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Abstract 

Background: Despite the use of immunotherapy in esophageal squamous cell carcinoma (ESCC), treatment failure occurs 

occasionally in patients, yet the underlying mechanisms remain poorly understood. 

Methods: We conducted large-scale single-cell RNA sequencing (scRNA-seq) data analysis, which integrated seven independent 

datasets from 192 ESCC patients to yield over 440,000 high-quality single cells, to systematically characterize the tumor 

microenvironment (TME) landscape during ESCC progression and immunotherapy response. Additionally, we performed 

high-resolution spatial transcriptomics (stRNA-seq) using the 10x Visium HD platform on paired pre- and post-treatment tissues 

from two patients (one immunotherapy responder and one non-responder), which enhanced the findings from the scRNA-seq 

data and mapped therapy-induced TME at the spatial level. Multiplex immunohistochemistry was employed based on seven patients 

to confirm distinct patterns of intercellular crosstalk underlying differential therapeutic outcomes. 

Results: In scRNA-seq data, we found that B lineage cells were reduced during ESCC progression but were enriched in 

immunotherapy-resistant patients. Further analysis of malignant ESCC cells suggested that immunotherapy resistance might be 

associated with a subpopulation of tumor cells exhibiting aberrantly elevated cholesterol biosynthesis. Cell communication analysis 

of scRNA-seq and stRNA-seq data collectively revealed that immunotherapy resistance was linked to cellular crosstalk between 

cholesterol-biosynthetic tumor cells and germinal center (GC) B cells within tertiary lymphoid structures. Notably, single-cell, 

spatial data, and multiplex immunohistochemistry demonstrated that cholesterol biosynthesis-associated ESCC cells express 

elevated levels of MIF. This disrupts GC reactions by competing with the CXCL12-CXCR4 signaling axis via MIF-CXCR4 

interactions, thereby impairing B cell-mediated immunity. 

Conclusions: MIF+ tumor cells in GCs may be a biomarker for predicting immunotherapy resistance in ESCC. 

Keywords: esophageal squamous cell carcinoma, immunotherapy, B cell, cholesterol biosynthesis, ScRNA-seq, spatial RNA sequencing 

Introduction 

According to GLOBOCAN statistics, over 
600,000 new cases of esophageal cancer were reported 
globally in 2020, with approximately 510,000 (~85%) 
classified as esophageal squamous cell carcinoma 
(ESCC) [1]. Eastern Asia bears the highest incidence 
and mortality burden, with a male-to-female ratio of 
~2:1 among newly diagnosed cases. The five-year 
survival rate remains below 30%, mainly due to 
frequent recurrence and drug resistance [1]. Platinum- 
based chemotherapy is the standard first-line regimen 
for advanced ESCC [2]. Notably, the phase III 
JUPITER-06 trial demonstrated that combining 

platinum-paclitaxel (TP) chemotherapy with anti-PD- 
1 therapy significantly improved outcomes in locally 
advanced or metastatic ESCC [2]. However, 26.8% 
(69/257) of patients exhibited stable or progressive 
disease [2], highlighting the urgent need to decipher 
molecular mechanisms of the tumor microenviron-
ment (TME) underlying immunotherapy resistance. 
While tertiary lymphoid structures (TLS) are 
predictive biomarkers for immunotherapy response, 
~20-30% of TLS-rich tumors paradoxically resist 
treatment [3], suggesting functional heterogeneity 
within TLS that remains mechanistically undefined. 

 

Ivyspring  
International Publisher 



Theranostics 2026, Vol. 16, Issue 3 

 

 

https://www.thno.org 

1614 

TLS are ectopic lymphoid aggregates that form 
in non-lymphoid tissues during chronic inflammation 
or cancer [4, 5]. Structurally composed of B cells, T 
cells, dendritic cells, and stromal networks, TLS 
actively coordinate local antigen presentation and 
adaptive immune responses [4, 5]. Germinal centers 
(GCs), critical functional compartments within TLS, 
are sites where antigen-activated B cells undergo 
clonal proliferation and affinity maturation – 
processes essential for their differentiation into either 
plasma cells (antibody-secreting effectors) or memory 
B cells (mediators of secondary immunity) [6]. Recent 
studies have established a strong association between 
GC B cells and immunotherapy sensitivity in ESCC 
[7]. However, the mechanisms underlying this 
association remain poorly defined, as evidenced by 
the paradoxical coexistence of TLS and 
immunotherapy resistance (e.g., TLS-positive tumors 
refractory to treatment) [3]. To address this gap, 
longitudinal profiling of the TME in paired 
pre-/post-treatment samples, with spatial resolution 
mapping of TLS niches and immune dynamics, could 
elucidate how GC B cells modulate TLS-driven 
immunotherapy sensitivity in ESCC. 

Through integrative analysis of spatial 
transcriptomics in two paired pre-/post-treatment 
ESCC specimens (n = 2 patients) combined with 
single-cell RNA-seq (scRNA-seq) data from ~440,000 
high-quality cells, we identified that MIF-expressing 
tumor cells competitively disrupted CXCL12-CXCR4 
signaling in GC B dark-zone cells via direct 
MIF-CXCR4 interactions, thereby impairing GC 
reactions within the TME. Notably, these findings 
suggest that MIF+ tumor cells infiltrating TLS, rather 
than TLS status alone, may serve as a co-factor for 
evaluating immunotherapy response, a phenomenon 
detectable even in baseline tumors of ESCC 
non-responders. Furthermore, multiplex 
immunohistochemistry (mIHC) analysis of three 
paired pre-/post-treatment ESCC tissues and four 
additional pre-treatment tumor samples confirmed 
that MIF-high tumor cells spatially interacted with GC 
B cells in non-responder tumors. Collectively, our 
study systematically characterizes the ESCC TME 
landscape, leverages longitudinal specimens to 
identify immunotherapy resistance-associated cellular 
markers, and provides actionable insights for 
developing novel therapeutic strategies to overcome 
resistance and enhance clinical outcomes in ESCC. 

