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Abstract 

Rationale: Circulating hybrid cells expressing both epithelial and immune markers have emerged as indicators of dynamic tumor–
immune interactions. This study aimed to characterize circulating hybrid cells co-expressing KRT18 (pan-cytokeratin) and PTPRC (CD45), 
termed KP_Pos, in metastatic prostate cancer (mPCa), and to assess their molecular features, tumor microenvironmental (TME) origins, 
and clinical relevance. 

Methods: Imaging mass cytometry (IMC) was used to examine spatial relationships between CK⁺ tumor and CD45⁺ immune cells in 
metastatic prostate tissues. Single-cell RNA sequencing (scRNA-seq) datasets from mPCa were analyzed to identify KP_Pos cells and 
characterize their transcriptional heterogeneity across epithelial and immune lineages. Differentially expressed genes (DEGs) between 
KP_Pos and other cells were used to generate predictive gene signatures. Random forest (RF) and extreme gradient boosting (XGB) 
models were applied to evaluate metastatic classification performance, and high-performing signatures were validated in bulk RNA-seq 
datasets and correlated with clinical parameters. 
Results: IMC revealed frequent spatial proximity between tumor and immune compartments, supporting a TME-derived hybrid 
phenotype. KP_Pos cells were detected across multiple immune and epithelial clusters, showing heterogeneity and enrichment of immune 
response and epithelial–mesenchymal transition (EMT)-related genes. Machine learning–based classifiers using KP_Pos-derived DEGs 
achieved high predictive accuracy (AUC ≥ 0.7) for metastasis, and selected combinations further improved performance in internal 
validation sets. Signature scores significantly correlated with PSA and Gleason grade, and CD45⁺ hybrid circulating cells were more 
abundant in patients with advanced disease burden. 

Conclusions: CD45⁺ KRT18⁺ hybrid circulating cells (KP_Pos) represent biologically distinct populations shaped by tumor–immune 
interactions within the TME. Their transcriptomic features and derived gene signatures may serve as biomarkers of metastatic potential 
and indicators of disease progression in prostate cancer. However, their causal role in metastasis and impact on survival remain to be 
determined. 
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Introduction 
Prostate cancer (PCa) is the most frequently 

diagnosed cancer and the fifth leading cause of 
cancer-related death among men worldwide, with 

over 1.4 million new cases and approximately 375,000 
deaths each year [1]. The distinction between 
localized and metastatic disease is a pivotal 
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determinant of therapeutic decision-making, as 
metastatic PCa is associated with markedly worse 
outcomes and limited curative options [2]. Early and 
accurate prediction of metastasis could thus play a 
crucial role in improving survival and reducing 
treatment-related morbidity by enabling timely and 
tailored interventions [3]. 

Although many prostate cancers are initially 
indolent, a considerable proportion progress to 
aggressive phenotypes, and up to 20% of patients 
present with metastases at diagnosis [4]. Furthermore, 
among patients with localized disease, recurrence and 
subsequent progression to distant metastasis remain a 
significant clinical concern [5]. While recent advances 
in systemic therapies—including androgen receptor 
signaling inhibitors, radionuclide therapies, and 
immunotherapy—have transformed the management 
of metastatic PCa, their success hinges upon accurate 
risk stratification at an early stage [6]. Moreover, the 
advent of PSMA PET-CT has significantly altered 
diagnostic and therapeutic decision-making in 
prostate cancer, further underscoring the need for 
biomarkers that can complement advanced imaging 
modalities [7]. 

In this context, the identification of robust 
biomarkers or molecular signatures capable of 
predicting metastatic potential is a pressing need. 
Circulating tumor cells (CTCs) have emerged as a 
promising non-invasive biomarker of metastasis in 
various cancers [8]. Traditionally, CTCs are defined 
by the expression of epithelial markers such as 
cytokeratins and the absence of the pan-leukocyte 
marker CD45. However, recent studies have 
challenged this classical dichotomy by reporting 
CTC-like cells that co-express both epithelial and 
immune markers, including CD45. These hybrid 
phenotypes may result from epithelial–mesenchymal 
transition (EMT), tumor–immune cell fusion, or 
immune mimicry mechanisms [9-11]. One proposed 
mechanism underlying the emergence of such hybrid 
CTC-like cells is spontaneous fusion between 
neoplastic epithelial cells and tumor-associated 
macrophages. This fusion gives rise to progeny that 
co-express hematopoietic and epithelial markers and 
exhibit enhanced migratory capacity, immune 
evasion, and metastatic plasticity, as demonstrated in 
both murine models and human tumors [12]. 

Such phenotypically hybrid cells have been 
observed in several malignancies and are often 
enriched in patients with metastatic disease [13-15]. In 
prostate cancer, while CTCs are generally CD45–, 
recent findings suggest that CD45 expression in 
circulating epithelial-like cells may be associated with 
increased metastatic potential [11]. A similar 
phenomenon has been described in breast cancer, 

where CD45-overexpressing tumor cells exhibit 
enhanced migratory and immune-evasive properties 
[16]. These findings indicate that the appearance of 
atypically expressed cells in circulation may serve as a 
sensitive indicator of metastatic dissemination. 

Concurrently, transcriptomic analysis has 
revolutionized the field of precision oncology by 
enabling comprehensive characterization of the tumor 
microenvironment and metastatic programs [17]. In 
parallel, genetic testing is now increasingly 
recommended in prostate cancer to refine risk 
stratification and guide precision treatment decisions 
[18]. Bulk and single-cell RNA sequencing allow for 
the identification of gene expression signatures linked 
to invasion, EMT, immune evasion, and metastasis 
[19, 20]. Such transcriptome-based approaches have 
shown promise in stratifying patients, predicting 
treatment response, and uncovering mechanisms of 
progression [21, 22]. 

In this study, we hypothesized that circulating 
tumor cell (CTC)–like populations co-expressing 
epithelial and immune markers may reflect 
underlying metastatic programs shaped by the tumor 
microenvironment. To test this, we conducted an 
integrative analysis that combines single-cell RNA 
sequencing (scRNA-seq)–based signature discovery 
from primary prostate tumors with validation in bulk 
RNA-seq datasets from metastatic prostate cancer 
tissues. By evaluating the predictive value of these 
transcriptomic signatures for metastatic status, we 
aim to identify robust biomarkers associated with 
tumor aggressiveness. We note that such associations 
do not imply direct causation, which would require 
functional validation beyond the scope of this study. 
This approach provides a foundation for a novel 
biomarker framework aligned with personalized and 
metastasis-informed management strategies in 
prostate cancer. 

Materials and Methods 
Sample acquisition 

Peripheral blood mononuclear cells (PBMCs) 
and tissue samples were collected from prostate 
cancer patients as part of a study approved by the 
Institutional Review Board of Severance Hospital, 
Yonsei University College of Medicine (IRB numbers: 
4-2022-0710, 4-2021-0276). All participants provided 
written informed consent after being appropriately 
informed that their peripheral blood and tissue 
samples would be used for research purposes. 
Peripheral blood samples (5 mL) were obtained from 
82 patients via venipuncture using a 21-gauge needle 
and collected into EDTA-coated Vacutainer tubes 
(Becton, Dickinson and Company, Franklin Lakes, NJ) 
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for circulating cell analysis. Peripheral blood 
mononuclear cells (PBMCs) were isolated from seven 
patients with metastatic prostate cancer (M1 stage) for 
single-cell RNA sequencing (scRNA-seq) analysis. For 
comparative purposes, biopsy tissues from five 
additional patients with clinically and radio-
graphically confirmed metastatic prostate cancer (M1 
stage) were also collected and processed for 
scRNA-seq. Because patient consent prohibited paired 
blood–tissue collection, the PBMC and biopsy cohorts 
were analyzed independently. In addition, biopsy 
specimens from 234 prostate cancer patients— 
including both non-metastatic (M0) and metastatic 
(M1) cases—were subjected to bulk RNA sequencing. 

