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Abstract

Background: Despite the use of immunotherapy in esophageal squamous cell carcinoma (ESCC), treatment failure occurs
occasionally in patients, yet the underlying mechanisms remain poorly understood.

Methods: We conducted large-scale single-cell RNA sequencing (scRNA-seq) data analysis, which integrated seven independent
datasets from 192 ESCC patients to yield over 440,000 high-quality single cells, to systematically characterize the tumor
microenvironment (TME) landscape during ESCC progression and immunotherapy response. Additionally, we performed
high-resolution spatial transcriptomics (stRNA-seq) using the 10x Visium HD platform on paired pre- and post-treatment tissues
from two patients (one immunotherapy responder and one non-responder), which enhanced the findings from the scRNA-seq
data and mapped therapy-induced TME at the spatial level. Multiplex immunohistochemistry was employed based on seven patients
to confirm distinct patterns of intercellular crosstalk underlying differential therapeutic outcomes.

Results: In scRNA-seq data, we found that B lineage cells were reduced during ESCC progression but were enriched in
immunotherapy-resistant patients. Further analysis of malignant ESCC cells suggested that immunotherapy resistance might be
associated with a subpopulation of tumor cells exhibiting aberrantly elevated cholesterol biosynthesis. Cell communication analysis
of scRNA-seq and stRNA-seq data collectively revealed that immunotherapy resistance was linked to cellular crosstalk between
cholesterol-biosynthetic tumor cells and germinal center (GC) B cells within tertiary lymphoid structures. Notably, single-cell,
spatial data, and multiplex immunohistochemistry demonstrated that cholesterol biosynthesis-associated ESCC cells express
elevated levels of MIF. This disrupts GC reactions by competing with the CXCL12-CXCR4 signaling axis via MIF-CXCR4
interactions, thereby impairing B cell-mediated immunity.

Conclusions: MIF* tumor cells in GCs may be a biomarker for predicting immunotherapy resistance in ESCC.
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Introduction

According to GLOBOCAN  statistics, over  platinum-paclitaxel (TP) chemotherapy with anti-PD-

600,000 new cases of esophageal cancer were reported
globally in 2020, with approximately 510,000 (~85%)
classified as esophageal squamous cell carcinoma
(ESCQ) [1]. Eastern Asia bears the highest incidence
and mortality burden, with a male-to-female ratio of
~2:1 among newly diagnosed cases. The five-year
survival rate remains below 30%, mainly due to
frequent recurrence and drug resistance [1]. Platinum-
based chemotherapy is the standard first-line regimen
for advanced ESCC [2]. Notably, the phase III
JUPITER-06 trial demonstrated that combining

1 therapy significantly improved outcomes in locally
advanced or metastatic ESCC [2]. However, 26.8%
(69/257) of patients exhibited stable or progressive
disease [2], highlighting the urgent need to decipher
molecular mechanisms of the tumor microenviron-
ment (TME) underlying immunotherapy resistance.
While tertiary Ilymphoid structures (TLS) are
predictive biomarkers for immunotherapy response,
~20-30% of TLS-rich tumors paradoxically resist
treatment [3], suggesting functional heterogeneity
within TLS that remains mechanistically undefined.
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TLS are ectopic lymphoid aggregates that form
in non-lymphoid tissues during chronic inflammation
or cancer [4, 5]. Structurally composed of B cells, T
cells, dendritic cells, and stromal networks, TLS
actively coordinate local antigen presentation and
adaptive immune responses [4, 5]. Germinal centers
(GCs), critical functional compartments within TLS,
are sites where antigen-activated B cells undergo
clonal proliferation and affinity maturation -
processes essential for their differentiation into either
plasma cells (antibody-secreting effectors) or memory
B cells (mediators of secondary immunity) [6]. Recent
studies have established a strong association between
GC B cells and immunotherapy sensitivity in ESCC
[7]. However, the mechanisms underlying this
association remain poorly defined, as evidenced by
the paradoxical coexistence of TLS and
immunotherapy resistance (e.g., TLS-positive tumors
refractory to treatment) [3]. To address this gap,
longitudinal profiling of the TME in paired
pre-/post-treatment samples, with spatial resolution
mapping of TLS niches and immune dynamics, could
elucidate how GC B cells modulate TLS-driven
immunotherapy sensitivity in ESCC.

Through integrative analysis of spatial
transcriptomics in two paired pre-/post-treatment
ESCC specimens (n = 2 patients) combined with
single-cell RNA-seq (scRNA-seq) data from ~440,000
high-quality cells, we identified that MIF-expressing
tumor cells competitively disrupted CXCL12-CXCR4
signaling in GC B dark-zone cells via direct
MIF-CXCR4 interactions, thereby impairing GC
reactions within the TME. Notably, these findings
suggest that MIF* tumor cells infiltrating TLS, rather
than TLS status alone, may serve as a co-factor for
evaluating immunotherapy response, a phenomenon
detectable even in baseline tumors of ESCC
non-responders. Furthermore, multiplex
immunohistochemistry (mIHC) analysis of three
paired pre-/post-treatment ESCC tissues and four
additional pre-treatment tumor samples confirmed
that MIF-high tumor cells spatially interacted with GC
B cells in non-responder tumors. Collectively, our
study systematically characterizes the ESCC TME
landscape, leverages longitudinal specimens to
identify immunotherapy resistance-associated cellular
markers, and provides actionable insights for
developing novel therapeutic strategies to overcome
resistance and enhance clinical outcomes in ESCC.