Materials and Methods 

Patient Cohort and Sample Characteristics 

This study analyzed tumor specimens from 7 
ESCC patients who underwent TP chemotherapy 

combined with anti-PD-1 therapy (camrelizumab or 
sintilimab) between January 2023 and January 2025. 
This included 6 specimens from 3 patients (2 
responders, 1 non-responder) collected both pre- and 
post-treatment (forming 3 pairs) specimens, and 4 
pre-treatment specimens from additional 4 patients (3 
responders, 1 non-responder). All pre-treatment 
samples were obtained two weeks prior to treatment. 
All specimens were collected from Chongqing 
General Hospital with ethical approval by Medical 
Ethics Committee of Chongqing General Hospital (IIT 
S2025-008-01). Written informed consent was 
obtained from all patients (n = 7). Formalin-Fixed and 
Paraffin-Embedded (FFPE) slides were shipped for 
sequencing (August 3, 2024). Patient characteristics 
and clinical information are shown in Table S1. 

Responders (Patient 1, patient 3, Patient 5-7) 

Patient-1: 79-year-old male, non-smoker/non- 
drinker, stage IIIB (pT3N1M0) at diagnosis. Paired 
samples (pre-treatment and post-treatment) 
underwent Visium HD spatial transcriptomics (RNA 
Integrity Number/RIN: 2.2–2.3) and mIHC, confirm-
ing partial response (PR) based on RECIST v1.1. 

Patient-3: 75-year-old female, non-smoker/non- 
drinker, stage IIB (pT1N1M0). Pre-treatment (RIN = 
3.3) and post-treatment (RIN = 3.9) samples were 
analyzed. 

Patient 5-7: 73-77 years old, male, non-smokers/ 
non-drinkers. Only pre-treatment sample was 
available and was analyzed using mIHC. 

Non-responders (Patient-2 and patient-4) 

Patient-2: A 53-year-old male, non-smoker/non- 
drinker, was initially diagnosed with stage IVB 
(pT2N0M1) with post-treatment progression. Paired 
samples (pre-treatment and post-treatment) were 
subjected to Visium HD sequencing (RIN: 2.2–2.5) and 
mIHC, consistent with progressive disease (PD). 

Patient-4: A 74 year-old female, non-smoker/ 
non-drinker, was diagnosed with stage IVB 
(pT3N2M1) with post-treatment progression. Only 
pre-treatment sample was available and was analyzed 
using mIHC. 

Spatial transcriptome sequencing and 

processing 

Spatial transcriptome sequencing of four FFPE 
tissues of two ESCC patients with pre- and 
post-immunotherapy was conducted using the 10x 
Genomics Visium HD platform, which offered a 
resolution of 2 μm × 2 μm. Quality assessment and 
sequencing of tissue sections were performed. First, 
SpaceRanger (v3.1.0) was utilized for aligning FASTQ 
files to human reference genome (GRCh38), detecting 
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tissue sections, and mapping sequencing data to both 
microscope and CytAssist images. Gene-barcode 
matrices were aggregated into 8 μm × 8 μm binned 
squares for subsequent analyses. According to a 
recent benchmarking study [8], Robust Cell Type 
Decomposition (RCTD) demonstrated consistently 
high performance when using external reference 
datasets. Given that our study utilizes an integrated 
single-cell dataset as an external reference, RCTD was 
shown to be the best-performing method under such 
conditions. Thus, cell type deconvolution was 
conducted using RCTD algorithm in spacexr (v2.2.1) 
[9], and run in doublet mode. Pre-annotated 
scRNA-seq data were used as the reference dataset. 
Squares containing fewer than 10 detected features 
were excluded from analysis.  

ScRNA-Seq data and preprocessing 

ScRNA-Seq (10x Genomics) data of 192 ESCC 
patient tissues were retrieved from five publicly 
available datasets: GSE145370 [10], GSE160269 [11], 
GSE199654 [12], GSE203115 [13], and GSE221561 [14]. 
Another two datasets of normal esophageal cells 
(GSE196756 [15], GSEE188900 [16]) were severed as 
normal control also integrated to the aforementioned 
five ESCC datasets. Patients with no clinical 
information were excluded. Patient characteristic, 
sample information, number of cells pre- and 
post-filter were summarized in Table S2. The count 
expression matrices of scRNA-seq were merged via 
Seurat merge function (v4.3.1) [17]. Genes expressed in 
fewer than three cells were filtered out. To exclude 
low-quality cells, we applied stringent filtering 
criteria, removed cells with nFeatures_RNA < 200, 
nCount_RNA < 500, or mitochondrial gene content > 
20%. Cell clustering was performed using Seurat with 
default parameters. We employed FastMNN 
algorithm in SeuratWrappers (v0.3.1) to remove batch 
effect among seven datasets. Uniform manifold 
approximation and projection (UMAP) embeddings 
were computed based on top 30 principal components 
and mnn reduction. Cell clusters were identified using 
the Louvain algorithm with a resolution parameter of 
0.1 [18, 19]. At higher resolution values (e.g., 0.5 or 
1.0), the clustering results produced excessive 
fragmentation of known cell types (e.g., splitting 
well-defined immune subsets such as naive and 
memory B cells into multiple small clusters), whereas 
resolution = 0.1 yielded clusters that more accurately 
corresponded to canonical cell types, as supported by 
marker gene expression. Then, doublets were 
detected and filtered using scDblFinder (v1.8.0) [20], 
with doublet ratio set to 0.76. Clusters exhibiting 
mixed lineage markers (e.g., co-expression of CD3 and 
EPCAM) were also classified as doublets and 

excluded from further analyses. 

Cell type annotation and trajectory analysis in 

scRNA-seq data 

Cell types were annotated based on curated 
marker genes (Table S3). For the major cell types, the 
following markers were used: EPCAM, KRT14, TP63 
for epithelial cells; KRT4, KRT13, GJB2 for basal cells; 
DCN, ACTA2, FBLN1 for fibroblasts; PECAM1, ENG, 
PLVAP for endothelial cells; CD3D, CD3E, CD8A, 
NKG7 for T/NK cells; CD68, CD14, FCGR3A for 
myeloid cells; CD19, MS4A1, BANK1 for B cells; 
MZB1, JCHAIN, DERL3 for plasma cells; and FCER1A, 
TPSB2, CPA3 for mast cells. Subsets of cell 
populations were identified by re-clustering each 
major cell type using the same methods described 
above. For B cells, the following markers were used 
for annotation: IGHM, IGHD for naive B cells; CD80, 
CD82 for activated B cells; BANK1 for memory B cells; 
CXCR4, STMN1, TOP2A, MKI67, and negative 
expression of CD83 and CD86 for germinal center 
(GC) B dark zone cells; and CXCR5, positive CD83, 
and positive CD86 for GC B light zone cells. 