Circulating cell isolation 
Circulating cell isolation was performed using 

the CTCeptor system (CTCELLS, Daegu, South 
Korea), a fully automated Continuous Centrifugal 
Microfluidics–Circulating Tumor Cell Disc 
(CCM-CTCD) platform [23, 24]. This system employs 
a rotating microfluidic disc to separate blood 
components based on their density. A synchronized 
laser-controlled motor activates an internal valve to 
release a thin layer enriched with tumor-derived and 
white blood cells into a designated chamber, where 
circulating cells are selectively captured through 
antibody-based surface binding. The isolated cells 
were subjected to immunofluorescence staining using 
the following antibodies: anti–pan-cytokeratin 
(PanCK; eBioscience, San Diego, CA), anti-CD45 
(BioLegend, San Diego, CA), and anti–
prostate-specific antigen (PSA; Invitrogen, Waltham, 
MA). Stained cells were imaged and analyzed to 
distinguish epithelial-derived cells (PanCK⁺/CD45⁻), 
immune-origin cells (CD45⁺), and hybrid phenotypes 
(PanCK⁺/CD45⁺), reflecting the cellular heterogeneity 
of circulating populations in prostate cancer. 

Imaging mass cytometry 
Formalin-fixed, paraffin-embedded (FFPE) 

prostate tissue sections from 21 tissue microarrays 
(TMAs) of metastatic prostate cancer were depara-
ffinized, rehydrated, subjected to antigen retrieval, 
and blocked with 3% BSA. The slides were then 
incubated with metal-conjugated antibodies labeled 
using Maxpar X8 Antibody Labeling Kits (Standard 
BioTools, South San Francisco, CA), purified, and 
quantified using NanoDrop spectrophotometry 
(Thermo Fisher Scientific, Waltham, MA), followed by 
storage at 4°C until use. A Standard BioTools–verified 
antibody panel targeting tumor and immune-related 
markers—including cytokeratin, CD45, CD14, and 
CD16—was applied for staining. Imaging Mass 
Cytometry (IMC) was performed using the Hyperion 

Imaging System (Standard BioTools), with laser 
ablation and data acquisition conducted at JCBio 
(Seoul, South Korea). Regions of interest (1000 × 1000 
µm) were selected based on tissue morphology, and 
the acquired data were processed using CyTOF 
software v7.0 (Standard BioTools, South San 
Francisco, CA). Image quality was assessed prior to 
exporting the data as multilayer OME-TIFF files, 
which were analyzed using HALO Imaging Analysis 
Software (v3.5, Indica Labs, Albuquerque, NM). The 
Highplex FL module was used for cell segmentation 
and marker quantification, while spatial tissue 
analyses—including nearest neighbor and proximity- 
based interaction mapping—were performed to 
characterize tumor–immune interactions. Co-regis-
tration of serial sections and the generation of density 
heatmaps enabled detailed spatial visualization of 
immune and epithelial cell populations. Morpho-
metric quantification of CK⁺CD45⁺ double-positive 
cells was performed using cell segmentation masks 
generated in HALO. Cell and cytoplasmic area 
distributions were binned (10 µm² per bin), and 
bin-wise percent values were calculated for each 
group. To enable quantitative comparison across 
groups, cumulative proportions (“AUC_percent”) 
were computed as the sum of percent values within 
the defined small-size range (≤250 µm²), representing 
the relative enrichment of smaller cells. 

RNA sequencing 

Single-cell RNA sequencing 

Freshly obtained primary tumor biopsy 
specimens from metastatic prostate cancer patients 
(M1 stage) were processed to generate single-cell 
suspensions. Enzymatic dissociation was performed 
using in-house optimized protocols developed by 
DCGEN (Seoul, South Korea). Following filtration 
through a 40 µm cell strainer (Corning, Corning, NY) 
and viability assessment using an automated cell 
counter (Countess II, Thermo Fisher Scientific, 
Waltham, MA), single cells were encapsulated and 
barcoded using the Chromium Controller system (10x 
Genomics, Pleasanton, CA) operated at Macrogen 
(Seoul, South Korea). cDNA synthesis, amplification, 
and library construction were conducted according to 
the manufacturer’s protocol (10x Genomics). Libraries 
were quality-checked with a Bioanalyzer (Agilent 
Technologies, Santa Clara, CA) and a Qubit 
fluorometer (Thermo Fisher Scientific, Waltham, MA), 
and sequenced on Illumina NovaSeq 6000 or NextSeq 
2000 platforms (Illumina, San Diego, CA). The raw 
sequencing data were processed using Cell Ranger 
software (10x Genomics) to generate gene expression 
matrices for downstream analyses, including tumor 
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microenvironment (TME) characterization and 
ligand–receptor interaction mapping. Peripheral 
blood mononuclear cells (PBMCs) were isolated from 
seven patients with metastatic prostate cancer (M1 
stage) and subjected to single-cell RNA sequencing 
(scRNA-seq) to profile circulating immune-cell 
transcriptomes. After cell isolation and viability 
assessment, single-cell encapsulation and barcoding 
were performed using the Chromium Controller 
system (10x Genomics, Pleasanton, CA). Library 
preparation, including cDNA synthesis and 
amplification, was conducted according to the 
manufacturer’s protocol. Sequencing was performed 
by Eyeoncell (Gwangju, South Korea) on Illumina 
NovaSeq 6000 or NextSeq 2000 platforms (Illumina, 
San Diego, CA). Raw sequencing data were processed 
using Cell Ranger software (10x Genomics) to 
generate gene–cell count matrices for downstream 
analyses. 

Bulk RNA sequencing 

Total RNA was extracted from biopsy tissues 
using TRIzol reagent (Thermo Fisher Scientific, 
Waltham, MA) or the RNeasy Mini Kit (Qiagen, 
Hilden, Germany). RNA integrity was verified using a 
Bioanalyzer (Agilent Technologies, Santa Clara, CA), 
and RNA concentrations were measured using a 
Qubit fluorometer (Thermo Fisher Scientific, 
Waltham, MA). Only samples with an RNA Integrity 
Number (RIN) greater than 7.0 were used for library 
preparation with the TruSeq Stranded mRNA Library 
Prep Kit (Illumina, San Diego, CA). Sequencing was 
performed on the Illumina NovaSeq 6000 or NextSeq 
2000 platforms (Illumina, San Diego, CA) using 100–
150 bp paired-end reads, with a target depth of 20–50 
million reads per sample. Raw reads were aligned to 
the reference genome using STAR or HISAT2, and 
gene expression was quantified using featureCounts 
or HTSeq-count. 

Single-cell transcriptomic analysis and 
differential gene expression 

Single-cell RNA-seq data were analyzed using R 
(v4.3.2) and the Seurat package. For integrated 
analyses, scRNA-seq datasets from five metastatic 
prostate cancer cases were merged using the 
anchor-based integration workflow implemented in 
Seurat v4. Briefly, each dataset was log-normalized, 
and the top 2,000 variable features were identified. 
Integration anchors were calculated using 
FindIntegrationAnchors with default parameters, and 
the datasets were aligned into a shared expression 
space via IntegrateData, which corrects for 
patient-specific batch effects while preserving 