Materials and Methods

Patient Cohort and Sample Characteristics

This study analyzed tumor specimens from 7
ESCC patients who underwent TP chemotherapy
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combined with anti-PD-1 therapy (camrelizumab or
sintilimab) between January 2023 and January 2025.
This included 6 specimens from 3 patients (2
responders, 1 non-responder) collected both pre- and
post-treatment (forming 3 pairs) specimens, and 4
pre-treatment specimens from additional 4 patients (3
responders, 1 non-responder). All pre-treatment
samples were obtained two weeks prior to treatment.
All specimens were collected from Chongging
General Hospital with ethical approval by Medical
Ethics Committee of Chongqing General Hospital (IIT
52025-008-01). Written informed consent was
obtained from all patients (n = 7). Formalin-Fixed and
Paraffin-Embedded (FFPE) slides were shipped for
sequencing (August 3, 2024). Patient characteristics
and clinical information are shown in Table S1.

Responders (Patient 1, patient 3, Patient 5-7)

Patient-1: 79-year-old male, non-smoker/non-
drinker, stage IIIB (pT3N1MO0) at diagnosis. Paired
samples  (pre-treatment and  post-treatment)
underwent Visium HD spatial transcriptomics (RNA
Integrity Number/RIN: 2.2-2.3) and mIHC, confirm-
ing partial response (PR) based on RECIST v1.1.

Patient-3: 75-year-old female, non-smoker/non-
drinker, stage IIB (pT1N1MO). Pre-treatment (RIN =
3.3) and post-treatment (RIN = 3.9) samples were
analyzed.

Patient 5-7: 73-77 years old, male, non-smokers/
non-drinkers. Only pre-treatment sample was
available and was analyzed using mIHC.

Non-responders (Patient-2 and patient-4)

Patient-2: A 53-year-old male, non-smoker/non-
drinker, was initially diagnosed with stage IVB
(pT2NOM1) with post-treatment progression. Paired
samples (pre-treatment and post-treatment) were
subjected to Visium HD sequencing (RIN: 2.2-2.5) and
mlHC, consistent with progressive disease (PD).

Patient-4: A 74 year-old female, non-smoker/
non-drinker, was diagnosed with stage IVB
(pT3N2M1) with post-treatment progression. Only
pre-treatment sample was available and was analyzed
using mIHC.

Spatial transcriptome sequencing and
processing

Spatial transcriptome sequencing of four FFPE
tissues of two ESCC patients with pre- and
post-immunotherapy was conducted using the 10x
Genomics Visium HD platform, which offered a
resolution of 2 pm X 2 pm. Quality assessment and
sequencing of tissue sections were performed. First,
SpaceRanger (v3.1.0) was utilized for aligning FASTQ
files to human reference genome (GRCh38), detecting

https://lwww.thno.org



Theranostics 2026, Vol. 16, Issue 3

tissue sections, and mapping sequencing data to both
microscope and CytAssist images. Gene-barcode
matrices were aggregated into 8 pym x 8 pm binned
squares for subsequent analyses. According to a
recent benchmarking study [8], Robust Cell Type
Decomposition (RCTD) demonstrated consistently
high performance when using external reference
datasets. Given that our study utilizes an integrated
single-cell dataset as an external reference, RCTD was
shown to be the best-performing method under such
conditions. Thus, cell type deconvolution was
conducted using RCTD algorithm in spacexr (v2.2.1)
[9], and run in doublet mode. Pre-annotated
scRNA-seq data were used as the reference dataset.
Squares containing fewer than 10 detected features
were excluded from analysis.

ScRNA-Seq data and preprocessing

ScRNA-Seq (10x Genomics) data of 192 ESCC
patient tissues were retrieved from five publicly
available datasets: GSE145370 [10], GSE160269 [11],
GSE199654 [12], GSE203115 [13], and GSE221561 [14].
Another two datasets of normal esophageal cells
(GSE196756 [15], GSEE188900 [16]) were severed as
normal control also integrated to the aforementioned
five ESCC datasets. Patients with no clinical
information were excluded. Patient characteristic,
sample information, number of cells pre- and
post-filter were summarized in Table S2. The count
expression matrices of scRNA-seq were merged via
Seurat merge function (v4.3.1) [17]. Genes expressed in
fewer than three cells were filtered out. To exclude
low-quality cells, we applied stringent filtering
criteria, removed cells with nFeatures. RNA < 200,
nCount_RNA < 500, or mitochondrial gene content >
20%. Cell clustering was performed using Seurat with
default parameters. We employed FastMNN
algorithm in SeuratWrappers (v0.3.1) to remove batch
effect among seven datasets. Uniform manifold
approximation and projection (UMAP) embeddings
were computed based on top 30 principal components
and mnn reduction. Cell clusters were identified using
the Louvain algorithm with a resolution parameter of
0.1 [18, 19]. At higher resolution values (e.g., 0.5 or
1.0), the clustering results produced excessive
fragmentation of known cell types (e.g., splitting
well-defined immune subsets such as naive and
memory B cells into multiple small clusters), whereas
resolution = 0.1 yielded clusters that more accurately
corresponded to canonical cell types, as supported by
marker gene expression. Then, doublets were
detected and filtered using scDblFinder (v1.8.0) [20],
with doublet ratio set to 0.76. Clusters exhibiting
mixed lineage markers (e.g., co-expression of CD3 and
EPCAM) were also classified as doublets and

1615

excluded from further analyses.

