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Abstract

Rationale: Extensive leukocyte diapedesis is a defining step in inflammation and contributes critically to myocardial
ischemia/reperfusion injury (MI/RI). Infiltrating leukocytes amplify local inflammation and exacerbate myocardial damage. However,
the upstream control of the trans-endothelial migration step remains incompletely understood.

Methods: Peripheral blood myeloid cells were isolated from MI/RI patients and healthy donors to examine MAP3K3 expression
and its correlation with cardiac markers. Mouse MI/RI models were established to investigate MAP3K3 expression of myeloid cells
in the heart. Myeloid-specific Map3k3 deficiency mice were used to evaluate the impact of MAP3K3 depletion on MI/RI severity and
on myeloid cell diapedesis from the bone marrow. RNA sequencing and various manipulations of the MAP3K3/TALI/JAM-A axis
were used to elucidate its role in diapedesis. Finally, the therapeutic potential of pazopanib, a MAP3K3 inhibitor, was evaluated in
the mouse MI/RI model.

Results: MAP3K3 expression was upregulated in both monocytes and neutrophils from MI/RI patients and was positively
correlated with the severity of MI/RI. In mice, MAP3K3 in cardiac myeloid cells peaked at day 3 post-MI/RI. Myeloid cell-specific
depletion of MAP3K3 alleviated MI/RI by reducing the infiltration of myeloid cells into cardiac tissue. Functionally, MAP3K3
facilitated myeloid cell de-adhesion and transmigration across endothelial barriers. Further mechanistic studies identified the
MAP3K3/TAL1/JAM-A signaling pathway as a key regulator of myeloid cell diapedesis. MAP3K3 phosphorylates TALI at Ser-122,
leading to its ubiquitination and attenuating its transcriptional repression of FI Ir (encoding JAM-A). Through JAM-A, MAP3K3
promotes integrin internalization, thereby enhancing de-adhesion and myeloid cell transmigration. Treatment with pazopanib, a
MAP3K3 inhibitor, ameliorated MI/RI injury and reduced myeloid cell diapedesis into the heart by blocking MAP3K3
phosphorylation activity.

Conclusions: MAP3K3 orchestrates myeloid cell diapedesis via a TALI/JAM-A dependent program during MI/RI. Targeting
MAP3K3, exemplified by pazopanib, may offer a therapeutic strategy for MI/RI and related inflammatory conditions.
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Introduction

Although early restoration of blood supply infarction (MI) [1], secondary myocardial
reduces cardiomyocyte loss after myocardial ischemia/reperfusion injury (MI/RI) still threatens
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the heart function [2]. Extensive leukocyte division
and subsequent leukocyte diapedesis plays a central
role in different inflammatory processes, including
MI/RI. While leukocyte division (e.g., hematopoietic
stem cell differentiation) sustains immune cell
populations, leukocyte diapedesis is a dynamic
process enabling monocytes, macrophages, and
neutrophils to exit vasculature toward inflammatory
sites [3]. Recruited leukocytes in the heart produce a
large amount of pro-inflammatory factors, leading to
an inflammatory cascade and myocardial injury [4].

The complete process of leukocyte diapedesis
includes chemotaxis of leukocytes, leukocyte
adhesion to vessels, and transmigration through
vessels [5]. During reperfusion, dead or injured
cardiomyocytes released damage-associated
molecular patterns and produced chemokines such as
monocyte chemoattractant protein 1 (MCP-1) and
interleukin 8, which recruited leukocytes from bones
to blood and tissues together with the activation of the
complement system [4]. The elevation of several
endothelial and cardiomyocyte-mediated adhesion
factors such as P-selectin, E-selectin, intercellular
adhesion molecule 1 (ICAM-1), and platelet
endothelial cell adhesion molecule 1 (PECAM-1)
promote the adhesion and rolling of peripheral
leukocytes [6], which then infiltrate the ischemic
myocardium through the vascular wall. Unveiling the
key signaling pathway involved in leukocyte
diapedesis offers valuable insights into the
mechanisms underlying severe inflammation during
MI/RI and presents potential therapeutic targets for
its treatment.

Mitogen-activated protein kinase kinase kinase 3
(MAP3K3) is a highly conserved member of the
MAP3K superfamily with Ser/Thr protein kinase
activity [7]. MAP3K3 is involved in multiple
important biological pathways: activation of ERKS5
and p38 in the MAPK pathway [7-9], regulation of
toll-like receptor pathway and NF-xB pathway [10,
11], lymphocyte differentiation [12], and development
of the cardiovascular system and cerebrovascular
disease [13-15]. MAP3K3 is reported as a key kinase in
different cell types and inflammatory processes, such
as neutrophils in acute lung injury [16], and platelets
in MI [17, 18]. MAP3K3 in neutrophil mainly
influences reactive oxygen species (ROS) formation
[16], while MAP3K3 in platelets participates in
thrombosis [17]. However, the role of MAP3K3 in
myeloid cells, especially the biological process of
diapedesis, is still unknown.