biological variability. This integration enabled direct 
comparison of identical cell types across patients, 
enhanced the detection of rare populations (e.g., 
KP_Pos cells), and improved the robustness of 
downstream clustering, annotation, and differential 
expression analyses. Cell type annotation was 
performed using six complementary approaches: (1) 
SingleR-based methods, including (i) cell-level 
annotation using the HumanPrimaryCellAtlasData 
reference, (ii) cluster-level majority voting, defined as 
assigning the most frequent SingleR-derived cell-type 
label within each Seurat-defined cluster, and (iii) 
cluster-to-cell-type mapping; (2) CellTypist-based 
annotation using the Immune_All_Low pretrained 
model; (3) canonical marker-based annotation using 
curated cell type–specific gene sets; and (4) cell 
subtype–specific marker scoring using lineage- 
relevant markers for regulatory, cytotoxic, exhausted, 
memory, and helper T cells, B-cell subsets, 
macrophages, and epithelial cells. Marker gene sets 
used for annotation are listed in Supplementary 
Tables S7-1 (cell types) and S7-2 (cell subtypes). In this 
study, no single annotation approach was designated 
as the “gold standard.” Instead, all six methods were 
applied to capture complementary perspectives on 
cell identity, acknowledging that each can yield 
distinct yet biologically meaningful results. For 
downstream analyses and visualization in the main 
text, we selected the SingleR cluster-level 
majority-voting annotation as the representative 
strategy because it provided clearer cluster separation 
in two-dimensional embeddings and minimized 
figure complexity. This choice was made solely for 
presentation clarity and does not indicate analytical 
preference or bias. To ensure interpretability and 
reproducibility, all differential expression analyses 
and subsequent signature construction steps were 
based on a unified DEG pool that combined the 
results from all annotation approaches, thereby 
incorporating both overlapping and method-specific 
DEGs. KP_Pos cells were defined as those 
co-expressing KRT18 and PTPRC (normalized 
expression > 0.1), with all other cells categorized as 
“Others.” DEG analysis comparing KP_Pos versus 
Others was conducted using the Wilcoxon rank-sum 
test implemented in Seurat’s FindMarkers function, 
applying a log₂ fold-change threshold ≥ 0.25 and 
requiring expression in at least 10% of cells per group. 
Significant DEGs were selected based on an adjusted 
p-value ≤ 0.05. Two DEG strategies were performed: 
(i) cluster-based analysis within our metastatic 
prostate cancer scRNA-seq dataset, and (ii) 
metastasis-specific analysis incorporating benign and 
localized prostate cancer samples from GSE193337. 
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Cell-cell interaction analysis 
Cell–cell communication was analyzed using the 

CellChat R package (v1.6.1). Raw count matrices from 
Seurat-integrated single-cell RNA-seq data of PBMCs 
from metastatic prostate cancer patients were merged 
into a unified Seurat object. Cell types were annotated 
using SingleR with the HumanPrimaryCellAtlasData 
reference, and the resulting labels were incorporated 
into the CellChat metadata. A CellChat object was 
constructed using the merged count matrix and 
cell-type annotations and analyzed with the 
CellChatDB.human ligand–receptor database. 
Overexpressed genes and interactions were identified 
using the functions identifyOverExpressedGenes() 
and identifyOverExpressedInteractions(). 
Communication probabilities were computed via 
computeCommunProb() and 
computeCommunProbPathway(), considering only 
cell types containing ≥10 cells. The resulting network 
strengths were aggregated with aggregateNet() and 
visualized using circular and heatmap layouts. 
Sender–receiver (incoming/outgoing) signaling 
analyses were performed for six major immune 
populations—monocytes, macrophages, T cells, NK 
cells, B cells, and CMPs—to quantify intercellular 
signaling strength and relative communication 
topology. 

Signature-based classification and model 
evaluation 

To identify transcriptomic signatures predictive 
of metastasis (M0 vs. M1), we implemented a machine 
learning workflow based on gene expression–derived 
features. Each signature was evaluated using a 
three-way data partitioning strategy (training/ 
validation/test) with five different random seeds to 
ensure robustness and reproducibility. Model training 
and validation were performed using random forest 
(RF) and extreme gradient boosting (XGB), and 
performance was assessed by calculating AUC, PR 
AUC, accuracy, sensitivity, specificity, precision, and 
F1-score. To control for overfitting, signatures were 
categorized into four levels (none, mild, moderate, 
severe) based on discrepancies between training and 
test set performance; only signatures classified as 
None in the overfitting-level analysis were used for 
downstream analysis. A composite score was 
calculated by z-transforming PR AUCs from both RF 
and XGB models and summing them, enabling robust 
ranking of consistently high-performing signatures. 
Signatures with AUC ≥ 0.7 in the test set were further 
applied to bulk RNA-seq data for M-stage (M0 vs. 
M1) prediction. This cutoff of 0.7 was selected because 
it is widely regarded as the lower bound for clinically 
meaningful discrimination, balancing sensitivity and 

specificity beyond random chance. The threshold has 
also been frequently adopted in prior biomarker 
studies to ensure comparability across studies and to 
exclude weak predictors. Given the class imbalance in 
our dataset, PR-AUC ≥ 0.7 in the test set was used as 
the primary criterion, ensuring that only robustly 
predictive signatures were advanced to downstream 
analysis. To assess whether predictive performance 
could be improved through integration, combinations 
of top-ranked signatures were tested using logistic 
regression, RF, and XGB with repeated stratified 
cross-validation across five seeds. Model performance 
was compared using mean ROC AUC, PR AUC, 
accuracy, and F1-score, and the final composite 
models were evaluated for associations with clinical 
features. 

M0/M1 prediction and performance evaluation 
For M-stage classification (M0 vs. M1), model 

performance was assessed using standard binary 
classification metrics. Predicted probabilities from RF 
and XGB models were converted into class labels 
using a default threshold of 0.5, unless otherwise 
optimized based on PR AUC. The following 
evaluation metrics were calculated: accuracy = (TP + 
TN) / (TP + TN + FP + FN), sensitivity = TP / (TP + 
FN), specificity = TN / (TN + FP), precision = TP / 
(TP + FP), and F1-score = 2 × (precision × sensitivity) 
/ (precision + sensitivity). Additionally, area under 
the receiver operating characteristic curve (ROC 
AUC) and precision–recall curve (PR AUC) were 
computed to assess overall discriminative power, 
particularly under class imbalance. All metrics were 
averaged across five random seeds for robust 
comparison between individual signatures and 
signature combinations. 

Correlation analysis with clinical variables 
To assess the clinical relevance of circulating cell 

phenotypes and gene expression–based prediction 
scores, we performed correlation analyses with key 
clinical parameters including age, PSA level, Gleason 
score, and TNM staging. For circulating cell 
phenotypes defined by CD45 expression status 
(CD45⁺ and CD45⁻), Pearson correlation coefficients 
were calculated and visualized using Microsoft Excel 
(Microsoft Corporation, Redmond, WA). For 
combined signature scores derived from top-ranked 
gene sets, Spearman rank correlation was computed 
in R using the cor.test() function. Clinical variables 
were numerically encoded, and results were 
visualized using ggplot2-based bubble plots, where 
color scale represented correlation strength and 
direction, and circle size indicated statistical 
significance (–log₁₀(p-value)). 
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Statistical analysis 
All statistical analyses were performed using 

GraphPad Prism (GraphPad Software, La Jolla, CA) 
and R (version 4.3.2). Gene expression differences 
between groups were assessed using two-tailed 
unpaired Student’s t-tests, assuming equal variance 
unless otherwise specified. Correlation analyses in 
RNA-seq datasets were conducted using Pearson’s 
correlation coefficient. For correlation between gene 
signature–based predictions and clinical parameters, 
Spearman’s rank correlation was used when the data 
were not normally distributed or were ordinal in 
nature. A p-value less than 0.05 was considered 
statistically significant. Statistical significance was 
denoted by asterisks as follows: p ≤ 0.05 (*), p ≤ 0.01 
(**), and p ≤ 0.001 (***). Where applicable, multiple 
testing correction was performed using the 
Benjamini–Hochberg false discovery rate (FDR) 
method. All visualizations were generated using R 
packages including ggplot2, and significance markers 
were applied accordingly in plots and tables. 