Cell type annotation and trajectory analysis in
scRNA-seq data

Cell types were annotated based on curated
marker genes (Table S3). For the major cell types, the
following markers were used: EPCAM, KRT14, TP63
for epithelial cells; KRT4, KRT13, GJB2 for basal cells;
DCN, ACTA2, FBLNI1 for fibroblasts; PECAMI1, ENG,
PLVAP for endothelial cells; CD3D, CD3E, CD8A,
NKG7 for T/NK cells; CD68, CD14, FCGR3A for
myeloid cells; CD19, MS4A1, BANKI1 for B cells;
MZB1, JCHAIN, DERLS3 for plasma cells; and FCERIA,
TPSB2, CPA3 for mast cells. Subsets of cell
populations were identified by re-clustering each
major cell type using the same methods described
above. For B cells, the following markers were used
for annotation: IGHM, IGHD for naive B cells; CD80,
CD82 for activated B cells; BANKI for memory B cells;
CXCR4, STMN1, TOP2A, MKI67, and negative
expression of CD83 and CD86 for germinal center
(GC) B dark zone cells; and CXCR5, positive CD83,
and positive CD86 for GC B light zone cells.

To delineate B cell differentiation dynamics, we
performed single-cell trajectory inference using the
slingshot R package (v2.8.0) [21]. The Seurat object
containing B cells was converted to a
SingleCellExperiment object using the raw counts and
cell subtype annotations. A set of 2,000 highly variable
genes were utilized for trajectory construction. The
starting point of the trajectory was defined as the
naive B cell subpopulation. Cell embeddings derived
from the MNN-corrected data were used to generate
UMAP plots, ensuring consistency with the cell
annotations.

Inferring copy nhumber profile in scRNA-seq
data

Malignant epithelial cells in scRNA-seq profile of
ESCC were identified by inferCNV (v1.10.0) [22].
Immune cells were used as reference cell types. Copy
number variation (CNV) scores of cells were
calculated as the sum of absolute values of scaled
CNV estimations. Scaled CNV scores > 0.04 were
determined as potential malignant cells based on
previous literature [23].

Non-negative matrix factorization (NMF) and
module analysis in scRNA-seq

NMF (v0.26) (http://renozao.github.io/ NMF/)
was used to identify functional modules in epithelial
cells of ESCC. Here, samples with cell numbers <100
were filtered in this analysis. nsNMF method was
applied for ranks between 5 and 15. Module name of
each module was assigned based on functional
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enrichment of module genes via g:Profiler web tool.
These module scores of each module in samples were
calculated using the module gene expression based on
AddModuleScore implemented in the Seurat.

Cholesterol biosynthesis-related malignant cells
were identified by activated cholesterol biosynthesis
score bigger than 0. Differential expression genes
between cholesterol biosynthesis-related cells and
other malignant cells were calculated by FindMarkers
of the Seurat. These marker genes expressed in
cholesterol biosynthesis-related cells (pct.1) and other
malignant cells (pct.2) were used to evaluate the
specificity (pct.1 divided by pct.2) of gene expression
in different cell groups.

Cell-cell communications

Cell-cell communication analysis was performed
using scRNA-seq data via CellChat (v2.0) [24].
Colocalization of a ligand-receptor pair was defined
by co-expression (count > 1) of ligands and receptors
in the same square of the spatial RNA-seq data. We
were primarily interested in potential
communications between cholesterol biosynthesis-
related tumor cells and GC B cells.

Bulk RNA-Seq data analysis of ESCC for
survival and therapy response

Gene signatures for cholesterol biosynthesis
were calculated as sum of the scaled expression levels
of the associated marker genes. For Kaplan-Meier
survival analysis, median value of the signature
scores of cholesterol biosynthesis-related cell
signature was used as cut-off value to stratify patients
into high-score and low-score groups. Survival
differences were assessed by log-rank test. Patients
with missing outcomes (e.g., deceased or progressed)
or missing follow-up data were excluded from
survival analysis. To evaluate the difference in
signature scores of cholesterol biosynthesis-related
cells between responder and non-responder patients
who underwent immunotherapy, IMvigor210 cohort
(n = 298) [25] was analyzed. The IMvigor210 cohort
comprised 298 patients with locally advanced or
metastatic urothelial cancer (male/female = 233/65;
median age 67 years) treated with atezolizumab
(anti-PD-L1). The majority were White (270/298),
with 7 Asian, 9 Black/African American, and 12 of
other/unknown race. 233 patients had received prior
platinum-based therapy. Analysis of IMvigor210
cohort was to investigate whether the molecular
signature of cholesterol biosynthesis might be broadly
associated with immunotherapy resistance across
cancers. Two-tailed Mann-Whitney U test was used to
compare signature scores between responders and
non-responders.
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Hematoxylin and eosin (H&E) and
immunohistochemistry (IHC) staining

FFPE human tissue sections were processed
following standard protocols. Sections of 5-pm
thickness were used for staining. The steps of H&E
and IHC staining were described previously [26].
Primary antibodies against HMGCR (Huabio,
ET1702-41, 1:150 dilution) and MIF (Cell Signaling
Technology, 87501, 1:150 dilution) were used. Results
were visualized and imaged using a bright-field
microscope.

