustness and reproducibility. Model training
and validation were performed using random forest
(RF) and extreme gradient boosting (XGB), and
performance was assessed by calculating AUC, PR
AUC, accuracy, sensitivity, specificity, precision, and
Fl-score. To control for overfitting, signatures were
categorized into four levels (none, mild, moderate,
severe) based on discrepancies between training and
test set performance; only signatures classified as
None in the overfitting-level analysis were used for
downstream analysis. A composite score was
calculated by z-transforming PR AUCs from both RF
and XGB models and summing them, enabling robust
ranking of consistently high-performing signatures.
Signatures with AUC 2 0.7 in the test set were further
applied to bulk RNA-seq data for M-stage (MO vs.
M1) prediction. This cutoff of 0.7 was selected because
it is widely regarded as the lower bound for clinically
meaningful discrimination, balancing sensitivity and
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specificity beyond random chance. The threshold has
also been frequently adopted in prior biomarker
studies to ensure comparability across studies and to
exclude weak predictors. Given the class imbalance in
our dataset, PR-AUC = 0.7 in the test set was used as
the primary criterion, ensuring that only robustly
predictive signatures were advanced to downstream
analysis. To assess whether predictive performance
could be improved through integration, combinations
of top-ranked signatures were tested using logistic
regression, RF, and XGB with repeated stratified
cross-validation across five seeds. Model performance
was compared using mean ROC AUC, PR AUC,
accuracy, and Fl-score, and the final composite
models were evaluated for associations with clinical
features.

MO0/MI1 prediction and performance evaluation

For M-stage classification (MO vs. M1), model
performance was assessed using standard binary
classification metrics. Predicted probabilities from RF
and XGB models were converted into class labels
using a default threshold of 0.5, unless otherwise
optimized based on PR AUC. The following
evaluation metrics were calculated: accuracy = (TP +
TN) / (TP + TN + FP + FN), sensitivity = TP / (TP +
FN), specificity = TN / (TN + FP), precision = TP /
(TP + FP), and Fl-score = 2 x (precision X sensitivity)
/ (precision + sensitivity). Additionally, area under
the receiver operating characteristic curve (ROC
AUC) and precision-recall curve (PR AUC) were
computed to assess overall discriminative power,
particularly under class imbalance. All metrics were
averaged across five random seeds for robust
comparison between individual signatures and
signature combinations.

Correlation analysis with clinical variables

To assess the clinical relevance of circulating cell
phenotypes and gene expression-based prediction
scores, we performed correlation analyses with key
clinical parameters including age, PSA level, Gleason
score, and TNM staging. For circulating cell
phenotypes defined by CD45 expression status
(CD45" and CD457), Pearson correlation coefficients
were calculated and visualized using Microsoft Excel
(Microsoft Corporation, Redmond, WA). For
combined signature scores derived from top-ranked
gene sets, Spearman rank correlation was computed
in R using the cor.test() function. Clinical variables
were numerically encoded, and results were
visualized using ggplot2-based bubble plots, where
color scale represented correlation strength and
direction, and circle size indicated statistical
significance (-log;o(p-value)).
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Statistical analysis

All statistical analyses were performed using
GraphPad Prism (GraphPad Software, La Jolla, CA)
and R (version 4.3.2). Gene expression differences
between groups were assessed using two-tailed
unpaired Student’s t-tests, assuming equal variance
unless otherwise specified. Correlation analyses in
RNA-seq datasets were conducted using Pearson’s
correlation coefficient. For correlation between gene
signature-based predictions and clinical parameters,
Spearman’s rank correlation was used when the data
were not normally distributed or were ordinal in
nature. A p-value less than 0.05 was considered
statistically significant. Statistical significance was
denoted by asterisks as follows: p < 0.05 (*), p < 0.01
(**), and p < 0.001 (***). Where applicable, multiple
testing correction was performed using the
Benjamini-Hochberg false discovery rate (FDR)
method. All visualizations were generated using R
packages including ggplot2, and significance markers
were applied accordingly in plots and tables.

Results

CD45 expression and characterization of
CTC-like cells in metastatic prostate cancer

We investigated CD45 expression in circulating
tumor cell (CTC)-like populations to define the
cellular identity of CD45" subsets through
immunostaining, PBMC clustering, and
transcriptomic profiling of metastatic prostate cancer
samples. CTC-like cells were detected in the majority
of 82 metastatic cases and were stratified by tumor
burden, overall survival, and TNM stage (Figure 1A).
Their abundance correlated with higher tumor load
and advanced disease (Supplementary Figure S1-1A),

although CD45 expression itself showed no
significant association with clinical parameters
(Supplementary  Figure S1-1B). Quantification