To delineate B cell differentiation dynamics, we 
performed single-cell trajectory inference using the 
slingshot R package (v2.8.0) [21]. The Seurat object 
containing B cells was converted to a 
SingleCellExperiment object using the raw counts and 
cell subtype annotations. A set of 2,000 highly variable 
genes were utilized for trajectory construction. The 
starting point of the trajectory was defined as the 
naive B cell subpopulation. Cell embeddings derived 
from the MNN-corrected data were used to generate 
UMAP plots, ensuring consistency with the cell 
annotations. 

Inferring copy number profile in scRNA-seq 

data 

Malignant epithelial cells in scRNA-seq profile of 
ESCC were identified by inferCNV (v1.10.0) [22]. 
Immune cells were used as reference cell types. Copy 
number variation (CNV) scores of cells were 
calculated as the sum of absolute values of scaled 
CNV estimations. Scaled CNV scores > 0.04 were 
determined as potential malignant cells based on 
previous literature [23].  

Non-negative matrix factorization (NMF) and 

module analysis in scRNA-seq 

NMF (v0.26) (http://renozao.github.io/NMF/) 
was used to identify functional modules in epithelial 
cells of ESCC. Here, samples with cell numbers <100 
were filtered in this analysis. nsNMF method was 
applied for ranks between 5 and 15. Module name of 
each module was assigned based on functional 
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enrichment of module genes via g:Profiler web tool. 
These module scores of each module in samples were 
calculated using the module gene expression based on 
AddModuleScore implemented in the Seurat. 

Cholesterol biosynthesis-related malignant cells 
were identified by activated cholesterol biosynthesis 
score bigger than 0. Differential expression genes 
between cholesterol biosynthesis-related cells and 
other malignant cells were calculated by FindMarkers 
of the Seurat. These marker genes expressed in 
cholesterol biosynthesis-related cells (pct.1) and other 
malignant cells (pct.2) were used to evaluate the 
specificity (pct.1 divided by pct.2) of gene expression 
in different cell groups. 

Cell-cell communications 

Cell-cell communication analysis was performed 
using scRNA-seq data via CellChat (v2.0) [24]. 
Colocalization of a ligand-receptor pair was defined 
by co-expression (count > 1) of ligands and receptors 
in the same square of the spatial RNA-seq data. We 
were primarily interested in potential 
communications between cholesterol biosynthesis- 
related tumor cells and GC B cells. 

Bulk RNA-Seq data analysis of ESCC for 

survival and therapy response 

Gene signatures for cholesterol biosynthesis 
were calculated as sum of the scaled expression levels 
of the associated marker genes. For Kaplan-Meier 
survival analysis, median value of the signature 
scores of cholesterol biosynthesis-related cell 
signature was used as cut-off value to stratify patients 
into high-score and low-score groups. Survival 
differences were assessed by log-rank test. Patients 
with missing outcomes (e.g., deceased or progressed) 
or missing follow-up data were excluded from 
survival analysis. To evaluate the difference in 
signature scores of cholesterol biosynthesis-related 
cells between responder and non-responder patients 
who underwent immunotherapy, IMvigor210 cohort 
(n = 298) [25] was analyzed. The IMvigor210 cohort 
comprised 298 patients with locally advanced or 
metastatic urothelial cancer (male/female = 233/65; 
median age 67 years) treated with atezolizumab 
(anti-PD-L1). The majority were White (270/298), 
with 7 Asian, 9 Black/African American, and 12 of 
other/unknown race. 233 patients had received prior 
platinum-based therapy. Analysis of IMvigor210 
cohort was to investigate whether the molecular 
signature of cholesterol biosynthesis might be broadly 
associated with immunotherapy resistance across 
cancers. Two-tailed Mann-Whitney U test was used to 
compare signature scores between responders and 
non-responders. 

Hematoxylin and eosin (H&E) and 

immunohistochemistry (IHC) staining 

FFPE human tissue sections were processed 
following standard protocols. Sections of 5-μm 
thickness were used for staining. The steps of H&E 
and IHC staining were described previously [26]. 
Primary antibodies against HMGCR (Huabio, 
ET1702-41, 1:150 dilution) and MIF (Cell Signaling 
Technology, 87501, 1:150 dilution) were used. Results 
were visualized and imaged using a bright-field 
microscope. 

Multiplex immunohistochemistry (mIHC) 

FFPE tissue sections (5-μm thickness) of two 
ESCC patients were used for mIHC. Slides were 
incubated with primary antibodies against HMGCR 
(Huabio, ET1702-41, 1:300 dilution), CXCR4 (Huabio, 
HA722304, 1:250 dilution), CD83 (Huabio, ER62949, 
1:250 dilution), CD86 (Huabio, ER1906-01, 1:250 
dilution), pan-Cytokeratin (pan-CK, Abcam, ab7753, 
1:250 dilution), MIF (Cell Signaling Technology, 
87501, 1:250 dilution), CD3 (Proteintech, 17617-1-AP, 
1:300), CD20 (Proteintech, 60271-1-Ig, 1:300), CD21 
(Proteintech, 24374-1-AP, 1:300), CD27 (Proteintech, 
66308-1-Ig, 1:300), PD-1 (Proteintech, 18106-1-AP, 
1:300), TIM-3 (Proteintech, 11872-1-AP, 1:300), SOX2 
(Proteintech, 66411-1-Ig, 1:250) overnight at 4 ℃. 
Tyramide Signal Amplification Kit (RecordBio Co. 
Ltd, RC0086Plus-67RM) was used in this assay. 
Antibodies were validated using tissue slides in this 
study. 

Statistics analysis 

Survival analysis was performed using log-rank 
test. Comparison of signature scores was performed 
using two-tailed Mann-Whitney U test. For functional 
enrichment analysis of genes, hypergeometric test 
was used. All analyses were performed using R 
software (v4.3.3). 