Multiplex immunohistochemistry (mIHC)

FFPE tissue sections (5-pm thickness) of two
ESCC patients were used for mIHC. Slides were
incubated with primary antibodies against HMGCR
(Huabio, ET1702-41, 1:300 dilution), CXCR4 (Huabio,
HA722304, 1:250 dilution), CD83 (Huabio, ER62949,
1:250 dilution), CD86 (Huabio, ER1906-01, 1:250
dilution), pan-Cytokeratin (pan-CK, Abcam, ab7753,
1:250 dilution), MIF (Cell Signaling Technology,
87501, 1:250 dilution), CD3 (Proteintech, 17617-1-AP,
1:300), CD20 (Proteintech, 60271-1-Ig, 1:300), CD21
(Proteintech, 24374-1-AP, 1:300), CD27 (Proteintech,
66308-1-Ig, 1:300), PD-1 (Proteintech, 18106-1-AP,
1:300), TIM-3 (Proteintech, 11872-1-AP, 1:300), SOX2
(Proteintech, 66411-1-Ig, 1:250) overnight at 4 °C.
Tyramide Signal Amplification Kit (RecordBio Co.
Ltd, RC0086Plus-67RM) was used in this assay.
Antibodies were validated using tissue slides in this
study.

Statistics analysis

Survival analysis was performed using log-rank
test. Comparison of signature scores was performed
using two-tailed Mann-Whitney U test. For functional
enrichment analysis of genes, hypergeometric test
was used. All analyses were performed using R
software (v4.3.3).

Results

Tumor microenvironment landscape reveals a
positive role for B cells in anti-tumor
progression and immunotherapy response

To characterize tumor microenvironment (TME)
remodeling in ESCC, we integrated seven public
scRNA-seq datasets encompassing normal tissues (n =
32) and ESCC samples across stages I (n = 36), I (n =
52), Ill (n = 69), and IVA (n = 3) (Figure 1A). After
rigorous quality control, ~440,000 high-quality cells
were  retained.  Batch  correction  resolved
dataset-related batch effect using FastMNN (Figure
S1A-C), enabling stable clustering of nine major cell
types annotated via canonical markers (Figure 1B-C,
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S10).

Comparative analysis revealed progressive
depletion of B cells in stage III/IV versus stage 1/1I,
alongside reduced T cells and myeloid cells in stage

IV (Figure 1C-D). Strikingly, post-immunotherapy
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comparison (non-responder [n = 1] vs. responders [n
2]) showed elevated T and myeloid cells but
diminished B cells in non-responders (Figure 1E).

Figure 1. Single-cell RNA profile of 440,000 cells of esophageal squamous cell carcinoma. (A) Integrated datasets and patient information analyzed in this study. (B)
Cell type annotations based on marker genes. (C) Proportions and gene expression profiles of cell types at different stages of ESCC. (D) Uniform Manifold Approximation and
Projection (UMAP) of cell clustering, split by patient stages. (E) Proportions of cell types in patients who resistant to immunotherapy (n = 1, stage Ill) versus patients who respond
to immunotherapy (n = 2, stage lll). (F) Proportions of plasma cells in patient groups classified by different stages or immunotherapy outcomes. (G) Expression of marker genes
of B cell subsets. (H) Proportions of B cells in patient groups categorized by different stages or immunotherapy outcomes. () Re-clustering and pseudotime analysis of single cells

from the B lineage.
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Subtype re-clustering further delineated TME
heterogeneity (Figure 52, S3). ESCC TME is composed
of large amounts of T/NK cells, which was supported
by independent studies [10, 11]. Stage I tumors were
enriched in cytotoxic CD8* T cells (Figure S2A),
whereas stages II/IIl exhibited higher exhausted
CD8* T cells and immunosuppressive regulatory T
cells (Tregs) (Figure S2A), coupled with reduced
cytotoxic CD8* T cells (Figure S2A) and IgG* plasma
cells (Figure 1F). Stage III/IV TMEs displayed
elevated tumor-associated macrophages (TAMs;
predominantly M2-polarized) and inflammatory
cancer-associated fibroblasts (CAFs) (Figure S2B-C),
alongside increased vascular CAFs, pericytes, and
microvascular endothelial cells—consistent with
enhanced angiogenesis in stage IV (Figure S2C-D).
These findings collectively suggest progressive
immunosuppression during ESCC advancement.

Notably, despite increased activated B cells in
stage III/IV (Figure 1F), plasma cell frequencies
remained unchanged, indicating impaired B cell
terminal differentiation. In the non-responder,
germinal center (GC) B cell activation (Figure 1G-H)
paradoxically coexisted with reduced IgG* plasma
cells (Figure 1F). Activated B cells exhibit upregulated
expression of key activation and co-stimulatory
molecules, including CD80, CD86, and TNFRSF13B
(TACI, Figure S4A), indicating a functionally
activated phenotype [27]. Notably, many cells within
this population show elevated expression of VIM,
members of the SI00A family, and structural scaffold
proteins (e.g., LMNA and AHNAK), suggesting that
these cells are in a transitional migratory state (Figure
S4A). At this stage, they may have exited the cell cycle
(Ki67"), while acquired enhanced tissue infiltration
capacity and relied on microenvironment-derived
survival signals (e.g.,, TNFRSF13B, LGALS1, CDS82,
Figure S4A). Furthermore, the upregulation of
LGALS1 and KYNU suggests a role in modulating
local immune responses within inflammatory niches,
potentially preventing excessive immune activation.
The intermediate expression of CXCR4 (Figure 1G)
and a sparse BCL6 expression of BCL6 further
indicate that these cells are likely to correspond to a
pre-germinal center (pre-GC) B cell state (Figure S4A)
[28], which is also supported by our pseudotime
trajectory analysis (Figure 1I). Thus, these results
supported a model wherein GC reaction
dysfunction — potentially due to disrupted affinity
maturation or differentiation —compromises B
cell-mediated anti-tumor immunity in both ESCC
progression and immunotherapy resistance.
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Cholesterol biosynthesis-related tumor cells
are associated with ESCC progression and
immunotherapy resistance

The immune system plays a critical role in
eliminating cancer cells, yet identifying tumor cell
subsets that evade immune surveillance remains
pivotal for understanding immunotherapy resistance.
Recent scRNA-seq study [7] have underscored tumor
cell heterogeneity in ESCC, providing insights into
epithelial subset dynamics and  molecular
mechanisms underlying progression and treatment
failure.