T cell acute lymphocytic leukemia (TAL1) is
reported to play a vital role in the generation of
erythroid and myeloid lineages [19], and its
overexpression in lymphocytes can cause acute
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lymphoblastic leukemia [20]. Its function in the
diapedesis of myeloid cells remains unclear.

Junctional adhesion molecule-A  (JAM-A,
encoded by F11r gene) is primally located in the tight
junction between endothelial cells [21]. JAM-A on
platelets has also been found to be involved in
platelet-leukocyte aggregation [22, 23]. A few studies
have found its role in leukocytes as a regulator of cell
polarization [24] and transmigration through blood
vessels [25]. JAM-A controls integrin internalization,
promotes the de-adhesion of leukocytes from
endothelial cells, and leads to the transmigration of
leukocytes through blood vessels [25]. Deficiency of
JAM-A can reduce leukocyte diapedesis during
hepatic ischemia/reperfusion injury [26], MI/RI [27],
acute lung injury [28], and atherosclerosis [29].

In this study, we disclosed the function of
MAP3K3 on leukocyte diapedesis and unveiled the
regulation function of MAP3K3 on JAM-A through
the phosphorylation and ubiquitination of TAL1 on
serine 122. Targeting MAP3K3 or JAM-A can both
influence leukocyte diapedesis. Deficiency of
MAP3K3 in myeloid cells or administration of
pazopanib (an inhibitor of MAP3K3 [16]) attenuated
MI/RI by decreasing leukocyte diapedesis. We
provided a new insight into the
MAP3K3/TAL1/JAM-A  pathway in leukocyte
diapedesis, highlighting its potential as a therapeutic
target not only for MI/RI but also for other
inflammatory diseases.

Methods

All data, study methods and materials that
support the findings of this study are available from
the corresponding authors on reasonable request.
Detailed methods are provided in the Supplementary
Material.

Patients

Peripheral blood of the MI/RI group was
obtained 12 hours after PCI in 66 patients diagnosed
with acute coronary syndrome (ACS) (clear diagnosis
of myocardial infarction, STEMI and non-STEMI, and
the presence of culprit vessels, stenosis greater than
90%, on coronary angiography). Peripheral blood of
the control group was obtained from 6 donors with
negative coronary angiography results (have
coronary artery stenosis less than 50% and no other
diseases that clearly affected coronary artery function)
[30]. The study was approved by the Ethics
Committee of the Fudan University Zhongshan
Hospital, China (approval number: B2021-754).
Informed consent was received from all patients as
per the Declaration of Helsinki.
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Animal study design and establishment of
MI/RI models

Mouse MI/RI model was constructed with a
45-minute ligation time at the left anterior descending
coronary artery [31].

The Map3k3/ and Map3k3°KO mice were
constructed by Cyagen Biosciences in C57BL/6 mice
(Lyz2-Cre mice were from Jackson Laboratory Bar,
Harbor, ME). Littermate mice with average age of 6-8
weeks were used for all experiments.

Sex-matched wild-type (WT) mice (Shanghai
Jiesijie) aged 6-8 weeks were randomly divided into
the saline group (200 pL saline) and
pazopanib-treated group. Pazopanib-treated mice
were injected intraperitoneally with 1.5 mg/kg
pazopanib per mouse as previously described [16, 32].
The mice were injected immediately after surgery
(after ligation, before reperfusion), 24 hours after
surgery, and 48 hours after surgery.

All animal experiments were conducted
following the ARRIVE guidelines and approved by
the Animal Care and Use Committee (approval
number: 2023-196, Zhongshan Hospital, Fudan
University).

Statistical analysis

Statistical analyses were performed using
GraphPad Prism software (version 8.4.2), following
previously described methods [33]. For datasets
involving two or more independent factors,
comparisons were made using two-way ANOVA,
while categorical variables were analyzed by
chi-square test. A P value of less than 0.05 was
considered statistically significant.

Results

MAP3K3 expression in myeloid cells increased
after MI/RI

Through a bioinformatic transcriptome analysis
on GSE123342 [34], we found MAP3K3 expression
levels increased significantly in peripheral blood
mononuclear cells (PBMCs) from MI patients
compared to stable coronary artery disease (CAD)
patients (Figure 1A). In human left ventricle tissue
ischemic cardiomyopathy (ICM, GSE57338 [35]),
MAP3K3 was also upregulated (Figure 1B). We
validated this upregulation of MAP3K3 in neutrophils
and monocytes from MI/RI patients respectively
(Figure 1C-E). The age, sex, and morbidity of
hypertension, diabetes, hyperlipidemia, and stroke
between MI/RI patients and the Control group
differed insignificantly, suggesting that the elevated
expression level of MAP3K3 was mainly caused by
MI/RI (detailed in Table 1).
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Table 1. Clinical characteristics of 66 patients with MI/RI and 6
Control group donors.