Results 

Tumor microenvironment landscape reveals a 

positive role for B cells in anti-tumor 

progression and immunotherapy response 

To characterize tumor microenvironment (TME) 
remodeling in ESCC, we integrated seven public 
scRNA-seq datasets encompassing normal tissues (n = 
32) and ESCC samples across stages I (n = 36), II (n = 
52), III (n = 69), and IVA (n = 3) (Figure 1A). After 
rigorous quality control, ~440,000 high-quality cells 
were retained. Batch correction resolved 
dataset-related batch effect using FastMNN (Figure 
S1A-C), enabling stable clustering of nine major cell 
types annotated via canonical markers (Figure 1B-C, 
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S1C). Comparative analysis revealed progressive 
depletion of B cells in stage III/IV versus stage I/II, 
alongside reduced T cells and myeloid cells in stage 
IV (Figure 1C-D). Strikingly, post-immunotherapy 

comparison (non-responder [n = 1] vs. responders [n 
= 2]) showed elevated T and myeloid cells but 
diminished B cells in non-responders (Figure 1E). 

 

 
Figure 1. Single-cell RNA profile of 440,000 cells of esophageal squamous cell carcinoma. (A) Integrated datasets and patient information analyzed in this study. (B) 

Cell type annotations based on marker genes. (C) Proportions and gene expression profiles of cell types at different stages of ESCC. (D) Uniform Manifold Approximation and 

Projection (UMAP) of cell clustering, split by patient stages. (E) Proportions of cell types in patients who resistant to immunotherapy (n = 1, stage III) versus patients who respond 

to immunotherapy (n = 2, stage III). (F) Proportions of plasma cells in patient groups classified by different stages or immunotherapy outcomes. (G) Expression of marker genes 

of B cell subsets. (H) Proportions of B cells in patient groups categorized by different stages or immunotherapy outcomes. (I) Re-clustering and pseudotime analysis of single cells 

from the B lineage. 
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Subtype re-clustering further delineated TME 
heterogeneity (Figure S2, S3). ESCC TME is composed 
of large amounts of T/NK cells, which was supported 
by independent studies [10, 11]. Stage I tumors were 
enriched in cytotoxic CD8+ T cells (Figure S2A), 
whereas stages II/III exhibited higher exhausted 
CD8+ T cells and immunosuppressive regulatory T 
cells (Tregs) (Figure S2A), coupled with reduced 
cytotoxic CD8+ T cells (Figure S2A) and IgG+ plasma 
cells (Figure 1F). Stage III/IV TMEs displayed 
elevated tumor-associated macrophages (TAMs; 
predominantly M2-polarized) and inflammatory 
cancer-associated fibroblasts (CAFs) (Figure S2B-C), 
alongside increased vascular CAFs, pericytes, and 
microvascular endothelial cells—consistent with 
enhanced angiogenesis in stage IV (Figure S2C-D). 
These findings collectively suggest progressive 
immunosuppression during ESCC advancement. 

Notably, despite increased activated B cells in 
stage III/IV (Figure 1F), plasma cell frequencies 
remained unchanged, indicating impaired B cell 
terminal differentiation. In the non-responder, 
germinal center (GC) B cell activation (Figure 1G-H) 
paradoxically coexisted with reduced IgG+ plasma 
cells (Figure 1F). Activated B cells exhibit upregulated 
expression of key activation and co-stimulatory 
molecules, including CD80, CD86, and TNFRSF13B 
(TACI, Figure S4A), indicating a functionally 
activated phenotype [27]. Notably, many cells within 
this population show elevated expression of VIM, 
members of the S100A family, and structural scaffold 
proteins (e.g., LMNA and AHNAK), suggesting that 
these cells are in a transitional migratory state (Figure 
S4A). At this stage, they may have exited the cell cycle 
(Ki67⁻), while acquired enhanced tissue infiltration 
capacity and relied on microenvironment-derived 
survival signals (e.g., TNFRSF13B, LGALS1, CD82, 
Figure S4A). Furthermore, the upregulation of 
LGALS1 and KYNU suggests a role in modulating 
local immune responses within inflammatory niches, 
potentially preventing excessive immune activation. 
The intermediate expression of CXCR4 (Figure 1G) 
and a sparse BCL6 expression of BCL6 further 
indicate that these cells are likely to correspond to a 
pre-germinal center (pre-GC) B cell state (Figure S4A) 
[28], which is also supported by our pseudotime 
trajectory analysis (Figure 1I). Thus, these results 
supported a model wherein GC reaction 
dysfunction—potentially due to disrupted affinity 
maturation or differentiation—compromises B 
cell-mediated anti-tumor immunity in both ESCC 
progression and immunotherapy resistance. 

Cholesterol biosynthesis-related tumor cells 

are associated with ESCC progression and 

immunotherapy resistance 

The immune system plays a critical role in 
eliminating cancer cells, yet identifying tumor cell 
subsets that evade immune surveillance remains 
pivotal for understanding immunotherapy resistance. 
Recent scRNA-seq study [7] have underscored tumor 
cell heterogeneity in ESCC, providing insights into 
epithelial subset dynamics and molecular 
mechanisms underlying progression and treatment 
failure. 

We isolated epithelial cells (n = 145,000) and 
employed inferCNV analysis to identify malignant 
populations (Figure 2A-B). In tumor tissues, epithelial 
cells with high CNV burden are frequently dispersed 
across multiple clusters defined by Seurat, rather than 
being confined to a single cluster, consistent with 
prior literature [26, 29]. Subpopulations defined by 
principal components analysis (Seurat clusters) failed 
to adequately represent functional features, which 
prompted our use of Non-negative Matrix 
Factorization (NMF) to identify functionally distinct 
malignant modules [22]. Applying NMF to 82,191 
malignant cells (Figure S4B), we resolved 14 
consensus functional modules, including complete 
EMT (cEMT), keratinization, fatty acid/amino acid 
metabolism, stress response, cholesterol metabolism, 
hypoxia, partial EMT (pEMT), invasion/metastasis, 
tissue homeostasis, interferon response, cell cycle, 
metal response, and telomere maintenance (Figure 
2C). Notably, cholesterol metabolism-enriched 
malignant cells persisted across ESCC progression 
(Figure 2D) and were significantly enriched in 
post-treatment non-responders (Figure 2E). 