revealed that a substantial portion of cytokeratin®
CTC-like cells co-expressed CD45 (Figure 1B-a,b).
Immunofluorescence further confirmed
CD45*/PanCK* dual staining in patient-derived
CTC-like cells, with PSA signals often overlapping
CD45 (Supplementary Figure S1-1C). Single-cell
transcriptomic  profiling of PBMCs from seven
M1l-stage patients identified diverse immune
lineages—T cells, B cells, NK cells, monocytes, CMPs,
erythroblasts, and platelets (Figure 1C-a). Within
these, a rare subset of KRT18" PTPRC* (KP_Pos) cells
was detected, primarily among T and B cells (Figure
1C-b), comprising 0.867% (561 of 64,693) of total
PBMCs (Figure 1C-c). Annotation using multiple
approaches —SingleR (Supplementary Figure S1-2-1),
cluster-to-cell-type (S1-2-2), CellTypist (51-2-3),
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canonical marker (S1-2-4), and curated subtype
markers (51-2-5) —consistently confirmed immune
lineage identities. Independent analyses validated
reproducibility —across seven PBMC datasets
(Supplementary Figures S1-3-1 and S1-3-2-1 to
51-3-2-7). Differential expression analysis comparing
KP_Pos and other cells (Figure 1D; Supplementary
Table S1-1) revealed upregulation of KRT18 and
multiple ribosomal protein genes (RPS12, RPS13,
RPL30, RPS3A, RPL11, RPL32, RPS8, RPS23, RPS14,
RPL5), indicating enhanced translational activity and
partial  epithelial-like  reprogramming. Down-
regulated genes included mitochondrial oxidative
phosphorylation-related ~ transcripts  (MT-CO1,
MT-CO2, MT-CO3, MT-ATP6, MT-ND5) and
regulators such as PARP8, RABGAPIL, UTRN, ZEB2,
consistent with metabolic rewiring and reduced
mitochondrial respiration. T cells, accounting for
86.3% of all KP_Pos cells (484/561), were presented as
the representative subset for primary DEG analysis,
while B cells, monocytes, and platelets showed
analogous yet distinct transcriptional changes
(Supplementary Figure S1-4; Supplementary Table
S1-1). For clarity and consistency, the SingleR
cluster-level majority-voting annotation was adopted
as the representative framework in the main text.
Alternative  annotation  strategies — CellTypist-,
canonical marker-, subtype  marker-, and
unsupervised cluster-based methods (Supplementary
Figures S1-2-1 to S1-2-5) —produced complementary
DEG lists (Supplementary Tables S1-2 to S1-6). All
DEGs were integrated into a unified DEG pool,
ensuring that downstream analyses captured the full
transcriptional spectrum for signature development.

Characterization of CK*CD45* cells in primary
tumors reveals spatial, morphological, and
signaling features linked to CTC-like
phenotypes