We isolated epithelial cells (n = 145,000) and
employed inferCNV analysis to identify malignant
populations (Figure 2A-B). In tumor tissues, epithelial
cells with high CNV burden are frequently dispersed
across multiple clusters defined by Seurat, rather than
being confined to a single cluster, consistent with
prior literature [26, 29]. Subpopulations defined by
principal components analysis (Seurat clusters) failed
to adequately represent functional features, which
prompted our wuse of Non-negative Matrix
Factorization (NMF) to identify functionally distinct
malignant modules [22]. Applying NMF to 82,191
malignant cells (Figure S4B), we resolved 14
consensus functional modules, including complete
EMT (cEMT), keratinization, fatty acid/amino acid
metabolism, stress response, cholesterol metabolism,
hypoxia, partial EMT (pEMT), invasion/metastasis,
tissue homeostasis, interferon response, cell cycle,
metal response, and telomere maintenance (Figure
2C). Notably, cholesterol metabolism-enriched
malignant cells persisted across ESCC progression
(Figure 2D) and were significantly enriched in
post-treatment non-responders (Figure 2E).

Cholesterol metabolic reprogramming —
spanning uptake, export, storage, and de novo
biosynthesis —was further dissected. Key cholesterol
biosynthesis genes were overexpressed in high
cholesterol-metabolism cells (Figures 2F-G, Table 54).
The gene set associated with cholesterol biosynthesis
comprises the following key components: MSMOI,
DHCR7, MVD, INSIG1, IDI1, CYP51A1, HMGCR,
HMGCS1, HSD17B7, TM7SF2, FDFT1, FDPS, CESI,
MVK, SC5D, LSS, DHCR24, G6PD, SREBF2, ACLY,
SQLE, and ACAT?2. Transcriptomic signatures of these
cells (Table S5) correlated with poorer clinical
outcomes. In TCGA-ESCC (n = 152), high cholesterol
biosynthesis scores predicted reduced overall survival
(OS) and progression-free survival (PFS) (Figure 2H).
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Figure 2. Functional modules of epithelial malignant cells in ESCC. (A) Re-clustering of epithelial cell subsets in ESCC. (B) InferCNYV analysis identifies malignant cells
in epithelial cell populations. (C) Identifying consensus functional modules in malignant cells using the Non-negative Matrix Factorization (NMF) algorithm. (D) Functional module
scores and proportions of cells with activated functional modules in different stages of patients. (E) Proportion of cells with distinct activated modules between
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immunotherapy-resistant and responding patients. (F) Functional enrichment of module genes in cholesterol metabolism. (G) Log:-transformed fold change (logFC) and
expression specificity of genes. Differential gene expression was analyzed using Seurat FindMarkers. Gene specificity was defined as the ratio of the percentage of cells expressing
a given gene in cholesterol metabolism-related tumor cells to that in other malignant cells. (H) Kaplan-Meier survival curves of ESCC patients (95% confidence interval) grouped
by signature scores of cholesterol synthesis (Log-rank test). The median score was used as the cutoff. HR hazard ratio. OS/PFS overall/progression-free survival. (I) Module
signature scores of cholesterol synthesis in progressive disease (PD, n = 167) or non-PD (n = 131) patients of anti-PD-LI immunotherapy based on the IMvigor210 cohort

(Mann-Whitney U test, two-tailed). Box: 25%-75% percentiles with median.

Indeed, individual cholesterol biosynthesis
genes are linked to ESCC survival. For example, high
HSD17B7 expression was associated with poorer OS
and PFS (Figure S4C). These findings suggest
cholesterol biosynthesis-related tumor cells are
closely associated with ESCC  progression.
IMvigor210 cohort analysis (urothelial cancer, n = 298)
revealed elevated scores of cholesterol biosynthesis in
immunotherapy-refractory  patients (progressive
disease [PD] n = 167 vs. non-PD n = 131; Figure 2I),
implying that cholesterol biosynthesis-related tumor
cells may correlated with cancer immunotherapy
resistance. However, since the IMvigor210 cohort
(anti-PD-L1) is derived from urothelial carcinoma, we
further validated this hypothesis in an ESCC context
by performing spatial transcriptomics and
experimental validation using clinically annotated
tissues from a real-world cohort of ESCC patients
underwent anti-PD-1 immunotherapy.

Spatial RNA-seq of two patients revealed
cholesterol biosynthesis-related tumor cells
may play a role in GC reactions

To investigate spatial crosstalk between
cholesterol-biosynthetic tumor cells and B lineage
cells in immunotherapy outcomes, we analyzed
paired pre-/post-treatment samples from two ESCC
patients (n = 4 samples: 2 responder samples vs. 2
non-responder samples) using 10x Visium HD spatial
transcriptomics (Figure 3A, Table S1). High-resolution
spot analysis (8 pm x 8 pm) with cell type
deconvolution based on our integrated single-cell
reference data (Figures 3B, S5) revealed distinct TME
remodeling patterns. In the responder, post-treatment
tumors exhibited reduced cholesterol-biosynthetic
tumor cells alongside increased plasma cell
infiltration (Figure 3B-C). In non-responder, elevated
cholesterol-biosynthetic tumor cells post-treatment
coexisted with diminished plasma cells and expanded
GC-enriched TLS at tumor margins (Figure 3B-D).