Results 
CD45 expression and characterization of 
CTC-like cells in metastatic prostate cancer 

We investigated CD45 expression in circulating 
tumor cell (CTC)–like populations to define the 
cellular identity of CD45⁺ subsets through 
immunostaining, PBMC clustering, and 
transcriptomic profiling of metastatic prostate cancer 
samples. CTC-like cells were detected in the majority 
of 82 metastatic cases and were stratified by tumor 
burden, overall survival, and TNM stage (Figure 1A). 
Their abundance correlated with higher tumor load 
and advanced disease (Supplementary Figure S1-1A), 
although CD45 expression itself showed no 
significant association with clinical parameters 
(Supplementary Figure S1-1B). Quantification 
revealed that a substantial portion of cytokeratin⁺ 
CTC-like cells co-expressed CD45 (Figure 1B-a,b). 
Immunofluorescence further confirmed 
CD45⁺/PanCK⁺ dual staining in patient-derived 
CTC-like cells, with PSA signals often overlapping 
CD45 (Supplementary Figure S1-1C). Single-cell 
transcriptomic profiling of PBMCs from seven 
M1-stage patients identified diverse immune 
lineages—T cells, B cells, NK cells, monocytes, CMPs, 
erythroblasts, and platelets (Figure 1C-a). Within 
these, a rare subset of KRT18⁺ PTPRC⁺ (KP_Pos) cells 
was detected, primarily among T and B cells (Figure 
1C-b), comprising 0.867% (561 of 64,693) of total 
PBMCs (Figure 1C-c). Annotation using multiple 
approaches—SingleR (Supplementary Figure S1-2-1), 
cluster-to-cell-type (S1-2-2), CellTypist (S1-2-3), 

canonical marker (S1-2-4), and curated subtype 
markers (S1-2-5)—consistently confirmed immune 
lineage identities. Independent analyses validated 
reproducibility across seven PBMC datasets 
(Supplementary Figures S1-3-1 and S1-3-2-1 to 
S1-3-2-7). Differential expression analysis comparing 
KP_Pos and other cells (Figure 1D; Supplementary 
Table S1-1) revealed upregulation of KRT18 and 
multiple ribosomal protein genes (RPS12, RPS13, 
RPL30, RPS3A, RPL11, RPL32, RPS8, RPS23, RPS14, 
RPL5), indicating enhanced translational activity and 
partial epithelial-like reprogramming. Down-
regulated genes included mitochondrial oxidative 
phosphorylation–related transcripts (MT-CO1, 
MT-CO2, MT-CO3, MT-ATP6, MT-ND5) and 
regulators such as PARP8, RABGAP1L, UTRN, ZEB2, 
consistent with metabolic rewiring and reduced 
mitochondrial respiration. T cells, accounting for 
86.3% of all KP_Pos cells (484/561), were presented as 
the representative subset for primary DEG analysis, 
while B cells, monocytes, and platelets showed 
analogous yet distinct transcriptional changes 
(Supplementary Figure S1-4; Supplementary Table 
S1-1). For clarity and consistency, the SingleR 
cluster-level majority-voting annotation was adopted 
as the representative framework in the main text. 
Alternative annotation strategies—CellTypist-, 
canonical marker-, subtype marker–, and 
unsupervised cluster-based methods (Supplementary 
Figures S1-2-1 to S1-2-5)—produced complementary 
DEG lists (Supplementary Tables S1-2 to S1-6). All 
DEGs were integrated into a unified DEG pool, 
ensuring that downstream analyses captured the full 
transcriptional spectrum for signature development. 

Characterization of CK⁺CD45⁺ cells in primary 
tumors reveals spatial, morphological, and 
signaling features linked to CTC-like 
phenotypes 

To explore the origin and identity of CK⁺CD45⁺ 
circulating tumor cell (CTC)–like populations 
observed in peripheral blood (Figure 1), we analyzed 
metastatic prostate cancer tissues using Imaging Mass 
Cytometry (IMC) and single-cell RNA sequencing. 
CK-high tumors exhibited close spatial proximity 
between CK⁺ and CD45⁺ cells and enriched EMT-like 
features (Figure 2A). Tumors were stratified into three 
groups by pan-CK expression: CK-high (G1), 
CK-medium (G2), and CK-low (G3). IMC imaging 
revealed dense colocalization of CK⁺ and CD45⁺ cells 
in G1 tumors (Figure 2A-a), with progressively 
separated patterns in G2 and G3. Quantitative 
analysis confirmed significantly shorter CK–CD45 
distances in G1 (p < 0.001) and higher frequencies of 
CK⁺VIM⁺ EMT-like cells (Figure 2A-b,c).  
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Figure 1. CD45 expression analysis and characterization of circulating tumor cell (CTC)-like cells in metastatic prostate cancer. (A) Overview of CTC-like 
cell detection and associated clinical parameters in metastatic prostate cancer patients (n = 82). (a) Distribution of patients based on CTC-like cell levels above or below the 
detection limit. (b) Tumor volume classification in patients with detectable CTC-like cells. (c) Overall survival status of patients with detectable CTC-like cells. (d) TNM staging 
distribution among patients with detectable CTC-like cells. (B) Analysis of CD45 expression in cytokeratin-positive CTC-like cells. (a) Patient-wise proportion of CD45⁺ and 
CD45⁻ populations among cytokeratin-positive CTC-like cells. Cytokeratin positivity was determined using pan-cytokeratin staining. (b) Quantification of cytokeratin-positive 
CTC-like subsets stratified by CD45 expression status. (C) Clustering, mapping, and quantitative summary of peripheral blood mononuclear cells (PBMCs) integrated from seven 
metastatic prostate cancer (M1 stage) patients. (a) t-SNE (t-distributed Stochastic Neighbor Embedding) plots showing clustering and annotation of PBMCs based on 
majority-voting classification. Major immune populations including T cells, B cells, NK cells, monocytes, common myeloid progenitors (CMPs), erythroblasts, and platelets were 
identified. (b) Distribution of double-positive KRT18⁺ (cytokeratin) and PTPRC⁺ (CD45) cells, referred to as KP_Pos cells, within the PBMC population. KP_Pos cells (black) and 
other cells (gray) are visualized across annotated clusters on the t-SNE map. (c) Summary table showing the number and proportion of KP_Pos and other cells within each 
annotated population. Among 64,693 PBMCs, 561 cells (0.867%) were classified as KP_Pos (highlighted in red), whereas 64,132 cells (99.13%) were classified as others. The 
overall summary row is highlighted in yellow for emphasis. (D) Differentially expressed genes (DEGs) of KP_Pos versus other cells within the T-cell population from PBMCs of 
seven M1-stage prostate cancer patients. Genes were ranked based on log₂ fold change and adjusted p-values, and significantly upregulated and downregulated genes in KP_Pos 
T cells are shown in red and blue, respectively. Only the top 10 upregulated and top 10 downregulated genes are labeled to highlight the most significantly altered transcripts. 
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Figure 2. Spatial and transcriptomic characterization of CK⁺CD45⁺ cells in primary tumors suggests a microenvironmental basis for CTC-like phenotype 
emergence. (A) Spatial analysis of CK⁺ and CD45⁺ cells using Imaging Mass Cytometry (IMC). (a) Representative IMC images of metastatic prostate cancer tissues categorized 
into three groups based on pan-CK expression levels. Top: Individual and merged fluorescence channels showing DAPI (blue), pan-CK (red), and CD45 (green) staining in Group 
1 (G1: CK-high), Group 2 (G2: CK-medium), and Group 3 (G3: CK-low). Middle: Composite marker overlays and multiplexed spatial distribution maps at the single-cell level. 
Bottom: Spatial cell mapping with segmentation showing the distribution of CK⁺ (red) and CD45⁺ (green) cells. Enlarged regions (R1–R3) highlight areas of spatial proximity 
between these two populations. (b) Quantification of the average distance (µm) between CK⁺ and CD45⁺ cells across the three groups. (c) Proportion of CK⁺VIM⁺ 
cells—indicative of epithelial–mesenchymal transition (EMT)-like features—among total CK⁺ cells. Statistical significance: *p < 0.05; **p < 0.01; ***p < 0.001. (B) Morphometric 
profiling of CK⁺CD45⁺ double-positive cells. (a) Distribution of total cell area (µm²) of CK⁺CD45⁺ double-positive cells in Group 1 (red), Group 2 (blue), and Group 3 (green). 
Absolute counts are shown as bar graphs, while relative frequencies (%) are overlaid as line plots with dots. To enhance visibility, values are truncated at 250 µm². The full 
distribution across the complete range, separated into Count and Percent plots, is provided in Supplementary Figure S2-1-1-1. (b) Distribution of total cytoplasm area within the 
restricted range, shown separately as Count and Percent plots in Supplementary Figure S2-1-1-2. (c) Cumulative proportions of cells within the defined small-size range for total 
cell area across the three groups. (d) Cumulative proportions of cells within the defined small-size range for cytoplasmic area across the three groups. Black horizontal lines 
indicate median values. Quantitative summaries of AUC and global statistics for cell and cytoplasmic area are provided in Supplementary Tables S2-1 to S2-4. (C) Intercellular 
communication analysis centered on epithelial cells using single-cell RNA sequencing. (a, b) Circle plots showing outgoing (a) and incoming (b) signaling interactions of epithelial 
cells with major immune populations. (c) Circle plot summarizing the overall intercellular communication network among epithelial cells and immune populations, including T 
cells, NK cells, B cells, macrophages (Macro), monocytes (Mono), and CMPs. (d) Heatmap displaying the overall strength of intercellular communication between epithelial and 
immune cell populations. All annotations were harmonized with those in Figure 1C. Detailed outgoing and incoming communication profiles for each cell lineage are provided in 
Supplementary Figures S2-2-1-1 to S2-2-2-2. 
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Morphometric analysis of CK⁺CD45⁺ 
double-positive cells (Figure 2B-a,b) revealed broader 
size distributions in G1 but a left-shift toward smaller 
cell and cytoplasmic areas in cumulative proportion 
plots (Figure 2B-c,d). Summaries of these parameters 
are provided in Supplementary Tables S2-1 to S2-4, 
listing cumulative and global size statistics for each 
CK-defined group. Supplementary Figures S2-1-1-1 
and S2-1-1-2 display full distributions of total cell area 
from Figure 2B-a as count and percent plots (≤ 250 
µm²), while Supplementary Figure S2-1-2 shows the 
corresponding cytoplasmic distributions. These data 
indicate enrichment of compact, densely distributed 
immune–epithelial hybrid cells in CK-high tumors. 
Intercellular communication analysis based on 
single-cell RNA sequencing of M1-stage tumor 
biopsies revealed extensive epithelial signaling with 
multiple immune populations (Figure 2C-a,b). The 
strongest bidirectional interactions were observed 
between epithelial cells and T cells, defining a 
dominant epithelial–T cell signaling axis. The global 
network (Figure 2C-c) confirmed that epithelial cells 
were highly integrated with T, NK, B, monocyte, 
macrophage, and CMP lineages. This network 
suggests that intense epithelial–T cell cross-talk serves 
as a central communication hub driving hybrid 
(CD45⁺/KRT18⁺, KP_Pos) cell formation within the 
tumor microenvironment. To ensure lineage 
consistency with Figure 1C, platelets were excluded to 
avoid signals from circulating components [25], 
although platelet infiltration into solid tumors has 
been reported [26]. Macrophages were included due 
to their myeloid lineage continuity with circulating 
monocytes, which can differentiate into tissue 
macrophages [27]. In the directional interaction 
heatmap (Figure 2C-d), rows represent signal senders 
and columns receivers. Monocytes showed the 
highest outgoing signaling toward epithelial cells, 
whereas epithelial cells displayed moderate reciprocal 
signaling to T cells and monocytes. Among all pairs, 
epithelial–T cell interactions remained the most 
balanced and sustained. Detailed outgoing and 
incoming signaling profiles are presented in 
Supplementary Figures S2-2-1-1 to S2-2-2-2. 
Supplementary Figure S2-2-1-1 depicts outgoing 
signals from T, B, NK, monocyte, macrophage, CMP, 
and epithelial populations, with simplified circle plots 
in Supplementary Figure S2-2-1-2. Incoming networks 
for the same populations are shown in Supplementary 
Figures S2-2-2-1 and S2-2-2-2, highlighting 
lineage-specific signal reception. These results 
collectively extend Figure 2C by visualizing 
directional and quantitative aspects of immune–
epithelial communication in metastatic prostate 