To explore the origin and identity of CK*CD45*
circulating tumor cell (CTC)-like populations
observed in peripheral blood (Figure 1), we analyzed
metastatic prostate cancer tissues using Imaging Mass
Cytometry (IMC) and single-cell RNA sequencing.
CK-high tumors exhibited close spatial proximity
between CK* and CD45" cells and enriched EMT-like
features (Figure 2A). Tumors were stratified into three
groups by pan-CK expression: CK-high (G1),
CK-medium (G2), and CK-low (G3). IMC imaging
revealed dense colocalization of CK* and CD45* cells
in Gl tumors (Figure 2A-a), with progressively
separated patterns in G2 and G3. Quantitative
analysis confirmed significantly shorter CK-CD45
distances in G1 (p < 0.001) and higher frequencies of
CK*VIM* EMT-like cells (Figure 2A-b,c).
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Figure 1. CD45 expression analysis and characterization of circulating tumor cell (CTC)-like cells in metastatic prostate cancer. (A) Overview of CTC-like
cell detection and associated clinical parameters in metastatic prostate cancer patients (n = 82). (a) Distribution of patients based on CTC-like cell levels above or below the
detection limit. (b) Tumor volume classification in patients with detectable CTC-like cells. (c) Overall survival status of patients with detectable CTC-like cells. (d) TNM staging
distribution among patients with detectable CTC-like cells. (B) Analysis of CD45 expression in cytokeratin-positive CTC-like cells. (a) Patient-wise proportion of CD45* and
CD45" populations among cytokeratin-positive CTC-like cells. Cytokeratin positivity was determined using pan-cytokeratin staining. (b) Quantification of cytokeratin-positive
CTC-like subsets stratified by CD45 expression status. (C) Clustering, mapping, and quantitative summary of peripheral blood mononuclear cells (PBMCs) integrated from seven
metastatic prostate cancer (M1 stage) patients. (a) t-SNE (t-distributed Stochastic Neighbor Embedding) plots showing clustering and annotation of PBMCs based on
majority-voting classification. Major immune populations including T cells, B cells, NK cells, monocytes, common myeloid progenitors (CMPs), erythroblasts, and platelets were
identified. (b) Distribution of double-positive KRT18 *(cytokeratin) and PTPRC * (CD45) cells, referred to as KP_Pos cells, within the PBMC population. KP_Pos cells (black) and
other cells (gray) are visualized across annotated clusters on the t-SNE map. (c) Summary table showing the number and proportion of KP_Pos and other cells within each
annotated population. Among 64,693 PBMCs, 561 cells (0.867%) were classified as KP_Pos (highlighted in red), whereas 64,132 cells (99.13%) were classified as others. The
overall summary row is highlighted in yellow for emphasis. (D) Differentially expressed genes (DEGs) of KP_Pos versus other cells within the T-cell population from PBMCs of
seven MI-stage prostate cancer patients. Genes were ranked based on log, fold change and adjusted p-values, and significantly upregulated and downregulated genes in KP_Pos
T cells are shown in red and blue, respectively. Only the top 10 upregulated and top 10 downregulated genes are labeled to highlight the most significantly altered transcripts.
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Figure 2. Spatial and transcriptomic characterization of CK*CD45"* cells in primary tumors suggests a microenvironmental basis for CTC-like phenotype
emergence. (A) Spatial analysis of CK* and CD45" cells using Imaging Mass Cytometry (IMC). (a) Representative IMC images of metastatic prostate cancer tissues categorized
into three groups based on pan-CK expression levels. Top: Individual and merged fluorescence channels showing DAPI (blue), pan-CK (red), and CD45 (green) staining in Group
1 (G1: CK-high), Group 2 (G2: CK-medium), and Group 3 (G3: CK-low). Middle: Composite marker overlays and multiplexed spatial distribution maps at the single-cell level.
Bottom: Spatial cell mapping with segmentation showing the distribution of CK* (red) and CD45" (green) cells. Enlarged regions (R1-R3) highlight areas of spatial proximity
between these two populations. (b) Quantification of the average distance (um) between CK* and CD45" cells across the three groups. (c) Proportion of CK*VIM*
cells—indicative of epithelial-mesenchymal transition (EMT)-like features—among total CK* cells. Statistical significance: *p < 0.05; **p < 0.01; ***p <0.001. (B) Morphometric
profiling of CK*CD45" double-positive cells. (a) Distribution of total cell area (um?) of CK*CD45* double-positive cells in Group | (red), Group 2 (blue), and Group 3 (green).
Absolute counts are shown as bar graphs, while relative frequencies (%) are overlaid as line plots with dots. To enhance visibility, values are truncated at 250 pm?. The full
distribution across the complete range, separated into Count and Percent plots, is provided in Supplementary Figure S2-1-1-1. (b) Distribution of total cytoplasm area within the
restricted range, shown separately as Count and Percent plots in Supplementary Figure S2-1-1-2. (c) Cumulative proportions of cells within the defined small-size range for total
cell area across the three groups. (d) Cumulative proportions of cells within the defined small-size range for cytoplasmic area across the three groups. Black horizontal lines
indicate median values. Quantitative summaries of AUC and global statistics for cell and cytoplasmic area are provided in Supplementary Tables S2-1 to S2-4. (C) Intercellular
communication analysis centered on epithelial cells using single-cell RNA sequencing. (a, b) Circle plots showing outgoing (a) and incoming (b) signaling interactions of epithelial
cells with major immune populations. (c) Circle plot summarizing the overall intercellular communication network among epithelial cells and immune populations, including T
cells, NK cells, B cells, macrophages (Macro), monocytes (Mono), and CMPs. (d) Heatmap displaying the overall strength of intercellular communication between epithelial and
immune cell populations. All annotations were harmonized with those in Figure |1 C. Detailed outgoing and incoming communication profiles for each cell lineage are provided in
Supplementary Figures S2-2-1-1 to 52-2-2-2.
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Morphometric ~ analysis  of  CK'CD45*
double-positive cells (Figure 2B-a,b) revealed broader
size distributions in G1 but a left-shift toward smaller
cell and cytoplasmic areas in cumulative proportion
plots (Figure 2B-c,d). Summaries of these parameters
are provided in Supplementary Tables S2-1 to S2-4,
listing cumulative and global size statistics for each
CK-defined group. Supplementary Figures S2-1-1-1
and S2-1-1-2 display full distributions of total cell area
from Figure 2B-a as count and percent plots (< 250
um?), while Supplementary Figure S2-1-2 shows the
corresponding cytoplasmic distributions. These data
indicate enrichment of compact, densely distributed
immune-epithelial hybrid cells in CK-high tumors.
Intercellular communication analysis based on
single-cell RNA sequencing of Ml-stage tumor
biopsies revealed extensive epithelial signaling with
multiple immune populations (Figure 2C-a,b). The
strongest bidirectional interactions were observed
between epithelial cells and T cells, defining a
dominant epithelial-T cell signaling axis. The global
network (Figure 2C-c) confirmed that epithelial cells
were highly integrated with T, NK, B, monocyte,
macrophage, and CMP lineages. This network
suggests that intense epithelial-T cell cross-talk serves
as a central communication hub driving hybrid
(CD45*/KRT18*, KP_Pos) cell formation within the
tumor microenvironment. To ensure lineage
consistency with Figure 1C, platelets were excluded to
avoid signals from circulating components [25],
although platelet infiltration into solid tumors has
been reported [26]. Macrophages were included due
to their myeloid lineage continuity with circulating
monocytes, which can differentiate into tissue
macrophages [27]. In the directional interaction
heatmap (Figure 2C-d), rows represent signal senders
and columns receivers. Monocytes showed the
highest outgoing signaling toward epithelial cells,
whereas epithelial cells displayed moderate reciprocal
signaling to T cells and monocytes. Among all pairs,
epithelial-T cell interactions remained the most
balanced and sustained. Detailed outgoing and
incoming signaling profiles are presented in
Supplementary Figures S52-2-1-1 to S2-2-2-2.
Supplementary Figure S2-2-1-1 depicts outgoing
signals from T, B, NK, monocyte, macrophage, CMP,
and epithelial populations, with simplified circle plots
in Supplementary Figure 52-2-1-2. Incoming networks
for the same populations are shown in Supplementary
Figures S2-2-2-1 and S2-2-2-2, highlighting
lineage-specific signal reception. These results
collectively extend Figure 2C by visualizing
directional and quantitative aspects of immune-
epithelial communication in metastatic prostate
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cancer. Finally, quantitative IMC analysis further
confirmed CK and CD45 co-expression at the
single-cell level (Supplementary Figure 52-3). Scatter
plots display CK and CD45 signal intensities from
thousands of cells across three CK-defined groups,
with three representative cases per group (e.g., G1-1,
G1-2, G1-3). Each point represents an individual cell.
Together, these IMC and transcriptomic analyses
demonstrate spatial, morphological, and signaling
evidence supporting the presence and functional
relevance of hybrid immune-epithelial (CK*CD45%)
populations in metastatic prostate cancer.