TLS spatial distribution was quantified via a
12-chemokine gene signature (CCL2/3/4/5/8/18/
19/21, CXCL9/10/11/13; Figure S6) [5]. Intriguingly,
the post-treatment non-responder sample showed
higher TLS scores, localized predominantly to GC
regions (Figure 3B, 3D, S6). These findings highlight
spatial heterogeneity within TLS/GC niches as critical
determinants of immunotherapy resistance,
necessitating deeper dissection of their cellular
architecture.

Cholesterol biosynthesis-related tumor cells
spatially interact with GC B dark zone cells

Thus, we further examined cell communication
within the cholesterol biosynthesis-related niche by
focusing on neighboring cell spots surrounding
cholesterol biosynthesis-related tumor cells (Figure
4A, S7A). In the non-responder, the frequencies of GC
B cells were sharply increased post-treatment within
the cholesterol biosynthesis-related niche (Figure 4A).
Plasma cells were successfully generated in responder
tumor post-treatment, while the non-responder tumor
post-treatment lacked plasma cell likely due to
impaired GC reactions (Figure 4A). Spatial plots
clearly displayed an increased colocalization of GC B
and cholesterol biosynthesis-related tumor cells in the
post-treatment sample from non-responder (Figure
4B-C). In contrast, Plasma cells in responder
post-treatment have a higher tumor infiltration,
whereas in non-responder post-treatment tumor,
there were primarily B cells (Figure 4B). Moreover,
TLS scores were higher in niches with colocalization
of GC B and cholesterol biosynthesis-related tumor
cells (Figure 4C-E), which suggest that cholesterol
biosynthesis-related tumor cells may play a role in GC
reactions.

To explore the molecular interactions between
GC B cells and cholesterol biosynthesis-related cells,
we performed cell-cell communication analysis using
single-cell data. The MIF-CD74/CXCR4 ligand-
receptor pair emerged as the most probable
interaction (Figure 4F). CellChat analysis performed
on the integrated single-cell dataset predicted a strong
interaction probability for the MIF-(CD74+CXCR4)
complex. When evaluated separately using this
single-cell dataset, the MIF-CD74 interaction was
predicted with a slightly higher probability (21.3%)
than MIF-CXCR4 (19.8%). Although the MIF-CD74
interaction appeared high frequency, the majority of
samples in the single-cell dataset lacked treatment
information, and the sequencing was based on
dissociated cells, potentially missing relevant spatial
context. To better understand these interactions in the
context of immunotherapy, we further analyzed our
spatial transcriptomics data, which showed a higher
degree  of  MIF-CXCR4  co-localization  in
post-treatment tumor of non-responder (Figure 4G),
suggesting that this interaction may be linked to
immunotherapy resistance.
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structures (TLS) scores (Seurat AddModuleScore) in spatial slides of patients with immunotherapy (8 x 8 um). B), C), and D) Box indicate the same region of Figure 5B
pre-non-responder sample. (E) H&E and mIHC staining to confirm the GC/TLS region of the post-non-responder sample in panel d). Scale bar: 100 pm. (F) Cell-cell
communication analysis performed using CellChat. (G) Spatial feature plot illustrating colocalization of the MIF-CXCR4 and MIF-CD74 ligand-receptor pairs. Numbers are the

total number of spots with a colocalization in a slide.

Interestingly, cell-cell communication analysis
also revealed that MIF expression was highest in
cholesterol biosynthesis-related cells compared to
other TME cell types (Figure S7B). It was
demonstrated MIF [30] and cholesterol biosynthesis

[31], as well as HMGCR [32, 33]—a rate-limiting

enzyme in cholesterol synthesis—are upregulated in

ESCC tumor cells. Our immunohistochemistry data
demonstrated high expression of both HMGCR and
MIF in a subset of ESCC tumor cells (Figure S8).
Analysis of both scRNA-seq (Figure S7C) and spatial
transcriptomic (Figure S7D) data revealed that MIF is
expressed across various cell types, with the highest
levels observed in malignant cells, particularly those
identified as cholesterol biosynthesis-related tumor
cells. Consistently, the cholesterol biosynthesis
signature score and the expression of HMGCR were
also most elevated in this specific tumor cell
population. Compared to single-cell data, the
proportion of MIF and HMGCR expression in
cholesterol-synthesizing tumor cells were lower in
spatial transcriptomics. This is likely because each
spot captures only a portion of a cell (at most 5 um
thick and 8 um wide) and may contain RNAs from
two adjacent cells. These findings indicate a specific
association between MIF and upregulated cholesterol
biosynthesis. Furthermore, although MIF expression
has been reported in macrophages, these cells are
found at very low frequency within GC regions
(Figure S7E). Although detailed mechanism remains
unclear, these results suggest a positive correlation
between elevated cholesterol biosynthesis and MIF
expression, which have been observed in animal
models [34]. In summary, these data suggested a
hypothesis that cholesterol biosynthesis-related tumor
cells with highly expressed MIF may correlate with
disrupted GC reactions.