Characteristics MI/RI (n=66) Control P value
(n=6)
Age 67.23+1.35 58.00£4.06  0.051
Sex, male (%) 42 (63.6) 5(83.3) 0.332
Hypertension (%) 42 (63.6) 5(84.4) 0.332
Diabetes (%) 32 (48.5) 3 (50.0) 0.943
Hyperlipidemia (%) 15 (33.7) 2 (66.7) 0.558
Stroke (%) 7 (10.6) 0(0.0) 0.401
STEMI (%) 31 (47.0)
Degree of stenosis in the culprit vessel (%)  93.56%1.05 25.00£8.06  <0.0001
Ejection fraction (%) 53.66%1.26 59.67£3.08  0.145
cInT (ng/mL) 1.41£0.25 0.01+0.00 <0.0001
CK-MB (U/L) 27.83+3.11 15.33+1.26  0.0004
Pro-BNP (pg/mL) 2775.31+695.63 101.07+30.17 <0.0001
LDH (U/L) 392.79+41.24  169.33+9.07 0.0017
WBC count (10°/L) 8.48+0.34 6.48+1.14 0.1262
Neutrophil percentage (%) 68.8241.01 57.55+3.31  0.002
Lymphocyte percentage (%) 20.53+0.93 30.20£3.03  0.004
NLR% 4.10£0.31 2.07+0.34 0.043
Monocyte percentage (%) 8.560.27 7.68+0.44 0.331
Neutrophil count (10°/L) 5.9140.31 3.82+0.74 0.049
Lymphocyte count (10°/L) 1.63+0.83 2.66+0.70 0.135

NLR 4.1140.32 1.85+0.33 0.001

Monocyte count (109/L) 0.77+0.60 0.49+0.80 0.069
Glycosylated hemoglobin (%) 6.8410.25 5.82+0.25 0.108
CRP (mg/L) 21.12+3.40 0.97+0.33 <0.0001
Previous MI episodes (%) 11 (16.7) 0(0.0)
Dual-antiplatelet therapy, aspirin + 23 (34.8)

clopidogrel or ticagrelor (%)

Statins (%) 66 (100)

f-blocker (%) 40 (60.6) 2(66.7) 0.193
Anti-hypertension therapy (%) 42 (63.6) 5(84.4) 0.332
Anti-diabetes therapy (%) 32 (48.5) 3 (50.0) 0.943

Data presented as mean * standard error of the mean (SEM) or number
(percentage). Statistical analysis was described in methods. STEMI, ST-elevated
myocardial infarction; ¢TnT, cardiac troponin T; CK-MB, creatine kinase MB
isoenzyme; pro-BNP, pro B-type natriuretic peptide; LDH, lactate dehydrogenase;
WBC, white blood cell; NLR, neutrophil-to-lymphocyte ratio; CRP, C-reactive
protein.

To further explore the relationship between
MAP3K3 and the severity of MI/RI, we assessed the
relationship between MAP3K3 expression level in
neutrophils and monocytes of MI/RI patients and
serum cardiac markers [36, 37], including CK-MB
(creatine kinase M-type), cTnT (cardiac troponin T),
LDH (lactate dehydrogenase), pro-BNP (pro B-type
natriuretic peptide), CRP (C-reactive protein), IL-6
(interleukin-6), and complete blood count. We found
that mRNA expression levels of MAP3K3 in
neutrophils and monocytes had a positive correlation
with CK-MB, and LDH, while MAP3K3 in monocytes
also had a positive correlation with c¢InT (Figure
1F-G). The mRNA expression levels of MAP3K3 in
neutrophils and monocytes also had a positive
correlation with mRNA expression levels of IL-6,
indicating  that MAP3K3 might aggravate
inflammation in MI/RI patients (Figure S1A-B).
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Figure 1. MAP3K3 expression in myeloid cells increased and correlated with cardiac markers during MI/RI. (A) Heatmap of the differential expression genes
(DEGs) in peripheral blood mononuclear cells (PBMCs) from myocardial infarction (MI) patients (n=45) compared to stable coronary artery disease (CAD) patients (n=14)
(GSE123342). (B) MAP3K3 gene expression levels in human left ventricle tissue from ischemic cardiomyopathy (n=13) compared to non-failing donors (n=14) (GSE116250,
unpaired t test). (C-D) Relative protein levels of MAP3K3 of monocytes (unpaired t test with Welch's correction) and neutrophils (unpaired t test) from myocardial
ischemia/reperfusion injury (MI/RI) patients and healthy donors, respectively (n=6 each). (E) Relative mRNA levels of MAP3K3 of neutrophils and monocytes from MI/RI patients
(n=66 each) and healthy donors (n=6 each), respectively (Mann-Whitney test for both). (F) Spearman correlation analysis of MAP3K3 mRNA levels in neutrophils with creatine
kinase MB isoenzyme (CK-MB, n=66) and lactate dehydrogenase (LDH, n=52) levels in plasma of patients with MI/RI. (G) Pearson correlation analysis of MAP3K3 mRNA levels
in monocytes with CK-MB (n=66), cardiac troponin T (cTnT, n=66), and LDH (n=52) levels in plasma of patients with MI/RI. (H) Flowcytometric dot plot analysis and staining
strategy for neutrophils (CD45*Ly6G*) and monocytes (CD45+Ly6G-CD11b*Ly6C*) in MI/RI tissues and MAP3K3 expression levels in either myeloid cell. (I) MAP3K3
expression levels of neutrophils or monocytes after MI/Rl in different time (n=4, one-way ANOVA test with Tukey's multiple comparisons test, each). All data were displayed as
mean  SEM. * P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001.
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To explore the expression level of MAP3K3 in
infiltrating myeloid cells in cardiac tissue after MI/RI,
we conducted flowcytometric dot plot analysis on
cardiac tissue after MI/RI at different time points
(Figure 1H and Figure S1C). We found that MAP3K3
expression levels peaked at 3 days after MI/RI in
myeloid cells (Figure 1I). Immunofluorescence
staining of MI/RI tissue sections also showed large
amounts of infiltrating myeloid cells in heart tissue
with high expression levels of MAP3K3 (Figure S1D).