Distribution and transcriptional features of
KP_Pos cells in the metastatic tumor
microenvironment

To explore the distribution of KP_Pos cells across
cell types, we analyzed single-cell transcriptomic
profiles from five metastatic prostate cancer biopsy
samples, which were entirely independent of the
PBMC cases in Figure 1 (no overlap between blood-
and tissue-derived datasets). Cluster-level annotation
via majority voting identified epithelial, immune, and
stromal lineages (Figure 3A-a). Expression maps of
KRT18 and PTPRC (Figure 3A-b,c) showed that
KP_Pos cells were broadly distributed across the
t-SNE embedding (Figure 3A-d). Quantification
across annotated lineages revealed that, among the six
immune subsets previously detected in PBMCs,
KP_Pos cells were most frequent in T cells,
macrophages, NK cells, B cells, monocytes, and CMPs
(Figure 3B). This distribution pattern was consistently
reproduced using six complementary annotation
strategies: cell-level annotation (Supplementary
Figure S3-1), cluster-level majority voting (S3-2),
cluster-to-cell-type mapping (S3-3), CellTypist-based
cell subtype annotation (53-4), marker-based immune
annotation (53-5), and subtype-specific marker-based
annotation (53-6). In all methods, immune
populations enriched for KP_Pos cells —particularly T
cells, macrophages, NK cells, B cells, monocytes, and
CMPs—were highlighted in orange in the
accompanying summary tables. To define the
molecular characteristics of KP_Pos cells, differential
gene expression analysis was performed between
KP_Pos and Other cells within the six major immune
lineages. Volcano plots revealed distinct sets of
significantly upregulated genes in KP_Pos cells across
lineages, with the highest numbers observed in CMPs,
macrophages, and T cells (Figure 3C). Complete gene
lists for all annotation strategies are provided in
Supplementary Tables S3-1 to S3-6.
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Figure 3. Single-cell transcriptomic analysis of metastatic prostate cancer reveals the distribution and transcriptional features of KP_Pos
(KRT18*PTPRC") cells. (A) Cell clustering and annotation. (a) Cell identities assigned by majority voting across Seurat clusters; since monocytes were not clearly resolved
in the clustering, their distribution is separately highlighted in the inset. (b—c) Feature plots showing expression of KRT18 (b) and PTPRC (c). (d) Distribution of KP_Pos cells
(KRT18*PTPRC") projected onto the t-SNE map. (B) Cell type composition of KP_Pos cells. Number and proportion of KP_Pos cells per annotated cell type. (C) Differential
gene expression in KP_Pos versus others. Volcano plots showing differentially expressed genes between KP_Pos and other cells across six major immune cell types (T cells, NK
cells, macrophages, B cells, monocytes, and CMPs). Red numbers indicate the count of significantly upregulated genes (adjusted p < 0.05, log2FC > 1).

Single-cell transcriptomic profiling identifies
metastasis-specific cellular and molecular
features of KP_Pos cells

To identify metastasis-specific alterations in the
composition and gene expression of KP_Pos
(KRT18*PTPRCY) cells, we conducted an integrated
single-cell transcriptomic analysis of benign, primary,
and metastatic prostate cancer tissues. Seurat-based
majority voting confirmed the presence of KP_Pos
cells across all stages (Figure 4A). In t-SNE projections
(Figure 4B-a-c), KP_Pos cells showed lineage- and
stage-dependent distribution patterns: T cells (red
outline) exhibited a progressive increase from benign
to metastatic states; epithelial cells (sky blue, upper
cluster) decreased gradually, while another epithelial
subset (purple, lower cluster) displayed a biphasic
pattern (primary > metastatic > benign). Monocytes

(green outline) demonstrated a marked enrichment in
primary tumors, whereas CMPs, B cells,
macrophages, and NK cells showed minimal
stage-specific variation. Quantitative comparison
revealed a lineage shift in KP_Pos composition across
disease stages, with macrophage-derived KP_Pos
populations predominating in metastatic tumors and
CMP-associated KP_Pos cells enriched mainly in
primary tissues (Figure 4C). Results from five
complementary reference-based cell-level annotation
methods, consistent with the Seurat-based majority-
voting annotation, are summarized in Supplementary
Tables S4-1-1 to S4-1-6 (table only, without figure
presentation due to overlap with Figure 3). To further
characterize KP_Pos heterogeneity in metastasis, we
analyzed subtype distributions within three major
compartments. In epithelial cells, KP_Pos cells were
enriched in  the  Epithelial EMT  subtype
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(Supplementary Figure S4-1). Within T cells, they
were predominantly associated with T_Memory and
T_Exhausted phenotypes (Supplementary Figure
S4-2). Among monocytes, KP_Pos cells were less
abundant in metastasis but enriched in the
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and benign KP_Pos cells across six immune
lineages—T cells, NK cells, B cells, macrophages,
monocytes, and CMPs—revealed lineage-specific
transcriptional changes (Figure 4D). Distinct
upregulated gene sets were most prominent in T cells