cancer. Finally, quantitative IMC analysis further 
confirmed CK and CD45 co-expression at the 
single-cell level (Supplementary Figure S2-3). Scatter 
plots display CK and CD45 signal intensities from 
thousands of cells across three CK-defined groups, 
with three representative cases per group (e.g., G1-1, 
G1-2, G1-3). Each point represents an individual cell. 
Together, these IMC and transcriptomic analyses 
demonstrate spatial, morphological, and signaling 
evidence supporting the presence and functional 
relevance of hybrid immune–epithelial (CK⁺CD45⁺) 
populations in metastatic prostate cancer. 

Distribution and transcriptional features of 
KP_Pos cells in the metastatic tumor 
microenvironment 

To explore the distribution of KP_Pos cells across 
cell types, we analyzed single-cell transcriptomic 
profiles from five metastatic prostate cancer biopsy 
samples, which were entirely independent of the 
PBMC cases in Figure 1 (no overlap between blood- 
and tissue-derived datasets). Cluster-level annotation 
via majority voting identified epithelial, immune, and 
stromal lineages (Figure 3A-a). Expression maps of 
KRT18 and PTPRC (Figure 3A-b,c) showed that 
KP_Pos cells were broadly distributed across the 
t-SNE embedding (Figure 3A-d). Quantification 
across annotated lineages revealed that, among the six 
immune subsets previously detected in PBMCs, 
KP_Pos cells were most frequent in T cells, 
macrophages, NK cells, B cells, monocytes, and CMPs 
(Figure 3B). This distribution pattern was consistently 
reproduced using six complementary annotation 
strategies: cell-level annotation (Supplementary 
Figure S3-1), cluster-level majority voting (S3-2), 
cluster-to-cell-type mapping (S3-3), CellTypist-based 
cell subtype annotation (S3-4), marker-based immune 
annotation (S3-5), and subtype-specific marker-based 
annotation (S3-6). In all methods, immune 
populations enriched for KP_Pos cells—particularly T 
cells, macrophages, NK cells, B cells, monocytes, and 
CMPs—were highlighted in orange in the 
accompanying summary tables. To define the 
molecular characteristics of KP_Pos cells, differential 
gene expression analysis was performed between 
KP_Pos and Other cells within the six major immune 
lineages. Volcano plots revealed distinct sets of 
significantly upregulated genes in KP_Pos cells across 
lineages, with the highest numbers observed in CMPs, 
macrophages, and T cells (Figure 3C). Complete gene 
lists for all annotation strategies are provided in 
Supplementary Tables S3-1 to S3-6. 
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Figure 3. Single-cell transcriptomic analysis of metastatic prostate cancer reveals the distribution and transcriptional features of KP_Pos 
(KRT18⁺PTPRC⁺) cells. (A) Cell clustering and annotation. (a) Cell identities assigned by majority voting across Seurat clusters; since monocytes were not clearly resolved 
in the clustering, their distribution is separately highlighted in the inset. (b–c) Feature plots showing expression of KRT18 (b) and PTPRC (c). (d) Distribution of KP_Pos cells 
(KRT18⁺PTPRC⁺) projected onto the t-SNE map. (B) Cell type composition of KP_Pos cells. Number and proportion of KP_Pos cells per annotated cell type. (C) Differential 
gene expression in KP_Pos versus others. Volcano plots showing differentially expressed genes between KP_Pos and other cells across six major immune cell types (T cells, NK 
cells, macrophages, B cells, monocytes, and CMPs). Red numbers indicate the count of significantly upregulated genes (adjusted p < 0.05, log2FC > 1). 