Myeloid-specific Map3k3 deficiency alleviates
MI/RI through dysfunction of diapedesis from
bone marrow

We next generated myeloid-specific Map3k3
deficiency (Map3k3°KC) mice and conducted MI/RI
models in Map3k3°KO mice compared to Map3k3f/f
mice. Deficiency of Map3k3 in myeloid cells preserved
heart function reflected by elevated left ventricular
ejection fraction (LVEF) and left ventricular fraction
shortening (LVFS) (Figure 2A-B) and reduced
infarcted size (Figure 2C-D). Expression levels of
apoptotic protein BAX and cleaved CASPASE-3 also
decreased in Map3k3°KC mice (Figure S2A-B).
Deficiency of Map3k3 in myeloid cells also reduced
apoptosis  of  cardiomyocytes  stained by
TdT-mediated dUTP nick end labeling (TUNEL,

Figure S2C).
To explore the function of MAP3K3 in myeloid
cells during MI/RI, we first conducted

immunofluorescence staining of MI/RI tissue sections
and found that deficiency of Map3k3 in myeloid cells
led to a decrease of infiltrating myeloid cells in heart
tissue (Figure 2E and Figure S2D). To further
elucidate this diapedesis change caused by deficiency
of Map3k3 in myeloid cells, we conducted
flowcytometric dot plot analysis on MI/RI mice
(Figure S3A). We found that Map3k3°KC© mice showed
a decreased proportion of both neutrophils and
monocytes infiltrated in the heart (Figure 3A-B and
Figure S1C). Tracing back along the diapedesis of
myeloid cells, we found that neutrophils and
monocytes also decreased in the blood of Map3k3CKO
mice (Figure 3C-D and Figure S3B) but increased in
the bone of Map3k3°KO mice (Figure 3E-F and Figure
S3B). Given that myeloid cells didn't home to the
spleen (Figure S3C-D), we concluded that MAP3K3
might regulate the diapedesis of myeloid cells from
bone to blood and eventually to heart.
Hematoxylin-eosin (HE) staining also showed less
diapedesis and disorganization in the heart of
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Map3k3°KO mice (Figure S3E).

In addition, we conducted another inflammatory
model, lipopolysaccharide (LPS)-induced sepsis, and
examined diapedesis in targeted tissue lung and
heart. As LPS-induced sepsis is an acute inflammation
model, we focused on the diapedesis of neutrophils.
As expected, deficiency of Map3k3 in myeloid cells
decreased the diapedesis of neutrophils to the lung
and heart from blood and bone (Figure S4).

We also performed another in vivo experiment as
previously reported [38] to determine the function of
MAP3KS3 in diapedesis. After pre-treating mice with
thioglycolate (TG) for 1.5 hours, a mixture of labeled
myeloid cells from the bone of Map3k3“KO mice or
Map3k3i/fl mice was injected into circulation, with the
ratio between the two myeloid cells populations
assessed in the peritoneum and blood after 2.5 h
(Figure 3G). All mixtures showed a mildly different
label ratio in the blood, which confirmed the 1:1
mixture and no influence during the injection process.
In the peritoneum, we observed a reduced proportion
of myeloid cells of Map3k3“KCO mice regardless of dye.
While myeloid cells were injected directly into the
peritoneum, we didn’t observe significant changes in
the proportion of myeloid cells (Figure 3H).

To this extent, we found that MAP3K3 played a
vital role in the diapedesis of myeloid cells.

Myeloid-specific Map3k3 deficiency increased
inhibitory transcription function of TALI on
FI1r by phosphorylation