Mono_NonClassical subtype during earlier stages and CMPs, indicating activation of metastatic
(Supplementary Figure S4-3). Differential gene  programs in these populations (Supplementary
expression analysis comparing metastatic, primary,  Tables S4-2-1 to 54-2-6).
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Figure 4. Integrated single-cell transcriptomic analysis of KP_Pos populations across benign, primary, and metastatic prostate cancer. (A) Clustering of
integrated single-cell data. Annotation based on majority voting across Seurat-defined clusters. Since monocytes were not clearly resolved in the clustering, their distribution is
separately highlighted in the inset (rectangular box) of the t-SNE map. (B) Distribution of KP_Pos and others in t-SNE space and marker gene expression. Left: Expression levels
of KRT18 and PTPRC across benign (top), primary (middle), and metastatic (bottom) samples. Right: Distribution of KP_Pos (KRT18*PTPRC*) and other cells in t-SNE space for
each disease stage (a, benign; b, primary; ¢, metastatic). Dashed boundaries delineate major cell lineages: T cells (red), NK cells (light green), B cells (orange), macrophages
(yellow), monocytes (green), CMPs (navy), and epithelial cells (sky blue and purple). KP_Pos cells (black dots) were broadly distributed across multiple immune and epithelial
lineages. (C) Cell type composition of KP_Pos cells. Heatmap showing the number (left) and percentage (right) of KP_Pos cells across cell types in benign, primary, and metastatic
samples. Color intensity reflects values from low (green) to high (red). (D) Metastasis-specific differentially expressed genes in KP_Pos cells. Volcano plots displaying DEGs in
KP_Pos cells from metastatic samples compared to benign and primary samples within six major immune cell types: T cells, NK cells, B cells, Macrophages, Monocytes, and CMPs.
Significantly upregulated genes are marked in red (adjusted p < 0.05 and |log,FC| > 0.25). DEG counts are annotated within each plot.
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Construction and evaluation of scRNA-seq-
based gene signatures for M0/MI1 classification

To identify gene signatures predictive of
metastatic status (M0 vs. M1), we implemented a
multi-step workflow encompassing marker selection,
model development, and performance evaluation
(Figure 5A). Differentially expressed genes (DEGs)
were collected from two major sources: (i) cluster-
derived DEGs obtained from diverse annotation
methods (SingleR at cluster- and cell type-levels,
cluster-level majority voting, cluster-to-cell-type
mapping, CellTypist, and marker-based references)
and (ii) metastasis-specific DEGs identified by
comparing epithelial cells from metastatic, benign,
and primary prostate tissues. In total, 7,488
cluster-derived and 6,408 metastasis-specific DEGs
were compiled, encompassing epithelial, immune,
and stromal populations (Figure b5B-ab). All
DEGs —including those distinguishing KP_Pos versus
other cells across immune lineages—were pooled to
construct candidate marker sets for MO0/M1
classification. Each marker set was evaluated through
three-way data partitioning (training, validation, and
test sets), and classification performance was assessed
primarily by the precision-recall area under the curve
(PR-AUC) to correct for class imbalance. Marker sets
achieving PR-AUC 2 0.7 in the test dataset were
retained as high-performing, yielding 945 predictive
signatures. This threshold was selected to ensure
clinical relevance and avoid overfitting [28]. Random
Forest (RF) and Extreme Gradient Boosting (XGB)
models were then applied in parallel to the 945
signatures. Cross-model evaluation compared AUC,
PR-AUC, accuracy, sensitivity, specificity, precision,
and Fl-score, leading to the identification of 119
consistently robust signatures with minimal
overfitting. Pie charts illustrate the proportional
contribution of each annotation method to the final
marker pool. To validate stability, each signature was
trained and tested using five random seeds (Figure
5C-a). AUC distributions across partitions confirmed
consistent model behavior. Overfitting was assessed
by PR_AUC differences between validation and test
sets, classifying signatures into four
categories —None, Mild, Moderate, or Severe (Figure
5C-b). Among the 945 candidates, 29.5% showed no
overfitting, 32.5% mild, 37.4% moderate, and only
0.6% severe. Performance metrics, including precision
(Figure 5C-c), recall (Figure 5C-d), and F1 score
(Figure 5C-e), declined progressively with increasing
overfitting severity, as indicated by lower medians
and broader distributions. Yellow bars denote mean
performance within each category. To compare
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algorithmic consistency, we analyzed overfitting-free
(None) signatures across both RF and XGB models
(Figure 5D). All six performance metrics—AUC,
accuracy, sensitivity, specificity, precision, and F1
score—showed strong inter-model correlation,
confirming robust, model-independent predictive
capacity. Performance variations among all signatures
were further visualized using stratified boxplots and
heatmaps (Supplementary Figure S5A-B).
Classification performance declined modestly from
None to Severe groups, with AUC and F1 scores
showing the steepest reductions, while specificity and
precision remained relatively stable (Supplementary
Figure S5A-a, S5B-a). Heatmaps of normalized
performance metrics highlighted clusters of
top-performing signatures, and the top 20 signatures
for RF and XGB were ranked and visualized
(Supplementary Figure S5A-b, S5B-b). Compre-
hensive datasets are provided in Supplementary
Tables S5-1 to S5-3, including the full list of predictive
gene signatures with gene composition and
partitioning results across random seeds (S5-1),
detailed RF/XGB performance metrics (S5-2), and
overfitting classification for each signature (S5-3).