 

Single-cell transcriptomic profiling identifies 
metastasis-specific cellular and molecular 
features of KP_Pos cells 

To identify metastasis-specific alterations in the 
composition and gene expression of KP_Pos 
(KRT18⁺PTPRC⁺) cells, we conducted an integrated 
single-cell transcriptomic analysis of benign, primary, 
and metastatic prostate cancer tissues. Seurat-based 
majority voting confirmed the presence of KP_Pos 
cells across all stages (Figure 4A). In t-SNE projections 
(Figure 4B-a–c), KP_Pos cells showed lineage- and 
stage-dependent distribution patterns: T cells (red 
outline) exhibited a progressive increase from benign 
to metastatic states; epithelial cells (sky blue, upper 
cluster) decreased gradually, while another epithelial 
subset (purple, lower cluster) displayed a biphasic 
pattern (primary > metastatic > benign). Monocytes 

(green outline) demonstrated a marked enrichment in 
primary tumors, whereas CMPs, B cells, 
macrophages, and NK cells showed minimal 
stage-specific variation. Quantitative comparison 
revealed a lineage shift in KP_Pos composition across 
disease stages, with macrophage-derived KP_Pos 
populations predominating in metastatic tumors and 
CMP-associated KP_Pos cells enriched mainly in 
primary tissues (Figure 4C). Results from five 
complementary reference-based cell-level annotation 
methods, consistent with the Seurat-based majority- 
voting annotation, are summarized in Supplementary 
Tables S4-1-1 to S4-1-6 (table only, without figure 
presentation due to overlap with Figure 3). To further 
characterize KP_Pos heterogeneity in metastasis, we 
analyzed subtype distributions within three major 
compartments. In epithelial cells, KP_Pos cells were 
enriched in the Epithelial_EMT subtype 



Theranostics 2026, Vol. 16, Issue 3 
 

 
https://www.thno.org 

1604 

(Supplementary Figure S4-1). Within T cells, they 
were predominantly associated with T_Memory and 
T_Exhausted phenotypes (Supplementary Figure 
S4-2). Among monocytes, KP_Pos cells were less 
abundant in metastasis but enriched in the 
Mono_NonClassical subtype during earlier stages 
(Supplementary Figure S4-3). Differential gene 
expression analysis comparing metastatic, primary, 

and benign KP_Pos cells across six immune 
lineages—T cells, NK cells, B cells, macrophages, 
monocytes, and CMPs—revealed lineage-specific 
transcriptional changes (Figure 4D). Distinct 
upregulated gene sets were most prominent in T cells 
and CMPs, indicating activation of metastatic 
programs in these populations (Supplementary 
Tables S4-2-1 to S4-2-6). 

 

 
Figure 4. Integrated single-cell transcriptomic analysis of KP_Pos populations across benign, primary, and metastatic prostate cancer. (A) Clustering of 
integrated single-cell data. Annotation based on majority voting across Seurat-defined clusters. Since monocytes were not clearly resolved in the clustering, their distribution is 
separately highlighted in the inset (rectangular box) of the t-SNE map. (B) Distribution of KP_Pos and others in t-SNE space and marker gene expression. Left: Expression levels 
of KRT18 and PTPRC across benign (top), primary (middle), and metastatic (bottom) samples. Right: Distribution of KP_Pos (KRT18⁺PTPRC⁺) and other cells in t-SNE space for 
each disease stage (a, benign; b, primary; c, metastatic). Dashed boundaries delineate major cell lineages: T cells (red), NK cells (light green), B cells (orange), macrophages 
(yellow), monocytes (green), CMPs (navy), and epithelial cells (sky blue and purple). KP_Pos cells (black dots) were broadly distributed across multiple immune and epithelial 
lineages. (C) Cell type composition of KP_Pos cells. Heatmap showing the number (left) and percentage (right) of KP_Pos cells across cell types in benign, primary, and metastatic 
samples. Color intensity reflects values from low (green) to high (red). (D) Metastasis-specific differentially expressed genes in KP_Pos cells. Volcano plots displaying DEGs in 
KP_Pos cells from metastatic samples compared to benign and primary samples within six major immune cell types: T cells, NK cells, B cells, Macrophages, Monocytes, and CMPs. 
Significantly upregulated genes are marked in red (adjusted p < 0.05 and |log₂FC| > 0.25). DEG counts are annotated within each plot. 
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Construction and evaluation of scRNA-seq- 
based gene signatures for M0/M1 classification 

To identify gene signatures predictive of 
metastatic status (M0 vs. M1), we implemented a 
multi-step workflow encompassing marker selection, 
model development, and performance evaluation 
(Figure 5A). Differentially expressed genes (DEGs) 
were collected from two major sources: (i) cluster- 
derived DEGs obtained from diverse annotation 
methods (SingleR at cluster- and cell type–levels, 
cluster-level majority voting, cluster-to-cell-type 
mapping, CellTypist, and marker-based references) 
and (ii) metastasis-specific DEGs identified by 
comparing epithelial cells from metastatic, benign, 
and primary prostate tissues. In total, 7,488 
cluster-derived and 6,408 metastasis-specific DEGs 
were compiled, encompassing epithelial, immune, 
and stromal populations (Figure 5B-a,b). All 
DEGs—including those distinguishing KP_Pos versus 
other cells across immune lineages—were pooled to 
construct candidate marker sets for M0/M1 
classification. Each marker set was evaluated through 
three-way data partitioning (training, validation, and 
test sets), and classification performance was assessed 
primarily by the precision–recall area under the curve 
(PR-AUC) to correct for class imbalance. Marker sets 
achieving PR-AUC ≥ 0.7 in the test dataset were 
retained as high-performing, yielding 945 predictive 
signatures. This threshold was selected to ensure 
clinical relevance and avoid overfitting [28]. Random 
Forest (RF) and Extreme Gradient Boosting (XGB) 
models were then applied in parallel to the 945 
signatures. Cross-model evaluation compared AUC, 
PR-AUC, accuracy, sensitivity, specificity, precision, 
and F1-score, leading to the identification of 119 
consistently robust signatures with minimal 
overfitting. Pie charts illustrate the proportional 
contribution of each annotation method to the final 
marker pool. To validate stability, each signature was 
trained and tested using five random seeds (Figure 
5C-a). AUC distributions across partitions confirmed 
consistent model behavior. Overfitting was assessed 
by PR_AUC differences between validation and test 
sets, classifying signatures into four 
categories—None, Mild, Moderate, or Severe (Figure 
5C-b). Among the 945 candidates, 29.5% showed no 
overfitting, 32.5% mild, 37.4% moderate, and only 
0.6% severe. Performance metrics, including precision 
(Figure 5C-c), recall (Figure 5C-d), and F1 score 
(Figure 5C-e), declined progressively with increasing 
overfitting severity, as indicated by lower medians 
and broader distributions. Yellow bars denote mean 
performance within each category. To compare 

algorithmic consistency, we analyzed overfitting-free 
(None) signatures across both RF and XGB models 
(Figure 5D). All six performance metrics—AUC, 
accuracy, sensitivity, specificity, precision, and F1 
score—showed strong inter-model correlation, 
confirming robust, model-independent predictive 
capacity. Performance variations among all signatures 
were further visualized using stratified boxplots and 
heatmaps (Supplementary Figure S5A–B). 
Classification performance declined modestly from 
None to Severe groups, with AUC and F1 scores 
showing the steepest reductions, while specificity and 
precision remained relatively stable (Supplementary 
Figure S5A-a, S5B-a). Heatmaps of normalized 
performance metrics highlighted clusters of 
top-performing signatures, and the top 20 signatures 
for RF and XGB were ranked and visualized 
(Supplementary Figure S5A-b, S5B-b). Compre-
hensive datasets are provided in Supplementary 
Tables S5-1 to S5-3, including the full list of predictive 
gene signatures with gene composition and 
partitioning results across random seeds (S5-1), 
detailed RF/XGB performance metrics (S5-2), and 
overfitting classification for each signature (S5-3). 