To elucidate the downstream mechanism of
MAP3K3 on diapedesis, we conducted RNA-seq
comparing bone marrow myeloid cells from
Map3k3°KO mice and Map3k3f/fl mice. Sequencing
results showed that many adhesion-related genes,
such as Itgb3, Adgre4, and Itgax, were upregulated in
Map3k3°KO mice, while the de-adhesion gene F11r was
downregulated in Map3k3°KC mice (Figure 4A-B).
Gene ontology (GO) analysis of the adhesion and
migration pathway also showed increased enrichment
of genes in adhesion-related terms and decreased
enrichment of genes in migration-related genes from
Map3k3°KO mice (Figure 4C). Genes of Kyoto
Encyclopedia of Genes and Genomes (KEGG) term
‘Cell adhesion molecules’ (mmu04514) also showed
upregulation of Itgh3 and Itgax and downregulation of
F11r (Figure 4D). According to the function of JAM-A,
we hypothesized that MAP3K3 regulated F11r
expression, facilitated de-adhesion of myeloid cells to
endothelial cells, and caused diapedesis.
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Figure 3. Myeloid-specific Map3k3 deficiency decreased diapedesis from bone after MI/RI and diapedesis in vivo. (A) Representative flowcytometric dot plot
analysis of infiltrating myeloid cells in heart of Map3k3f mice and Map3k3<K© mice. (B) Proportion of leukocytes (top), monocytes (bottom left), and neutrophils (bottom right,
one-way ANOVA test with Tukey's multiple comparisons test for all) in heart of control + Map3k3f/f mice (n=4), control + Map3k3<KO mice (n=4), MI/RI + Map3k3?/fi mice (n=8),
and MI/RI + Map3k3<KO mice (n=8). (C) Representative flowcytometric dot plot analysis of myeloid cells in blood of Map3k3/f mice and Map3k3<K© mice. (D) Proportion of
leukocytes (top, one-way ANOVA test with Tukey's multiple comparisons test), monocytes (bottom left, Kruskal-Wallis’s test with Dunn's multiple comparisons test), and
neutrophils (bottom right, one-way ANOVA test with Tukey's multiple comparisons test) in blood of control + Map3k3%i mice (n=4), control + Map3k3<KO mice (n=4), MI/RI
+ Map3k3¥f mice (n=7), and MI/RI + Map3k3<KO mice (n=6). (E) Representative flowcytometric dot plot analysis of myeloid cells in bone of Map3k3®f mice and Map3k3KO mice.
(F) Proportion of leukocytes (top, Kruskal-Wallis’s test with Dunn's multiple comparisons test), monocytes (bottom left, one-way ANOVA test with Tukey's multiple
comparisons test), and neutrophils (bottom right, one-way ANOVA test with Tukey's multiple comparisons test) in bone of control + Map3k3ff mice (n=4), control +
Map3k3<KO mice (n=4), MI/RI + Map3k3ff mice (n=5), and MI/RI + Map3k3KO mice (n=8). (G) Study design of myeloid cells diapedesis in vivo experiment. Mice were

https://lwww.thno.org



Theranostics 2026, Vol. 16, Issue 4

1966

intraperitoneally injected (i.p.) with thioglycolate (TG) for 1.5 hours. Bone marrow myeloid cells were labeled with a CFSE or a far-red dye and tail vein injected (i.v.) or
intraperitoneally injected (i.p.) to mice with peritonitis. Cells were collected 2.5 hours afterward from peripheral blood and peritoneum. (H) The ratios between CFSE and
far-red-labeled cells collected from blood after i.v. (n=6 each, Kruskal-Wallis’s test with Dunn's multiple comparisons test), from peritoneum after i.v. (1=6 each, one-way
ANOVA test with Tukey's multiple comparisons test), and from peritoneum after i.p. (n=3 each, unpaired t test). All data were displayed as mean * SEM. ns, P > 0.05; * P < 0.05;

** P <0.01; % P<0.001; ¥ P <0.000].

As the change of F11r was at the RNA levels, we
traced back to its transcription factors and identified
four candidate transcription factors potentially
involved in the regulation of F11r transcription: TALLI,
PRDM1, PPARG, and PBX1 (Figure 4E). To further
elucidate the functional impact and downstream
effects of MAP3K3, we performed phosphoproteomic
analysis comparing bone marrow myeloid cells from
Map3k3°KO mice and Map3k37/fl mice. The reduced
phosphorylation at MAP3K3-S355 and its known
downstream ERK5-5721 [39] in Map3k3<KO cells
confirmed that MAP3K3 deletion impairs its
phosphorylation-mediated signaling. Among the four
transcription factors, only TAL1 showed reduced
phosphorylation, specifically at S122 and S172, in
Map3k3°KO cells (Figure 4F). Based on these findings,
we hypothesized that MAP3K3 may regulate the
transcription of FIlr by modulating the
phosphorylation of TALl. We  conducted
dual-luciferase assays and found that TAL1 mainly
suppressed the transcription of F11r (Figure 4G), as
previously reported for the transcription inhibition
function of TAL1 [40]. In myeloid cells from the blood
of MI/RI mice (Figure S5A), we observed increasing
expression levels of MAP3K3 and JAM-A, while TAL1
was inhibited (Figure 4H and Figure S5B). In
Map3k3©KO mice, the above expression status was
reversed (Figure 41 and Figure S5C). In vitro, bone
marrow myeloid cells stimulated by monocyte
chemokine MCP-1 can also cause an increase of
MAP3K3 and JAM-A with a decrease of TAL1. Cells
from Map3k3°KO mice or treated with pazopanib (a
kinase inhibitor of MAP3K3 [16]) showed higher
TAL1 expression and suppressed JAM-A (Figure 4J).
To simplify the following experiments, the 293T cell
line was used and we observed the same
phenomenon. In 293T cells (Figure 4K), overexpressed
TAL1 could reverse the up-regulation of JAM-A by
overexpression of MAP3K3 (Figure 4L and Figure
S5D), and the knockdown of TAL1 could reverse the
down-regulation of JAM-A by MAP3K3 knockout or
administration of pazopanib (Figure 4M-N and Figure
S5E-F). The reverse experiments confirmed that
MAP3K3  up-regulated  F11r expression by
downregulating its inhibitory transcription factor
TAL1. This mechanism might be dependent on the
kinase activity of MAP3K3 because the pazopanib
showed a similar effect as that of MAP3K3 knockout.