Cholesterol metabolic reprogramming— 
spanning uptake, export, storage, and de novo 
biosynthesis—was further dissected. Key cholesterol 
biosynthesis genes were overexpressed in high 
cholesterol-metabolism cells (Figures 2F-G, Table S4). 
The gene set associated with cholesterol biosynthesis 
comprises the following key components: MSMO1, 
DHCR7, MVD, INSIG1, IDI1, CYP51A1, HMGCR, 
HMGCS1, HSD17B7, TM7SF2, FDFT1, FDPS, CES1, 
MVK, SC5D, LSS, DHCR24, G6PD, SREBF2, ACLY, 
SQLE, and ACAT2. Transcriptomic signatures of these 
cells (Table S5) correlated with poorer clinical 
outcomes. In TCGA-ESCC (n = 152), high cholesterol 
biosynthesis scores predicted reduced overall survival 
(OS) and progression-free survival (PFS) (Figure 2H).  
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Figure 2. Functional modules of epithelial malignant cells in ESCC. (A) Re-clustering of epithelial cell subsets in ESCC. (B) InferCNV analysis identifies malignant cells 

in epithelial cell populations. (C) Identifying consensus functional modules in malignant cells using the Non-negative Matrix Factorization (NMF) algorithm. (D) Functional module 

scores and proportions of cells with activated functional modules in different stages of patients. (E) Proportion of cells with distinct activated modules between 
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immunotherapy-resistant and responding patients. (F) Functional enrichment of module genes in cholesterol metabolism. (G) Log2-transformed fold change (log2FC) and 

expression specificity of genes. Differential gene expression was analyzed using Seurat FindMarkers. Gene specificity was defined as the ratio of the percentage of cells expressing 

a given gene in cholesterol metabolism-related tumor cells to that in other malignant cells. (H) Kaplan-Meier survival curves of ESCC patients (95% confidence interval) grouped 

by signature scores of cholesterol synthesis (Log-rank test). The median score was used as the cutoff. HR hazard ratio. OS/PFS overall/progression-free survival. (I) Module 

signature scores of cholesterol synthesis in progressive disease (PD, n = 167) or non-PD (n = 131) patients of anti-PD-L1 immunotherapy based on the IMvigor210 cohort 

(Mann-Whitney U test, two-tailed). Box: 25%-75% percentiles with median. 

 

Indeed, individual cholesterol biosynthesis 
genes are linked to ESCC survival. For example, high 
HSD17B7 expression was associated with poorer OS 
and PFS (Figure S4C). These findings suggest 
cholesterol biosynthesis-related tumor cells are 
closely associated with ESCC progression. 
IMvigor210 cohort analysis (urothelial cancer, n = 298) 
revealed elevated scores of cholesterol biosynthesis in 
immunotherapy-refractory patients (progressive 
disease [PD] n = 167 vs. non-PD n = 131; Figure 2I), 
implying that cholesterol biosynthesis-related tumor 
cells may correlated with cancer immunotherapy 
resistance. However, since the IMvigor210 cohort 
(anti-PD-L1) is derived from urothelial carcinoma, we 
further validated this hypothesis in an ESCC context 
by performing spatial transcriptomics and 
experimental validation using clinically annotated 
tissues from a real-world cohort of ESCC patients 
underwent anti-PD-1 immunotherapy. 

Spatial RNA-seq of two patients revealed 

cholesterol biosynthesis-related tumor cells 

may play a role in GC reactions 

To investigate spatial crosstalk between 
cholesterol-biosynthetic tumor cells and B lineage 
cells in immunotherapy outcomes, we analyzed 
paired pre-/post-treatment samples from two ESCC 
patients (n = 4 samples: 2 responder samples vs. 2 
non-responder samples) using 10x Visium HD spatial 
transcriptomics (Figure 3A, Table S1). High-resolution 
spot analysis (8 μm × 8 μm) with cell type 
deconvolution based on our integrated single-cell 
reference data (Figures 3B, S5) revealed distinct TME 
remodeling patterns. In the responder, post-treatment 
tumors exhibited reduced cholesterol-biosynthetic 
tumor cells alongside increased plasma cell 
infiltration (Figure 3B-C). In non-responder, elevated 
cholesterol-biosynthetic tumor cells post-treatment 
coexisted with diminished plasma cells and expanded 
GC-enriched TLS at tumor margins (Figure 3B-D). 

TLS spatial distribution was quantified via a 
12-chemokine gene signature (CCL2/3/4/5/8/18/ 
19/21, CXCL9/10/11/13; Figure S6) [5]. Intriguingly, 
the post-treatment non-responder sample showed 
higher TLS scores, localized predominantly to GC 
regions (Figure 3B, 3D, S6). These findings highlight 
spatial heterogeneity within TLS/GC niches as critical 
determinants of immunotherapy resistance, 
necessitating deeper dissection of their cellular 
architecture. 

Cholesterol biosynthesis-related tumor cells 

spatially interact with GC B dark zone cells 

Thus, we further examined cell communication 
within the cholesterol biosynthesis-related niche by 
focusing on neighboring cell spots surrounding 
cholesterol biosynthesis-related tumor cells (Figure 
4A, S7A). In the non-responder, the frequencies of GC 
B cells were sharply increased post-treatment within 
the cholesterol biosynthesis-related niche (Figure 4A). 
Plasma cells were successfully generated in responder 
tumor post-treatment, while the non-responder tumor 
post-treatment lacked plasma cell likely due to 
impaired GC reactions (Figure 4A). Spatial plots 
clearly displayed an increased colocalization of GC B 
and cholesterol biosynthesis-related tumor cells in the 
post-treatment sample from non-responder (Figure 
4B-C). In contrast, Plasma cells in responder 
post-treatment have a higher tumor infiltration, 
whereas in non-responder post-treatment tumor, 
there were primarily B cells (Figure 4B). Moreover, 
TLS scores were higher in niches with colocalization 
of GC B and cholesterol biosynthesis-related tumor 
cells (Figure 4C-E), which suggest that cholesterol 
biosynthesis-related tumor cells may play a role in GC 
reactions. 