Multiplex immunohistochemistry revealed
impaired GC reactions driven by MIF* tumor
cells

Based on mIHC assay, we revealed abundant
CD83* and CD86* antigen-presenting cells within
peritumoral stroma of pre- and post-treatment
samples of responders (Figure 5A, S9A-B, S9D),
indicative of enhanced anti-tumor immunity.
Notably, MIF-CXCR4 interactions were absent in both
pre- and post-treatment of responders (Figure 5A,
S9A-B, S9D). In contrast, non-responders exhibited
persistent MIF-CXCR4-mediated crosstalk between

GC B cells (CXCR4hCD83°CD86° dark-zone subset)
and cholesterol-biosynthetic tumor cells (pan-CK*,
HMGCRM) across treatment timepoints (Figure 5B,
5S9C). H&E staining and spatial transcriptomics of the
non-responder's  post-treatment tumor further
validated the interactions between GC B and
cholesterol synthesis-related tumor cells within
TLS/GC regions (Figure 5C). The same phenomenon
was frequently observed in other TLS regions (Figure
3D ROI 1, Figure S10). Tumor cell infiltrating in
TLS/GC region was further confirmed by mIHC data
(Figure 6A-B). Strikingly, baseline pre-treatment
tumors of non-responders already exhibited
low-frequency MIF-CXCR4 interactions (Figure 4B-D
white boxes, Figure 5B, Figure S9C), suggesting
potential early GC dysfunction before therapy. We
noticed that MIF is also expressed by other tumor cells
in pre-nonresponders that do not express HMGCR
(Figure 5B). This phenomenon supports our finding
that high MIF expression is a key factor driving
treatment non-response, indicating that MIF
upregulation is a broader phenomenon not restricted
solely to the tumor cell subpopulation expressing
high HMGCR.

Consistently, spatial transcriptome and mIHC
analyses using adjacent sections show that TLS
regions containing MIF* tumor cells (SOX2*) are
enriched with exhausted T cells (CD3*PD-1*TIM-3*)
and exhausted B cells (CD20*CD21-CD27-PD-1%),
indicating an impaired B-cell immune response
(Figure 6A, 6C-E). Mechanistically, tumor-derived
MIF  competitively  inhibits =~ CXCL12-CXCR4
binding —a canonical pathway essential for GC B cell
affinity =~ maturation = [35] —thereby  impairing
antibody-driven immunity (Figure 6F). This tumor
cell-driven hijacking of CXCR4 signaling provides a
spatial mechanism for TME reprogramming and
immunotherapy resistance.

Discussion

B cells play a crucial role in anti-tumor
immunity. As a critical complement to cellular
immunity, they suppress tumor progression,
particularly in late-stage tumors where abundant
immunosuppressive Treg cells and exhausted T cells
accumulate [36]. B cells migrate from peripheral
immune organs to tumor sites, where antigenic
stimulation activates them and initiates GC reactions
[6]. During this process, dark zone GC B cells undergo
clonal expansion and somatic hypermutation,
mediated by the CXCR4-CXCL12 signaling axis [35].
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spatial regions with the regions in white boxes of Figures 4B-D. (C) H&E staining and spatial transcriptome profile (8 x 8 um) for a non-responder of post-treatment sample.
Boxes indicate the same region as the mIHC of panel B). Left to right: H&E (scale bar: 50 um), TLS scores, Cell type annotations, and Spatial distribution of cholesterol
biosynthesis-related tumor cells and GC B dark zone cells. Arrows in H&E indicate nuclei with characteristic morphology of tumor cells. Dashed lines in H&E distinguish the

tumor and GC/TLS regions.
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Figure 6. MIF* tumor cells are associated with compromised B cell immune response. (A) Representative images of multiplex immunohistochemistry (mIHC)
showing the GC/TLS regions. Scale bar: 50 um. (B) Representative images of mIHC data showing the MIF* tumor cell infiltrating in GCs. Scale bar: 50 um. (C) Spatial data showing
the exhausted T cells in MIF* regions. (D) Representative images of mIHC data showing the exhausted B cells in MIF* regions. Scale bar: 50 um. (E) Representative images of mIHC
data showing the exhausted T cells in GC/TLS. Scale bar: 50 pm. (F) Schematic diagram illustrating the proposed model of cholesterol biosynthesis-related tumor cells in the

immune response.

CXCRS then directs GC B cells to the light zone,
where CXCL13-mediated interactions drive positive
selection of high-affinity antibody-producing B cells
[35]. Repeated recirculation between zones refines
selection, ultimately yielding antibody-secreting B
cells that participate in immune responses. While
pathological GC assessment in tumors predicts
immunotherapy response, some patients exhibit
GC-rich tumors yet remain resistant [3], underscoring
functional heterogeneity within GCs. Our data
demonstrate that tumor cells disrupt GC reactions via

MIF-CXCR4 interactions, suggesting that GC
evaluation, combined with MIF or HMGCR
assessment, could refine biomarkers for
immunotherapy sensitivity. Thus, beyond GC

presence, evaluating MIF or HMGCR expression is
critical to determine GC functional integrity and
optimize therapeutic strategies.