Map3k3 knockout increased adhesion and
decreased diapedesis by decreasing JAM-A
expression and integrin internalization

Next, we focused on the function of MAP3K3 in
the de-adhesion of myeloid cells in the manner of
phosphorylation and regulation of JAM-A in vitro. We
conducted a Transwell assay to evaluate the
transmigration of myeloid cells through endothelial
cells with different treatments. Compared to the
myeloid cells from Map3k3f1/f mice, myeloid cells
from Map3k3°KO mice showed an impaired function of
diapedesis during the time course (Figure 5A-D).
Meanwhile, a-JAM-A antibody or pazopanib-treated
cells also showed decreased diapedesis compared to
the untreated or IgGl-treated cells (Figure 5A, E-F).
However, in the adhesion assay, myeloid cells from
Map3k3°KO mice showed an increased adhesion
(Figure 5G-I).

As JAM-A promotes diapedesis by controlling
integrin internalization [25], we tested this function in
vitro. Flowcytometric dot plot analysis without
fixation and permeabilization mainly stained the
surface protein, and we found that Map3k3 knockout,
a-JAM-A, or pazopanib treatment showed higher
integrin levels on plasma membrane after stimulated
by chemokines, especially in neutrophils, but JAM-A
on plasma membrane didn’t change significantly
(Figure S6A-D). Flowcytometric dot plot analysis after
fixation and permeabilization showed the overall
expression levels of protein in the cells. We found that
Map3k3 knockout or pazopanib treatment showed
higher integrin expression levels and lower JAM-A
expression levels after being stimulated by
chemokines, however, a-JAM-A treatment didn’t
influence the expression level of integrin and JAM-A
significantly (Figure S6E-H). Immunofluorescence
staining of chemokines stimulated cells showed that
JAM-A was able to internalize integrins in normal
conditions, while Map3k3 knockout or pazopanib
treatment decreased JAM-A expression and kept
integrin on the plasma membrane. a-JAM-A
treatment kept JAM-A and integrin together on the
plasma membrane as a complex without influencing
the expression of JAM-A (Figure S6l). Plasma
membrane-cytosol separation western blots also
showed integrin internalization after MCP-1
stimulation which can be decreased by Map3k3
knockout or pazopanib treatment (Figure S6J).
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Figure 4. Myeloid-Specific Map3k3 Deficiency increased inhibitory transcription function of TALI on FIIr. (A) Heatmap of the DEGs in bone marrow myeloid
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marrow myeloid cells from Map3k3ff mice (n=3) and Map3k3KO mice (n=3). Phosphorylated protein related to MAP3K3 and candidate transcription factors were shown. (G)
TALI and FI I promoter luciferase activity were detected by dual-luciferase assays (n=12 each, Brown-Forsythe test with Dunnett's T3 multiple comparisons test). (H) Western
blots of MAP3K3, TALI, and JAM-A proteins from blood myeloid cells of control mice and MI/RI mice. (I) Western blots of MAP3K3, TALI, and JAM-A proteins from blood
myeloid cells of Map3k3 mice and Map3k3<KO mice after MI/RI. (J) Western blots of MAP3K3, TALI, and JAM-A proteins from bone marrow myeloid cells of Map3k3f/f mice
and Map3k3<KO mice, treated with MCP-1 and Pazopanib or not. (K) Western blots of MAP3K3, TALI, and JAM-A proteins from 293T, treated with MCP-1 and Pazopanib or
not, transfected with MAP3K3 knockdown adenovirus or not. (L) Western blots of MAP3K3, TALI, and JAM-A proteins from 293T, treated with MCP-1, transfected with TALI
overexpression plasmid and MAP3K3 overexpression plasmid or not. (M) Western blots of MAP3K3, TALI, and JAM-A proteins from 293T, treated with MCP-1, transfected
with TALI siRNA and MAP3K3 knockdown adenovirus or not. (N) Western blots of MAP3K3, TALI, and JAM-A proteins from 293T, treated with MCP-1, transfected with
TALI siRNA, and Pazopanib or not. All data were displayed as mean = SEM. ns, P > 0.05; **** P < 0.0001.

Immunofluorescence staining of MI/RI tissue
sections showed that after depletion of Map3k3,
myeloid cells tended to adhere to the blood vessels
instead of migrating through blood vessels, resulting
in the decrease of infiltrating myeloid cells in heart
tissue (Figure S7A).