To explore the molecular interactions between 
GC B cells and cholesterol biosynthesis-related cells, 
we performed cell-cell communication analysis using 
single-cell data. The MIF-CD74/CXCR4 ligand- 
receptor pair emerged as the most probable 
interaction (Figure 4F). CellChat analysis performed 
on the integrated single-cell dataset predicted a strong 
interaction probability for the MIF–(CD74+CXCR4) 
complex. When evaluated separately using this 
single-cell dataset, the MIF–CD74 interaction was 
predicted with a slightly higher probability (21.3%) 
than MIF–CXCR4 (19.8%). Although the MIF–CD74 
interaction appeared high frequency, the majority of 
samples in the single-cell dataset lacked treatment 
information, and the sequencing was based on 
dissociated cells, potentially missing relevant spatial 
context. To better understand these interactions in the 
context of immunotherapy, we further analyzed our 
spatial transcriptomics data, which showed a higher 
degree of MIF–CXCR4 co-localization in 
post-treatment tumor of non-responder (Figure 4G), 
suggesting that this interaction may be linked to 
immunotherapy resistance.  
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Figure 3. Spatial transcriptome profile of an ESCC patient with immunotherapy. (A) A brief overview of the experimental design for spatial analysis. The integrated 

single-cell dataset (~440,000 cells) with cell type annotation was used as a reference for spatial transcriptomic deconvolution. (B) Spatial cell type deconvolution, showing cell type 

annotations for each 8 μm × 8 μm box. The top right displays H&E data (scale bar: 1 mm) from tissue sections of the same patients used in the spatial sequencing. Based on H&E 

staining, normal epithelial cells exhibit an orderly arrangement, with regular nuclear morphology and lightly stained chromatin. In contrast, cancer cells display disorganized and 

loosely arranged architecture, pleomorphic nuclei, and prominent nucleoli, indicating markedly elevated transcriptional and metabolic activity. In post-nonresponder samples, a 

cloud-like zone of coagulative necrosis is observed in the right region. The tumor-stroma boundaries identified by spatial transcriptomics align well with histopathological 

annotations, owing to the spatially adjacent nature of the tissue sections used in the two modalities. Numbers indicate TLSs. Boxes show representative TLSs of many TLSs in the 

slide. (C) Proportions of cell types across different patient groups. TME: Tumor Microenvironment. (D) H&E staining of a post-nonresponder sample slide spatially adjacent to 

the Visium HD slide. The hallmark histological feature of a tertiary lymphoid structure (TLS) is a core of B cells (frequently exhibiting a germinal center organization) surrounded 

by a zone of T cells, wherein T helper cells typically outnumber T cytotoxic cells. On H&E-stained sections, the cytoplasm of these core B cells often stains pale pink, a 

characteristic attributed to their abundant endoplasmic reticulum and general lack of lysosomes. In contrast, the cytoplasm of the surrounding T cells stains a more basophilic 

blue-purple due to their higher cytoplasmic-to-nuclear ratio and greater abundance of lysosomes. While the nuclei of B cells are generally larger than those of T cells, they remain 

notably smaller than the enlarged, pleomorphic nuclei typically seen in carcinoma cells. Three regions correspond to those highlighted by the boxes in panel B). Scale bar: 100 μm. 
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Figure 4. Analysis of cholesterol biosynthesis-related niche in high-resolution spatial data. (A) Proportion of surrounding B lineage cell types in proximity to 

cholesterol biosynthesis-related malignant cells. (B) Spatial feature plot (8 × 8 μm) highlighting representative regions of interest, with annotations of all major cell types. (C) 

Spatial feature plot (8 × 8 μm) showing representative regions of interest, focusing on cholesterol biosynthesis-related cells and GC B dark zone cells. (D) Tertiary lymphoid 
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structures (TLS) scores (Seurat AddModuleScore) in spatial slides of patients with immunotherapy (8 × 8 μm). B), C), and D) Box indicate the same region of Figure 5B 

pre-non-responder sample. (E) H&E and mIHC staining to confirm the GC/TLS region of the post-non-responder sample in panel d). Scale bar: 100 μm. (F) Cell-cell 

communication analysis performed using CellChat. (G) Spatial feature plot illustrating colocalization of the MIF-CXCR4 and MIF-CD74 ligand-receptor pairs. Numbers are the 

total number of spots with a colocalization in a slide. 

 

Interestingly, cell-cell communication analysis 
also revealed that MIF expression was highest in 
cholesterol biosynthesis-related cells compared to 
other TME cell types (Figure S7B). It was 
demonstrated MIF [30] and cholesterol biosynthesis 

[31], as well as HMGCR [32, 33]—a rate-limiting 

enzyme in cholesterol synthesis—are upregulated in 

ESCC tumor cells. Our immunohistochemistry data 
demonstrated high expression of both HMGCR and 
MIF in a subset of ESCC tumor cells (Figure S8). 
Analysis of both scRNA-seq (Figure S7C) and spatial 
transcriptomic (Figure S7D) data revealed that MIF is 
expressed across various cell types, with the highest 
levels observed in malignant cells, particularly those 
identified as cholesterol biosynthesis-related tumor 
cells. Consistently, the cholesterol biosynthesis 
signature score and the expression of HMGCR were 
also most elevated in this specific tumor cell 
population. Compared to single-cell data, the 
proportion of MIF and HMGCR expression in 
cholesterol-synthesizing tumor cells were lower in 
spatial transcriptomics. This is likely because each 
spot captures only a portion of a cell (at most 5 µm 
thick and 8 µm wide) and may contain RNAs from 
two adjacent cells. These findings indicate a specific 
association between MIF and upregulated cholesterol 
biosynthesis. Furthermore, although MIF expression 
has been reported in macrophages, these cells are 
found at very low frequency within GC regions 
(Figure S7E). Although detailed mechanism remains 
unclear, these results suggest a positive correlation 
between elevated cholesterol biosynthesis and MIF 
expression, which have been observed in animal 
models [34]. In summary, these data suggested a 
hypothesis that cholesterol biosynthesis-related tumor 
cells with highly expressed MIF may correlate with 
disrupted GC reactions. 