Composite scoring identifies robust gene 
signatures predictive of metastatic prostate 
cancer and reveals clinical correlations 

To systematically evaluate gene signatures 
predictive of metastatic status (M0 vs. M1), we 
analyzed 119 candidate gene signatures constructed 
from scRNA-seq–derived DEGs. For each signature, a 
composite score was computed as the averaged 
performance from RF and XGB models. Based on 
these scores, 55 positive and 64 negative signatures 
were identified (Figure 6A; Supplementary Table 
S6-1-1). Applying all 119 signatures to bulk RNA-seq 
data, we visualized M-stage classification outcomes 
via heatmap (Figure 6B). Signatures were ranked by 
composite score, with individual predictions shown 
per sample (M0: blue; M1: red). Among them, 19 
signatures achieved mean accuracy ≥0.65, including 
five ≥0.7 (Supplementary Table S6-1-2), indicating 
strong predictive potential. Subsequently, all possible 
combinations (Combos) of 2–5 gene signatures from 
these top 19 were tested to assess whether integration 
improves M-stage prediction relative to 
single-signature models. The cellular origins of the 19 
top-performing signatures were then analyzed. Based 
on inclusion of epithelial (KRT18) and immune 
(PTPRC) markers, signatures were classified as 
Include or Exclude.  
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Figure 5. Construction and evaluation of predictive signatures for M0/M1 classification based on differentially expressed genes. (A) Workflow for signature 
evaluation. Step 1: Marker set construction using cluster-derived DEGs and metastasis-specific DEGs identified from cell-level annotation strategies. Step 2: Three-way data 
partitioning for model development using bulk RNA-seq data combined with clinical information. Five independent random seeds were applied for reproducibility analysis. Step 
3: Signature validation through model training and evaluation using Random Forest (RF) and Extreme Gradient Boosting (XGB) algorithms. (B) Composition of the marker Pool. 
(a) Cell type and clustering method-dependent distribution of cluster-derived DEGs. The left panel shows a bubble plot summarizing the number of DEGs per cell type across 
annotation methods. The right pie chart displays proportional contributions from each method (SingleR, CellTypist, etc.). (b) Cell type and clustering method-dependent 
distribution of metastasis-specific DEGs. The left panel shows a bubble plot summarizing DEGs derived from metastasis-specific comparisons, while the right pie chart shows 
contributions from each method. (C) Three-way data partitioning analysis for model development. (a) AUC scores for training, validation, and test datasets. (b) Overfitting level 
evaluation of signatures, based on the difference between PR_AUC in validation and test sets. Scatter plot with pie chart summarizes the proportion of signatures categorized 
as none, mild, moderate, or severe overfitting. (c) Precision scores of signatures according to overfitting level. (d) Recall scores of signatures according to overfitting level. (e) F1 
scores of signatures according to overfitting level. Yellow horizontal lines indicate the average score within each group. (D) Comparative performance of RF and XGB models 
using signatures from the none overfitting group. Eight scatter plots display the correlation between RF and XGB models in terms of AUC, accuracy, sensitivity, specificity, 
precision, and F1 score for signatures classified as none in overfitting level evaluation. 
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Figure 6. Composite score-based signature evaluation and clinical correlation analysis. (A) Distribution of composite scores across 119 gene signatures predictive 
of metastatic status (M0 vs. M1). Composite scores were calculated as the average of RF and XGBoost-derived scores. Among them, 55 signatures with positive composite scores 
(red) and 64 with negative scores (black) were identified. (B) Heatmap illustrating M-stage prediction (M0: blue, M1: red) across bulk RNA-seq samples using the 119 signatures, 
sorted by composite score. The top-performing signatures (accuracy ≥ 0.7, n = 5; accuracy ≥ 0.65, n = 19) are highlighted. (C) Cell-of-origin analysis for the 19 signatures with 
accuracy ≥ 0.65. Based on the presence of KRT18 and/or PTPRC, signatures were grouped into 'Include' or 'Exclude'. The 'Include' group was further classified into three cell-type 
categories: (1) monocyte, NK cell, B cell, and CMP (35.7%), (2) macrophage (42.9%), and (3) T cell (21.4%). (D) Spearman correlation between individual signature scores (top 
19) and clinical variables (Age, PSA, Gleason Score, T_stage, N_stage, M_stage). Circle color represents correlation strength, size reflects –log₁₀(p-value), and circles with black 
outlines indicate statistical significance (p < 0.05). (E) Prediction performance of multi-signature combinations assessed using (a) RF and (b) XGB models. Here, “combinations” 
refer to all possible sets of 2 to 5 signatures drawn from the top 19 signatures identified in panel B. Each dot corresponds to a unique combination, with color denoting ROC AUC 
and size indicating the number of included signatures. (F) Evaluation of selected signature combinations, where each combination was derived from the top 19 signatures (2–5 
signatures per combination). a. Line plots showing average accuracy (red) and average ROC AUC (blue) for each combination across the test dataset. b. Correlation analysis 
between combined signature scores and clinical parameters. Dot size indicates –log₁₀(p-value), color represents correlation coefficient, and black outlines highlight significant 
correlations (p < 0.05). 
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The majority (73.7%) belonged to Include, 
subdivided into macrophage (42.9%), 
monocyte/NK/B cell/CMP (35.7%), and T cell 
(21.4%) subgroups (Figure 6C), indicating meaningful 
contributions from both immune- and epithelial- 
derived genes. Prediction heterogeneity across the full 
945 signatures was visualized using heatmaps 
(Supplementary Figure S6-1). Considerable variability 
was observed, yet lineage-based grouping revealed 
that monocyte-, NK-, B cell–, and CMP-derived 
Include signatures exhibited classification patterns 
comparable to macrophage- and T cell–derived ones, 
underscoring their robustness. To assess clinical 
relevance, we performed Spearman correlation 
analysis between signature scores and clinical 
parameters (Age, PSA, Gleason Score, T_stage, 
N_stage, and M_stage). Most predictive signatures 
correlated significantly with M_stage (Figure 6D), and 
particularly Sig_583098 and Sig_715659 also showed 
associations with PSA and T_stage, supporting their 
clinical utility as metastasis-related biomarkers. Next, 
we tested whether combining multiple signatures 
enhances prediction accuracy. Ensemble models using 
RF (Figure 6E-a) and XGB (Figure 6E-b) evaluated 
diverse signature combinations. Each dot in the 
scatterplots represents one unique combination, with 
dot size indicating the number of signatures and color 
denoting ROC AUC. Several combinations achieved 
ROC AUC > 0.8, demonstrating the advantage of 
multi-signature integration (Supplementary Tables 
S6-2-1 and S6-2-2). Selected combinations were 
further validated for accuracy and clinical correlation. 
Multiple combinations maintained high test-set 
accuracy and ROC AUC (Figure 6F-a). Correlation 
analyses (Figure 6F-b) revealed significant 
associations with Gleason Score, T_stage, and 
M_stage, confirming both robustness and clinical 
interpretability. Interestingly, Combo 1, despite 
strong M-stage prediction, showed no correlation 
with clinical parameters, suggesting that it captures 
metastasis-linked transcriptomic features 
independent of conventional variables. 

Discussion 
Metastasis remains the leading cause of 

mortality among men with prostate cancer (PCa), and 
reliable prediction of metastatic potential remains a 
major unmet clinical need. In this study, we 
investigated the transcriptomic and spatial 
characteristics of hybrid circulating tumor cell 
(CTC)-like cells co-expressing epithelial (KRT18) and 
immune (CD45/PTPRC) markers, termed KP_Pos, to 
elucidate their origin and clinical significance. 
Through integrated Imaging Mass Cytometry (IMC), 
single-cell RNA sequencing (scRNA-seq), and bulk 

RNA-seq–based modeling, we identified lineage- 
specific transcriptomic programs and gene signatures 
associated with metastasis and demonstrated their 
predictive power in stratifying patients by metastatic 
status. 