Composite scoring identifies robust gene
signatures predictive of metastatic prostate
cancer and reveals clinical correlations

To systematically evaluate gene signatures
predictive of metastatic status (MO vs. M1), we
analyzed 119 candidate gene signatures constructed
from scRNA-seq-derived DEGs. For each signature, a
composite score was computed as the averaged
performance from RF and XGB models. Based on
these scores, 55 positive and 64 negative signatures
were identified (Figure 6A; Supplementary Table
56-1-1). Applying all 119 signatures to bulk RNA-seq
data, we visualized M-stage classification outcomes
via heatmap (Figure 6B). Signatures were ranked by
composite score, with individual predictions shown
per sample (MO: blue; M1: red). Among them, 19
signatures achieved mean accuracy 20.65, including
five 20.7 (Supplementary Table S6-1-2), indicating
strong predictive potential. Subsequently, all possible
combinations (Combos) of 2-5 gene signatures from
these top 19 were tested to assess whether integration
improves  M-stage  prediction  relative to
single-signature models. The cellular origins of the 19
top-performing signatures were then analyzed. Based
on inclusion of epithelial (KRT18) and immune
(PTPRC) markers, signatures were classified as
Include or Exclude.
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Figure 5. Construction and evaluation of predictive signatures for M0/MI classification based on differentially expressed genes. (A) Workflow for signature
evaluation. Step 1: Marker set construction using cluster-derived DEGs and metastasis-specific DEGs identified from cell-level annotation strategies. Step 2: Three-way data
partitioning for model development using bulk RNA-seq data combined with clinical information. Five independent random seeds were applied for reproducibility analysis. Step
3: Signature validation through model training and evaluation using Random Forest (RF) and Extreme Gradient Boosting (XGB) algorithms. (B) Composition of the marker Pool.
(a) Cell type and clustering method-dependent distribution of cluster-derived DEGs. The left panel shows a bubble plot summarizing the number of DEGs per cell type across
annotation methods. The right pie chart displays proportional contributions from each method (SingleR, CellTypist, etc.). (b) Cell type and clustering method-dependent
distribution of metastasis-specific DEGs. The left panel shows a bubble plot summarizing DEGs derived from metastasis-specific comparisons, while the right pie chart shows
contributions from each method. (C) Three-way data partitioning analysis for model development. (a) AUC scores for training, validation, and test datasets. (b) Overfitting level
evaluation of signatures, based on the difference between PR_AUC in validation and test sets. Scatter plot with pie chart summarizes the proportion of signatures categorized
as none, mild, moderate, or severe overfitting. (c) Precision scores of signatures according to overfitting level. (d) Recall scores of signatures according to overfitting level. (e) FI
scores of signatures according to overfitting level. Yellow horizontal lines indicate the average score within each group. (D) Comparative performance of RF and XGB models
using signatures from the none overfitting group. Eight scatter plots display the correlation between RF and XGB models in terms of AUC, accuracy, sensitivity, specificity,

precision, and F1 score for signatures classified as none in overfitting level evaluation.
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Figure 6. Composite score-based signature evaluation and clinical correlation analysis. (A) Distribution of composite scores across 119 gene signatures predictive
of metastatic status (MO vs. M1). Composite scores were calculated as the average of RF and XGBoost-derived scores. Among them, 55 signatures with positive composite scores
(red) and 64 with negative scores (black) were identified. (B) Heatmap illustrating M-stage prediction (MO: blue, M1: red) across bulk RNA-seq samples using the 119 signatures,
sorted by composite score. The top-performing signatures (accuracy 2 0.7, n = 5; accuracy 2 0.65, n = 19) are highlighted. (C) Cell-of-origin analysis for the 19 signatures with
accuracy 2 0.65. Based on the presence of KRT 18 and/or PTPRC, signatures were grouped into 'Include’ or 'Exclude’. The 'Include’ group was further classified into three cell-type
categories: (1) monocyte, NK cell, B cell, and CMP (35.7%), (2) macrophage (42.9%), and (3) T cell (21.4%). (D) Spearman correlation between individual signature scores (top
19) and clinical variables (Age, PSA, Gleason Score, T_stage, N_stage, M_stage). Circle color represents correlation strength, size reflects —log;o(p-value), and circles with black
outlines indicate statistical significance (p < 0.05). (E) Prediction performance of multi-signature combinations assessed using (a) RF and (b) XGB models. Here, “combinations”
refer to all possible sets of 2 to 5 signatures drawn from the top 19 signatures identified in panel B. Each dot corresponds to a unique combination, with color denoting ROC AUC
and size indicating the number of included signatures. (F) Evaluation of selected signature combinations, where each combination was derived from the top 19 signatures (2-5
signatures per combination). a. Line plots showing average accuracy (red) and average ROC AUC (blue) for each combination across the test dataset. b. Correlation analysis
between combined signature scores and clinical parameters. Dot size indicates —log;o(p-value), color represents correlation coefficient, and black outlines highlight significant
correlations (p < 0.05).
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The majority (73.7%) belonged to Include,
subdivided into macrophage (42.9%),
monocyte/NK/B cell/CMP (35.7%), and T cell
(21.4%) subgroups (Figure 6C), indicating meaningful
contributions from both immune- and epithelial-
derived genes. Prediction heterogeneity across the full
945 signatures was visualized using heatmaps
(Supplementary Figure S6-1). Considerable variability
was observed, yet lineage-based grouping revealed
that monocyte-, NK-, B cell-, and CMP-derived
Include signatures exhibited classification patterns
comparable to macrophage- and T cell-derived ones,
underscoring their robustness. To assess clinical
relevance, we performed Spearman correlation
analysis between signature scores and clinical
parameters (Age, PSA, Gleason Score, T_stage,
N_stage, and M_stage). Most predictive signatures
correlated significantly with M_stage (Figure 6D), and
particularly Sig 583098 and Sig 715659 also showed
associations with PSA and T_stage, supporting their
clinical utility as metastasis-related biomarkers. Next,
we tested whether combining multiple signatures
enhances prediction accuracy. Ensemble models using
RF (Figure 6E-a) and XGB (Figure 6E-b) evaluated
diverse signature combinations. Each dot in the
scatterplots represents one unique combination, with
dot size indicating the number of signatures and color
denoting ROC AUC. Several combinations achieved
ROC AUC > 0.8, demonstrating the advantage of
multi-signature integration (Supplementary Tables
S6-2-1 and S6-2-2). Selected combinations were
further validated for accuracy and clinical correlation.
Multiple combinations maintained high test-set
accuracy and ROC AUC (Figure 6F-a). Correlation
analyses  (Figure ©6F-b) revealed significant
associations with Gleason Score, T_stage, and
M_stage, confirming both robustness and clinical
interpretability. Interestingly, Combo 1, despite
strong M-stage prediction, showed no correlation
with clinical parameters, suggesting that it captures