Multiplex immunohistochemistry revealed 

impaired GC reactions driven by MIF+ tumor 

cells 

Based on mIHC assay, we revealed abundant 
CD83+ and CD86+ antigen-presenting cells within 
peritumoral stroma of pre- and post-treatment 
samples of responders (Figure 5A, S9A-B, S9D), 
indicative of enhanced anti-tumor immunity. 
Notably, MIF-CXCR4 interactions were absent in both 
pre- and post-treatment of responders (Figure 5A, 
S9A-B, S9D). In contrast, non-responders exhibited 
persistent MIF-CXCR4-mediated crosstalk between 

GC B cells (CXCR4hiCD83loCD86lo dark-zone subset) 
and cholesterol-biosynthetic tumor cells (pan-CK+, 
HMGCRhi) across treatment timepoints (Figure 5B, 
S9C). H&E staining and spatial transcriptomics of the 
non-responder's post-treatment tumor further 
validated the interactions between GC B and 
cholesterol synthesis-related tumor cells within 
TLS/GC regions (Figure 5C). The same phenomenon 
was frequently observed in other TLS regions (Figure 
3D ROI 1, Figure S10). Tumor cell infiltrating in 
TLS/GC region was further confirmed by mIHC data 
(Figure 6A-B). Strikingly, baseline pre-treatment 
tumors of non-responders already exhibited 
low-frequency MIF-CXCR4 interactions (Figure 4B-D 
white boxes, Figure 5B, Figure S9C), suggesting 
potential early GC dysfunction before therapy. We 
noticed that MIF is also expressed by other tumor cells 
in pre-nonresponders that do not express HMGCR 
(Figure 5B). This phenomenon supports our finding 
that high MIF expression is a key factor driving 
treatment non-response, indicating that MIF 
upregulation is a broader phenomenon not restricted 
solely to the tumor cell subpopulation expressing 
high HMGCR.  

Consistently, spatial transcriptome and mIHC 
analyses using adjacent sections show that TLS 
regions containing MIF+ tumor cells (SOX2+) are 
enriched with exhausted T cells (CD3+PD-1+TIM-3+) 
and exhausted B cells (CD20+CD21-CD27-PD-1+), 
indicating an impaired B-cell immune response 
(Figure 6A, 6C-E). Mechanistically, tumor-derived 
MIF competitively inhibits CXCL12-CXCR4 
binding—a canonical pathway essential for GC B cell 
affinity maturation [35]—thereby impairing 
antibody-driven immunity (Figure 6F). This tumor 
cell-driven hijacking of CXCR4 signaling provides a 
spatial mechanism for TME reprogramming and 
immunotherapy resistance. 

Discussion 

B cells play a crucial role in anti-tumor 
immunity. As a critical complement to cellular 
immunity, they suppress tumor progression, 
particularly in late-stage tumors where abundant 
immunosuppressive Treg cells and exhausted T cells 
accumulate [36]. B cells migrate from peripheral 
immune organs to tumor sites, where antigenic 
stimulation activates them and initiates GC reactions 
[6]. During this process, dark zone GC B cells undergo 
clonal expansion and somatic hypermutation, 
mediated by the CXCR4-CXCL12 signaling axis [35].  
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Figure 5. Cholesterol biosynthesis-related tumor cells impair GC reactions. (A, B) Representative images of multiplex immunohistochemistry (mIHC) showing the 

expression and colocalization of ligand MIF from cholesterol biosynthesis-related tumor cells (high HMGCR and MIF, and positive Pan-CK) and receptor CXCR4 of GC B cells 

(high CXCR4, low CD83 and CD86) (n = 7 patients, scale bar: 50 μm). Arrows indicate panCK+HMGCR+MIF+ cells. The upper slide (pre-treatment, non-responder) of B) shares 
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spatial regions with the regions in white boxes of Figures 4B-D. (C) H&E staining and spatial transcriptome profile (8 × 8 μm) for a non-responder of post-treatment sample. 

Boxes indicate the same region as the mIHC of panel B). Left to right: H&E (scale bar: 50 μm), TLS scores, Cell type annotations, and Spatial distribution of cholesterol 

biosynthesis-related tumor cells and GC B dark zone cells. Arrows in H&E indicate nuclei with characteristic morphology of tumor cells. Dashed lines in H&E distinguish the 

tumor and GC/TLS regions. 

 
Figure 6. MIF+ tumor cells are associated with compromised B cell immune response. (A) Representative images of multiplex immunohistochemistry (mIHC) 

showing the GC/TLS regions. Scale bar: 50 μm. (B) Representative images of mIHC data showing the MIF+ tumor cell infiltrating in GCs. Scale bar: 50 μm. (C) Spatial data showing 

the exhausted T cells in MIF+ regions. (D) Representative images of mIHC data showing the exhausted B cells in MIF+ regions. Scale bar: 50 μm. (E) Representative images of mIHC 

data showing the exhausted T cells in GC/TLS. Scale bar: 50 μm. (F) Schematic diagram illustrating the proposed model of cholesterol biosynthesis-related tumor cells in the 

immune response. 

 

CXCR5 then directs GC B cells to the light zone, 
where CXCL13-mediated interactions drive positive 
selection of high-affinity antibody-producing B cells 
[35]. Repeated recirculation between zones refines 
selection, ultimately yielding antibody-secreting B 
cells that participate in immune responses. While 
pathological GC assessment in tumors predicts 
immunotherapy response, some patients exhibit 
GC-rich tumors yet remain resistant [3], underscoring 
functional heterogeneity within GCs. Our data 
demonstrate that tumor cells disrupt GC reactions via 

MIF-CXCR4 interactions, suggesting that GC 
evaluation, combined with MIF or HMGCR 
assessment, could refine biomarkers for 
immunotherapy sensitivity. Thus, beyond GC 
presence, evaluating MIF or HMGCR expression is 
critical to determine GC functional integrity and 
optimize therapeutic strategies. 