Spatial IMC analysis of metastatic prostate 
tumor microenvironments revealed close proximity 
and frequent interaction between CK⁺ epithelial and 
CD45⁺ immune cells, coinciding with the emergence 
of CK⁺CD45⁺ hybrid phenotypes. Although such cells 
have been linked to fusion-related enlargement [9, 29], 
our morphometric profiling revealed an opposite 
pattern: CK⁺CD45⁺ double-positive cells in CK-high 
tumors (Group 1) were smaller yet more abundant 
than in other groups, with size distributions shifted 
toward compact morphologies (Figure 2B-c,d). These 
compact phenotypes, observed across multiple 
lineage markers (CD14, CD16, CD3, CD8A, 
Granzyme, Perforin), likely represent metabolically 
active states rather than quiescence, consistent with 
small but functionally potent CD45RO⁺ memory T 
cells and CD16⁺ NK cells [30, 31]. IMC quantification 
confirmed enrichment of activation and checkpoint 
molecules (CD25, HLA-DR, PD-1) in these compact 
hybrids, aligning with evidence that morphologically 
small circulating cells increase in advanced disease 
and predict poor prognosis [32]. Collectively, these 
findings suggest that KP_Pos cells are compact, active 
immune–epithelial hybrids engaged in tumor–
immune communication rather than simple fusion 
products. Consistently, CellChat analysis (Figure 2C) 
demonstrated that epithelial cells acted as both 
senders and receivers of intercellular signals with 
monocytes and T cells, underscoring a bidirectional 
epithelial–immune signaling network in KP_Pos 
emergence. 

In PBMC scRNA-seq from M1-stage metastatic 
PCa patients, KP_Pos T cells exhibited a distinct 
expression profile marked by KRT18 and multiple 
ribosomal genes (RPS12, RPS13, RPL30, RPS3A, 
RPL11, RPL32, RPS8, RPS23, RPS14, RPL5), indicating 
partial epithelial-like reprogramming possibly driven 
by tumor-derived factors or extracellular vesicle–
mediated transcript transfer [33]. Enhanced ribosomal 
expression implies increased translational capacity 
and adaptation to circulatory stress [34], whereas 
downregulation of mitochondrial oxidative 
phosphorylation (OXPHOS) genes (MT-CO1, 
MT-CO2, MT-CO3, MT-ATP6, MT-ND5) and 
regulators (PARP8, RABGAP1L, UTRN, ZEB2) 
indicates metabolic rewiring toward glycolytic states 
linked to T-cell exhaustion [35, 36]. These data suggest 
that KP_Pos T cells constitute metabolically altered, 
transcriptionally hybrid subsets imprinted by 
tumor-derived molecular signals [37]. Similar 
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epithelial-like gene patterns appeared across other 
immune lineages: B cells co-upregulated KRT18, 
RPS12, RPL9, RPS19, RPL8, RPL12, RPS18, RPS17, and 
stress-related genes RASSF7 and PLIN3, suggesting 
cytoskeletal and lipid metabolic adaptation [38, 39]; 
monocytes induced KRT18, PEF1-AS1, and SLCO1B3, 
indicating xenobiotic responsiveness [40, 41]; and 
platelets showed unexpected KRT18, S1PR2, CDK5R1, 
TET1, and PMS2/PMS2P3 upregulation, reflecting 
epithelial transcript uptake or intercellular RNA 
transfer [42]. These convergent profiles across 
immune subsets support a systemic tumor–immune 
molecular exchange, generating shared hybrid 
transcriptional programs (Figures 1, 3–4; 
Supplementary Figures S1–S4; Supplementary Tables 
S3-1 to S3-6). 

Within metastatic tumor scRNA-seq datasets, 
multiple annotation approaches (SingleR, CellTypist, 
marker-based mapping) confirmed the presence of 
KP_Pos cells across immune (macrophages, 
monocytes, T cells) and epithelial compartments. 
Transcriptomic comparisons revealed enrichment of 
immune-response, antigen-presentation, and 
epithelial–mesenchymal transition (EMT) pathways, 
suggesting biological—not artifactual—origins. Dual 
validation at protein and transcript levels (IMC and 
scRNA-seq) confirmed KRT18/CD45 co-expression 
(Supplementary Figures S1-1C, S2-3). The distribution 
of KP_Pos cells differed by context: circulating PBMC 
hybrids localized mainly within T and B cells, while 
tissue-resident KP_Pos cells (Figures 3–4) included 
NK, macrophage, epithelial, and stromal subsets, 
reflecting microenvironmental pressures that drive 
hybrid diversity. 

Functional enrichment analyses (Supplementary 
Figures S6-2, S6-3-1–S6-3-9) revealed consistent 
enrichment of immune, antigen-presentation, and 
EMT pathways, consistent with evidence that the 
TME promotes stemness and therapy resistance [43], 
that EMT activation correlates with immune evasion 
[44, 45], and that EMT-related transcriptional 
programs predict poor outcomes [46]. Reports that 
transcriptionally primed cells can drive lymph node–
independent metastasis [47] further support KP_Pos 
cells as metastasis-competent intermediates. 

From these data, we derived 945 lineage-specific 
gene signatures and assessed metastatic classification 
performance using Random Forest (RF) and Extreme 
Gradient Boosting (XGB) models. Several individual 
signatures achieved ≥0.7 accuracy, while 
combinations of top-performing signatures reached 
≥0.8, indicating additive predictive value (Figures 5–
6). The use of multiple clustering and annotation 
methods was essential to capture hybrid diversity and 
prevent bias toward dominant lineages 

(Supplementary Figures S5A–B, S6-1; Supplementary 
Tables S5-1 to S5-3, S6-1-1, S6-1-2, S6-2-1, S6-2-2; 
Reference 26). These predictive signatures bridge 
molecular characteristics of primary tumors and 
CTC-like hybrids, supporting the concept that 
primary tumor transcriptional states can inform 
metastatic potential. The existence of CD45⁺/KRT⁺ 
hybrid CTCs in advanced prostate and breast cancers 
[10, 11] reinforces this biological continuum linking 
tumor–immune interaction and systemic 
dissemination. 

Several limitations must be acknowledged. All 
analyses were based on a single internal cohort. 
External validation using TCGA_PRAD and 
SU2C_PRAD datasets was limited by differences in 
sequencing platforms and gene coverage (TCGA_ 
PRAD: 20,531 genes; SU2C_PRAD: 19,293 genes; our 
dataset: 36,553 genes), which precluded complete 
model transfer and prevented direct testing of our 
predictive signatures without compromising integrity 
(Figures 5–6; Supplementary Tables S5-1 to S5-3, 
S6-1-1, S6-1-2, S6-2-1, S6-2-2). Moreover, scRNA-seq 
primarily detects upregulated genes due to dropout 
effects [48], yet these transcripts remain the most 
reliable for signature generation [49-51]. 
Discrepancies between single-cell and bulk RNA-seq 
data reflect inherent differences in resolution and 
have been similarly reported in other studies [51-53]. 
Although panCK⁺/CD45⁺ CTC-like cells were 
detected in the blood of 45 metastatic prostate cancer 
patients, standardized enrichment protocols and 
independent validation of their prognostic utility 
beyond PSA and Gleason score will be essential in 
future prospective and longitudinal studies. 

Conclusion 
Our study establishes the existence and clinical 

relevance of CD45⁺CK18⁺ (PTPRC⁺KRT18⁺) hybrid 
CTC-like cells in metastatic prostate cancer. By linking 
their emergence to epithelial–immune signaling, 
metabolic remodeling, and EMT programs, we 
identify predictive gene signatures capable of 
distinguishing metastatic status with high accuracy. 
These findings provide a framework for non-invasive 
biomarker development, illuminate the biology of 
immune–epithelial plasticity, and suggest new 
therapeutic opportunities targeting hybrid-cell 
formation. Nevertheless, as this study was based on 
cross-sectional transcriptomic data without 
longitudinal survival analysis, the causal and 
prognostic roles of KP_Pos cells remain to be clarified. 
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