MIF (macrophage migration inhibitory factor) is
a multifunctional proinflammatory cytokine that
promotes the secretion of cytokines such as TNF and
IL-2/6/8 [37]. Beyond its role in innate immunity,
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MIF exerts diverse functions through engagement
with multiple receptors, leading to context-dependent
outcomes in both physiological and pathological
settings. A key mechanism of MIF activity involves its
interaction with various chemokine receptors. MIF
can bind directly to CXCR2 and CXCR4, inducing
monocyte chemotaxis [38]. Furthermore, it facilitates
the formation of CD74/CXCR2 and CD74/CXCR4
complexes, which enhance monocyte retention via
upregulation of adhesion molecules. Notably, MIF
functions as a non-canonical ligand for CXC-family
receptors: it competes with CXCL8 for binding to
CXCR2 and with CXCL12 for CXCR4, thereby
modulating immune cell recruitment [38]. This
competitive binding highlights MIF’s capacity to
disrupt conventional chemokine signaling pathways.
The functional pleiotropy of MIF arises from its ability
to engage both cognate (e.g., CD74) and non-cognate
(e.g., CXCR2, CXCR4, CXCR7?) receptors, forming
distinct signaling complexes that elicit cell- and
microenvironment-specific responses [38].
Importantly, this mechanism supports our
hypothesis: MIF abundantly secreted by tumor cells
may disrupt the CXCR4-CXCL12 axis, interfering
with germinal center reactions and thereby
contributing to immune evasion.

Cholesterol is a crucial structural component of
the plasma membrane, and its metabolism involves
several processes, including biosynthesis, uptake,
export, and esterification [39].  Cholesterol
biosynthesis primarily occurs in hepatocytes, with
other cells producing smaller amounts under normal
physiological conditions. However, in tumors,
cholesterol often accumulates and contributes to
tumor growth [40]. Our study observed that specific
ESCC cells exhibit significant upregulation of genes
associated with cholesterol biosynthesis. Among
these, HMGCR, a core rate-limiting enzyme in
cholesterol biosynthesis and a target of statins [41],
was found to be one of the most differentially
expressed genes. Based on this, we categorize this
subset of cells as being characterized by enhanced
cholesterol biosynthesis.

It is important to note that cholesterol
metabolism is critical in regulating anti-tumor
immune responses by influencing various immune
cells involved in innate and adaptive immunity.
Previous studies have shown that elevated cholesterol
levels can regulate macrophage polarization [42],
enhance T cell proliferation and differentiation [43],
inhibit NK cell release of IFN-y [44], and promote
IL-10 release by regulatory B cells [45]. For instance,
cholesterol can induce monocyte expansion and
cholesterol ester accumulation, triggering
inflammasome and activating NLRP3, leading to cell
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death and releasing pro-inflammatory cytokines such
as IL-1p and IL-18 [46]. Interestingly, an
atherosclerosis animal model study [34] demonstrated
that cholesterol feeding significantly increased MIF
levels in New Zealand white rabbits, whereas those
fed a normal diet did not exhibit elevated MIF levels.
This suggests that elevated cholesterol induces MIF
upregulation, which aligns with our own findings in
ESCC cells. Specifically, ESCC cells exhibiting
enhanced cholesterol biosynthesis also show the
highest levels of MIF, although the exact molecular
mechanism remains unclear. These observations
suggest that abnormal accumulation of cholesterol in
ESCC cells was associated with local MIF elevation in
GCs, which disrupts GC reactions and impairs B cell
immunity  through  MIF-CXCR4 interaction,
contributing to immunotherapy resistance. These
findings highlight potential for combining immune
therapy with MIF inhibitors or statin treatment in the
future, although the feasibility of this approach
requires further validation through animal models
and prospective clinical studies.

It is crucial to acknowledge the limitations of this
study. In single-cell data, we observed elevated T and
myeloid cells but  diminished B  cells
post-immunotherapy in one non-responder compared
to two responders. Although we validated this
phenomenon in our longitude comparison of pre- and
post-treatment samples from the same patients,
sample size is limited. Second, our Visium HD
analysis was based on paired pre- and post-treatment
samples from only two patients. Although a total of
seven patients were included in the experimental
validation, obtaining post-treatment samples remains
challenging. Moreover, a caveat is that the IMvigor
data were derived from urothelial carcinoma, not
ESCC. While cholesterol metabolic dysregulation
appears in multiple malignancies, tumor-type-specific
factors (e.g., immune microenvironment, driver
mutations) may modulate its functional impact.
Finally, all pre-treatment samples from the seven
patients included in this study were collected within
the two-week period preceding treatment initiation.
Given the potential influence of sampling timing on
the results, future studies with larger, prospectively
designed longitudinal cohorts are warranted to
further validate these observations and to
systematically evaluate the impact of temporal
variations.

Conclusion

Initial analysis of scRNA-seq datasets from two
immunotherapy responders and one non-responder
revealed a paradoxical increase in GC B cells within
non-responder tumors, challenging conventional
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views of B cell-mediated anti-tumor immunity. This
observation prompted mechanistic investigation into
GC dysfunction in ESCC immunotherapy resistance.
Through high-resolution spatial analysis of paired
pre-/post-treatment tumors, we demonstrated that
although GC reactions were activated in
non-responders,  MIF-expressing  tumor  cells
disrupted canonical CXCL12-CXCR4 signaling via
direct MIF-CXCR4 interactions. This competitive
disruption impaired affinity maturation of GC B cells,
suppressed plasma cell differentiation, and ultimately
compromised B cell-mediated anti-tumor immunity,
driving therapeutic resistance. While TLS presence is
often associated with favorable immunotherapy
outcomes, our multi-omics data and mIHC validation
challenge this paradigm by revealing functional TLS
heterogeneity. We propose that MIF* tumor cell
infiltration within TLS, rather than TLS abundance
alone, is a critical co-factor for predicting
immunotherapy response. Future studies in larger
cohorts are warranted to validate this mechanism and
explore therapeutic strategies targeting the
MIF-CXCR4 axis to restore GC functionality.
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