MAP3K3 induced the proteasome-dependent
degradation of TALI1 by phosphorylation on
Ser-122

As we found above that the regulation of
MAP3K3 on F11r was in a
phosphorylation-dependent manner, we attempted to
unveil whether TAL1 can be phosphorylated by
MAP3K3. Previous studies on TAL1 all showed that
TAL1 can be ubiquitinated after being
phosphorylated on three highly conserved residues,
Ser-122 [41], Ser-172 [42], or Thr-90 [43]. We first
tested whether the decrease of TAL1 by MAP3K3
might be due to protein degradation. Proteasome
inhibitor MG132 successfully decreased the
degradation of TAL1 due to the overexpression of
MAP3K3 (Figure 6A), while using cycloheximide
(CHX) to suppress protein synthesis showed that the
degradation of TAL1 protein was accelerated after
overexpression of MAP3K3 and the stability of TAL1
protein increased after knockout of MAP3K3 (Figure
6B-C). These results supported that MAP3K3 reduces
TAL1 by inducing its proteasome-dependent
degradation.

To determine which site on TALl was
phosphorylated by MAP3K3, we predicted the
kinase-specific phosphorylation sites in proteins on
GPS 6.0 [44]. MAP3K3 and its downstream kinases
were predicted to phosphorylate TAL1 on Ser-122 and
Ser-172 at the highest score (Table S1). After
comprehensive consideration of previous studies and
our prediction results, we mutated Ser-122, Ser-172, or
Thr-90 of TAL1 to Alanine (A). Overexpression of
MAP3K3 increased the phosphorylation of TALI1
detected by pan phosphorylated antibody and
increased the ubiquitination of TAL1. T90A mutation
failed to decrease the phosphorylation and
ubiquitination, while S172A mutation and S122A
mutation decreased the phosphorylation and

ubiquitination of TAL1 significantly. We further
respectively mutated Ser-122 or Ser-172 to Glutamic
acid (E) to mimic phosphorylation. Knockout of
MAP3K3 reduced the phosphorylation and
ubiquitination of TAL1l while S122E or S172E
mutation maintained the ubiquitination of TALI1
(Figure 6D). To determine the direct phosphorylation
function of MAP3K3 on TAL1, we performed an in
vitro kinase assay and found that S122 could be
phosphorylated directly by MAP3K3 (Figure 6E).

S122A mutation decreased the degradation of
TAL1, while S122E mutation accelerated this process
which can be reversed by MG132 (Figure 6F). Using
CHX to suppress protein synthesis showed that the
degradation of TAL1 protein was accelerated after
S122E mutation and the stability of TAL1 protein
increased after S122A mutation (Figure 6G-H). Bone
marrow myeloid cells stimulated by monocyte
chemokine MCP-1 can cause the increase of MAP3K3
and the degradation of TAL1 while using MG132 can
help the observation of phosphorylation of TAL1 at
Ser-122. Cells from Map3k3°KO mice or treated with
pazopanib showed lower phosphorylation and higher
stability of TAL1 (Figure 6l). The same phenomenon
was also observed in 293T cell lines (Figure 6]). In
myeloid cells from the blood of MI/RI mice, we also
observed increasing expression levels of p-TAL1
(5122) (Figure 6K and Figure S7B), while in Map3k3©KO
mice, this expression status was reversed (Figure 6L
and Figure S7C).

Pazopanib ameliorated MI/RI by decreasing
phosphorylation function of MAP3K3 and
diapedesis from bone