metastasis-linked transcriptomic features
independent of conventional variables.
Discussion

Metastasis remains the leading cause of

mortality among men with prostate cancer (PCa), and
reliable prediction of metastatic potential remains a
major unmet clinical need. In this study, we
investigated the transcriptomic and spatial
characteristics of hybrid circulating tumor cell
(CTC)-like cells co-expressing epithelial (KRT18) and
immune (CD45/PTPRC) markers, termed KP_Pos, to
elucidate their origin and clinical significance.
Through integrated Imaging Mass Cytometry (IMC),
single-cell RNA sequencing (scRNA-seq), and bulk
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RNA-seq-based modeling, we identified lineage-
specific transcriptomic programs and gene signatures
associated with metastasis and demonstrated their
predictive power in stratifying patients by metastatic
status.

Spatial IMC analysis of metastatic prostate
tumor microenvironments revealed close proximity
and frequent interaction between CK* epithelial and
CD45* immune cells, coinciding with the emergence
of CK*CD45" hybrid phenotypes. Although such cells
have been linked to fusion-related enlargement [9, 29],
our morphometric profiling revealed an opposite
pattern: CK*CD45" double-positive cells in CK-high
tumors (Group 1) were smaller yet more abundant
than in other groups, with size distributions shifted
toward compact morphologies (Figure 2B-c,d). These
compact phenotypes, observed across multiple
lineage markers (CD14, CD16, CD3, CD8A,
Granzyme, Perforin), likely represent metabolically
active states rather than quiescence, consistent with
small but functionally potent CD45RO" memory T
cells and CD16* NK cells [30, 31]. IMC quantification
confirmed enrichment of activation and checkpoint
molecules (CD25, HLA-DR, PD-1) in these compact
hybrids, aligning with evidence that morphologically
small circulating cells increase in advanced disease
and predict poor prognosis [32]. Collectively, these
findings suggest that KP_Pos cells are compact, active
immune-epithelial hybrids engaged in tumor-
immune communication rather than simple fusion
products. Consistently, CellChat analysis (Figure 2C)
demonstrated that epithelial cells acted as both
senders and receivers of intercellular signals with
monocytes and T cells, underscoring a bidirectional
epithelial-immune signaling network in KP_Pos
emergence.

In PBMC scRNA-seq from M1-stage metastatic
PCa patients, KP_Pos T cells exhibited a distinct
expression profile marked by KRTI18 and multiple
ribosomal genes (RPS12, RPS13, RPL30, RPS3A,
RPL11, RPL32, RPS8, RPS23, RPS14, RPL5), indicating
partial epithelial-like reprogramming possibly driven
by tumor-derived factors or extracellular vesicle-
mediated transcript transfer [33]. Enhanced ribosomal
expression implies increased translational capacity
and adaptation to circulatory stress [34], whereas
downregulation  of  mitochondrial  oxidative
phosphorylation (OXPHOS) genes (MI-CO1,
MT-CO2, MT-CO3, MT-ATP6, MT-ND5) and
regulators (PARPS, RABGAPIL, UTRN, ZEB2)
indicates metabolic rewiring toward glycolytic states
linked to T-cell exhaustion [35, 36]. These data suggest
that KP_Pos T cells constitute metabolically altered,
transcriptionally hybrid subsets imprinted by
tumor-derived molecular signals [37]. Similar
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epithelial-like gene patterns appeared across other
immune lineages: B cells co-upregulated KRT1S8,
RPS12, RPLY, RPS19, RPL8, RPL12, RPS18, RPS17, and
stress-related genes RASSF7 and PLIN3, suggesting
cytoskeletal and lipid metabolic adaptation [38, 39];
monocytes induced KRT18, PEF1-AS1, and SLCO1B3,
indicating xenobiotic responsiveness [40, 41]; and
platelets showed unexpected KRT18, SIPR2, CDK5R1,
TET1, and PMS2/PMS2P3 upregulation, reflecting
epithelial transcript uptake or intercellular RNA
transfer [42]. These convergent profiles across
immune subsets support a systemic tumor-immune
molecular exchange, generating shared hybrid
transcriptional ~ programs  (Figures 1, 3-4;
Supplementary Figures S1-5S4; Supplementary Tables
S3-1 to S3-6).