MIF (macrophage migration inhibitory factor) is 
a multifunctional proinflammatory cytokine that 
promotes the secretion of cytokines such as TNF and 
IL-2/6/8 [37]. Beyond its role in innate immunity, 
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MIF exerts diverse functions through engagement 
with multiple receptors, leading to context-dependent 
outcomes in both physiological and pathological 
settings. A key mechanism of MIF activity involves its 
interaction with various chemokine receptors. MIF 
can bind directly to CXCR2 and CXCR4, inducing 
monocyte chemotaxis [38]. Furthermore, it facilitates 
the formation of CD74/CXCR2 and CD74/CXCR4 
complexes, which enhance monocyte retention via 
upregulation of adhesion molecules. Notably, MIF 
functions as a non-canonical ligand for CXC-family 
receptors: it competes with CXCL8 for binding to 
CXCR2 and with CXCL12 for CXCR4, thereby 
modulating immune cell recruitment [38]. This 
competitive binding highlights MIF’s capacity to 
disrupt conventional chemokine signaling pathways. 
The functional pleiotropy of MIF arises from its ability 
to engage both cognate (e.g., CD74) and non-cognate 
(e.g., CXCR2, CXCR4, CXCR7) receptors, forming 
distinct signaling complexes that elicit cell- and 
microenvironment-specific responses [38]. 
Importantly, this mechanism supports our 
hypothesis: MIF abundantly secreted by tumor cells 
may disrupt the CXCR4–CXCL12 axis, interfering 
with germinal center reactions and thereby 
contributing to immune evasion.  

Cholesterol is a crucial structural component of 
the plasma membrane, and its metabolism involves 
several processes, including biosynthesis, uptake, 
export, and esterification [39]. Cholesterol 
biosynthesis primarily occurs in hepatocytes, with 
other cells producing smaller amounts under normal 
physiological conditions. However, in tumors, 
cholesterol often accumulates and contributes to 
tumor growth [40]. Our study observed that specific 
ESCC cells exhibit significant upregulation of genes 
associated with cholesterol biosynthesis. Among 
these, HMGCR, a core rate-limiting enzyme in 
cholesterol biosynthesis and a target of statins [41], 
was found to be one of the most differentially 
expressed genes. Based on this, we categorize this 
subset of cells as being characterized by enhanced 
cholesterol biosynthesis. 

It is important to note that cholesterol 
metabolism is critical in regulating anti-tumor 
immune responses by influencing various immune 
cells involved in innate and adaptive immunity. 
Previous studies have shown that elevated cholesterol 
levels can regulate macrophage polarization [42], 
enhance T cell proliferation and differentiation [43], 
inhibit NK cell release of IFN-γ [44], and promote 
IL-10 release by regulatory B cells [45]. For instance, 
cholesterol can induce monocyte expansion and 
cholesterol ester accumulation, triggering 
inflammasome and activating NLRP3, leading to cell 

death and releasing pro-inflammatory cytokines such 
as IL-1β and IL-18 [46]. Interestingly, an 
atherosclerosis animal model study [34] demonstrated 
that cholesterol feeding significantly increased MIF 
levels in New Zealand white rabbits, whereas those 
fed a normal diet did not exhibit elevated MIF levels. 
This suggests that elevated cholesterol induces MIF 
upregulation, which aligns with our own findings in 
ESCC cells. Specifically, ESCC cells exhibiting 
enhanced cholesterol biosynthesis also show the 
highest levels of MIF, although the exact molecular 
mechanism remains unclear. These observations 
suggest that abnormal accumulation of cholesterol in 
ESCC cells was associated with local MIF elevation in 
GCs, which disrupts GC reactions and impairs B cell 
immunity through MIF-CXCR4 interaction, 
contributing to immunotherapy resistance. These 
findings highlight potential for combining immune 
therapy with MIF inhibitors or statin treatment in the 
future, although the feasibility of this approach 
requires further validation through animal models 
and prospective clinical studies. 

It is crucial to acknowledge the limitations of this 
study. In single-cell data, we observed elevated T and 
myeloid cells but diminished B cells 
post-immunotherapy in one non-responder compared 
to two responders. Although we validated this 
phenomenon in our longitude comparison of pre- and 
post-treatment samples from the same patients, 
sample size is limited. Second, our Visium HD 
analysis was based on paired pre- and post-treatment 
samples from only two patients. Although a total of 
seven patients were included in the experimental 
validation, obtaining post-treatment samples remains 
challenging. Moreover, a caveat is that the IMvigor 
data were derived from urothelial carcinoma, not 
ESCC. While cholesterol metabolic dysregulation 
appears in multiple malignancies, tumor-type-specific 
factors (e.g., immune microenvironment, driver 
mutations) may modulate its functional impact. 
Finally, all pre-treatment samples from the seven 
patients included in this study were collected within 
the two-week period preceding treatment initiation. 
Given the potential influence of sampling timing on 
the results, future studies with larger, prospectively 
designed longitudinal cohorts are warranted to 
further validate these observations and to 
systematically evaluate the impact of temporal 
variations. 

Conclusion 

Initial analysis of scRNA-seq datasets from two 
immunotherapy responders and one non-responder 
revealed a paradoxical increase in GC B cells within 
non-responder tumors, challenging conventional 
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views of B cell-mediated anti-tumor immunity. This 
observation prompted mechanistic investigation into 
GC dysfunction in ESCC immunotherapy resistance. 
Through high-resolution spatial analysis of paired 
pre-/post-treatment tumors, we demonstrated that 
although GC reactions were activated in 
non-responders, MIF-expressing tumor cells 
disrupted canonical CXCL12-CXCR4 signaling via 
direct MIF-CXCR4 interactions. This competitive 
disruption impaired affinity maturation of GC B cells, 
suppressed plasma cell differentiation, and ultimately 
compromised B cell-mediated anti-tumor immunity, 
driving therapeutic resistance. While TLS presence is 
often associated with favorable immunotherapy 
outcomes, our multi-omics data and mIHC validation 
challenge this paradigm by revealing functional TLS 
heterogeneity. We propose that MIF+ tumor cell 
infiltration within TLS, rather than TLS abundance 
alone, is a critical co-factor for predicting 
immunotherapy response. Future studies in larger 
cohorts are warranted to validate this mechanism and 
explore therapeutic strategies targeting the 
MIF-CXCR4 axis to restore GC functionality. 
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