Within metastatic tumor scRNA-seq datasets,
multiple annotation approaches (SingleR, CellTypist,
marker-based mapping) confirmed the presence of
KP_Pos cells across immune (macrophages,
monocytes, T cells) and epithelial compartments.
Transcriptomic comparisons revealed enrichment of
immune-response, antigen-presentation, and
epithelial-mesenchymal transition (EMT) pathways,
suggesting biological —not artifactual —origins. Dual
validation at protein and transcript levels (IMC and
scRNA-seq) confirmed KRT18/CD45 co-expression
(Supplementary Figures S1-1C, S2-3). The distribution
of KP_Pos cells differed by context: circulating PBMC
hybrids localized mainly within T and B cells, while
tissue-resident KP_Pos cells (Figures 3-4) included
NK, macrophage, epithelial, and stromal subsets,
reflecting microenvironmental pressures that drive
hybrid diversity.

Functional enrichment analyses (Supplementary
Figures S56-2, 56-3-1-56-3-9) revealed consistent
enrichment of immune, antigen-presentation, and
EMT pathways, consistent with evidence that the
TME promotes stemness and therapy resistance [43],
that EMT activation correlates with immune evasion
[44, 45], and that EMT-related transcriptional
programs predict poor outcomes [46]. Reports that
transcriptionally primed cells can drive lymph node-
independent metastasis [47] further support KP_Pos
cells as metastasis-competent intermediates.

From these data, we derived 945 lineage-specific
gene signatures and assessed metastatic classification
performance using Random Forest (RF) and Extreme
Gradient Boosting (XGB) models. Several individual
signatures  achieved  20.7 accuracy, while
combinations of top-performing signatures reached
20.8, indicating additive predictive value (Figures 5-
6). The use of multiple clustering and annotation
methods was essential to capture hybrid diversity and
prevent  bias  toward dominant lineages
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(Supplementary Figures SS5A-B, S6-1; Supplementary
Tables S5-1 to S5-3, S6-1-1, S6-1-2, S6-2-1, S6-2-2;
Reference 26). These predictive signatures bridge
molecular characteristics of primary tumors and
CTC-like hybrids, supporting the concept that
primary tumor transcriptional states can inform
metastatic potential. The existence of CD45*/KRT"*
hybrid CTCs in advanced prostate and breast cancers
[10, 11] reinforces this biological continuum linking
tumor-immune interaction and systemic
dissemination.

Several limitations must be acknowledged. All
analyses were based on a single internal cohort.
External validation wusing TCGA_PRAD and
SU2C_PRAD datasets was limited by differences in
sequencing platforms and gene coverage (TCGA_
PRAD: 20,531 genes; SU2C_PRAD: 19,293 genes; our
dataset: 36,553 genes), which precluded complete
model transfer and prevented direct testing of our
predictive signatures without compromising integrity
(Figures 5-6; Supplementary Tables S5-1 to S5-3,
S6-1-1, S6-1-2, S6-2-1, S6-2-2). Moreover, scRNA-seq
primarily detects upregulated genes due to dropout
effects [48], yet these transcripts remain the most
reliable  for  signature  generation  [49-51].
Discrepancies between single-cell and bulk RNA-seq
data reflect inherent differences in resolution and
have been similarly reported in other studies [51-53].
Although panCK*/CD45* CTC-like cells were
detected in the blood of 45 metastatic prostate cancer
patients, standardized enrichment protocols and
independent validation of their prognostic utility
beyond PSA and Gleason score will be essential in
future prospective and longitudinal studies.

Conclusion

Our study establishes the existence and clinical
relevance of CD45'CK18" (PTPRC*KRT18*) hybrid
CTC:-like cells in metastatic prostate cancer. By linking
their emergence to epithelial-immune signaling,
metabolic remodeling, and EMT programs, we
identify predictive gene signatures capable of
distinguishing metastatic status with high accuracy.
These findings provide a framework for non-invasive
biomarker development, illuminate the biology of
immune-epithelial plasticity, and suggest new
therapeutic  opportunities targeting hybrid-cell
formation. Nevertheless, as this study was based on
cross-sectional ~ transcriptomic  data = without
longitudinal survival analysis, the causal and
prognostic roles of KP_Pos cells remain to be clarified.
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Subunit 5; NK: Natural  killer; PanCK:
Pan-Cytokeratin; PARPS8: Poly(ADP-Ribose) Poly-
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Precision-recall area under the curve; PSA:
Prostate-specific antigen; PSMA: Prostate-specific
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