The above findings suggested that MAP3K3 and
its kinase activity would be a potential therapeutic
target for treating MI/RI and other inflammatory
diseases related to diapedesis. Pazopanib has shown
curative effect in acute lung injury [16], and effective
inhibition of diapedesis in vitro. Thus, we tested the
effects of pazopanib in MI/RI. Pazopanib treatment
led to amelioration of MI/RI reflected in elevated
LVEF and LVFS (Figure 7A-B), reduced infarcted size
(Figure 7C-D), and reduced apoptosis of
cardiomyocyte stained by TUNEL (Figure S8A).
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(J) Western blots of MAP3K3, p-TALI (S122), and TALI proteins from 293T treated with MCP-1, MG132, and Pazopanib or not, transfected with MAP3K3 overexpression
plasmid and MAP3K3 knockdown adenovirus or not. (K) Western blots of p-TALI (S122) proteins from blood myeloid cells of control mice and MI/RI mice. (L) Western blots
of p-TALI (S122) proteins from blood myeloid cells of Map3k3®i mice and Map3k3<KO mice after MI/RI.
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Figure 7. Pazopanib ameliorated MI/RI by decreasing phosphorylation function of MAP3K3 and diapedesis from bone. (A) Representative images of
echocardiography of saline treated mice and Pazopanib treated mice undergoing MI/RI. (B) LVEF (left) and LVFS (right, unpaired t test for both) of MI/RI + Saline mice (n=4), and
MI/RI + Pazopanib mice (n=4). (C) Representative image of left ventricular tissue sections stained with Evans blue and 2,3,5-triphenyl tetrazolium chloride at 3 days after MI/RI
to delineate the area at risk (AAR, red) and the infarcted area (IR, white). (D) The ratios of AAR/LV (left) and IR/AAR (right, unpaired t test for both) were compared (n=7 for
MI/RI + Saline mice, n=6 for MI/RI + Pazopanib mice). (E) Representative flowcytometric dot plot analysis of infiltrating myeloid cells in heart of saline treated mice and Pazopanib
treated mice. (F) Proportion of leukocytes (left, unpaired t test), monocytes (middle, unpaired t test with Welch's correction), and neutrophils (right, unpaired t test) in heart of
MI/RI + Saline mice (n=4), and MI/RI + Pazopanib mice (n=4). (G) Representative flowcytometric dot plot analysis of myeloid cells in blood of saline treated mice and Pazopanib
treated mice. (H) Proportion of leukocytes (left, Mann-Whitney test), monocytes (middle, unpaired t test), and neutrophils (right, unpaired t test) in blood of MI/RI + Saline mice
(n=4), and MI/RI + Pazopanib mice (n=4). (I) Representative flowcytometric dot plot analysis of myeloid cells in bone of saline treated mice and Pazopanib treated mice. (J)
Proportion of leukocytes (left, unpaired t test with Welch's correction), monocytes (middle, unpaired t test), and neutrophils (right, unpaired t test) in bone of MI/RI + Saline mice
(n=4), and MI/RI + Pazopanib mice (n=4). All data were displayed as mean + SEM. ns, P > 0.05; * P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001.
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Flowcytometric dot plot analysis on MI/RI mice
showed that pazopanib treatment decreased
proportion of both neutrophils and monocytes
diapedesis to heart (Figure 7E-F) and blood (Figure
7G-H) from bone (Figure 71-]). The in vivo infiltration
experiment also showed that myeloid cells treated
with pazopanib decreased diapedesis to the
peritoneum after TG injection (Figure S8B). HE
staining also showed less diapedesis and
disorganization in the heart after MI/RI with
pazopanib treatment (Figure S8C).
Immunofluorescence staining of MI/RI tissue sections
also showed that after pazopanib treatment, myeloid
cells tended to adhere to the blood vessels instead of
diapedesis through blood vessels, resulting in the
decrease of infiltrating myeloid cells in heart tissue
(Figure S8D).

Thus, we found pazopanib as an excellent
treatment to ameliorate MI/RI by decreasing the
phosphorylation function of MAP3K3 and diapedesis.

Discussion

Leukocyte diapedesis plays a central role in
inflammatory diseases. In the context of MI/RI, we
disclosed the essential role of MAP3K3 in myeloid cell
diapedesis. The high expression level of MAP3K3 in
peripheral blood myeloid cells of MI/RI patients and
its relationship with cardiac markers confirmed the
important role of MAP3K3 in the MI/RI process.
However, a larger clinical validation set is needed to
further confirm this finding. Myeloid cell-specific
deficiency of Map3k3 ameliorated MI/RI by inhibiting
myeloid cell diapedesis from the bone. We expanded
our research to a broader range of inflammatory
models, such as LPS-induced sepsis, and found that
MAP3K3 deficiency also led to impaired diapedesis.
In vivo peritonitis experiments further confirmed the
critical role of MAP3K3 in diapedesis.

Among the process of leukocyte diapedesis, the
mechanisms of leukocyte chemotaxis [4] and
leukocyte adhesion to vessels [6] have been studied
extensively, while the processes governing leukocyte
transmigration through vessels, particularly the
upstream regulatory pathways, remain poorly
understood. RNA-seq on monocytes found that
depletion of MAP3K3 led to decreased F11r and
increased adhesion-related genes Itgh3, Adgre4, and
Itgax. As JAM-A showed an important function of
integrin internalization and de-adhesion of leukocyte
to endothelial cell, we considered MAP3K3 might
influence myeloid cell transmigration through vessels
by regulating F11r expression. Further exploring the
potential transcription factors on F11r, we focused on
an inhibitory transcription factor, TAL1l, and
confirmed its inhibitory effect on F11r transcription.

1972

JAM-A expression changed in the same direction as
MAP3K3 while altering TAL1 expression in the
opposite direction was able to reverse changes in
JAM-A. To determine whether the phenotypes that
we observed here are dependent on the kinase activity
of MAP3K3, we utilized pazopanib, a known
MAP3K3 kinase inhibitor, and observed similar
changes in TAL1 and JAM-A expression. In vitro
transwell assay and adhesion assay confirmed the role
of MAP3K3/JAM-A in the de-adhesion and
transmigration of myeloid cells, and the regulation of
integrin internalization by MAP3K3/JAM-A was also
verified. For the first time, we identified the
MAP3K3/TAL1/JAM-A regulatory pathway as a key
mechanism controlling myeloid cell transmigration
through blood vessels. Due to the important role of
JAM-A on platelets and the discovery of JAM-A on
myeloid cells in our study, the interaction of JAM-A
between different cell types is a topic worth exploring
in the future. To be noticed, although decreasing
myeloid cell transmigration could decrease
inflammation in target tissue, inflammation on the
blood vessels, such as atherosclerosis, might
aggravate [29]. Therefore, more precise tissue- and
time- treatments are required for complex diseases
such as MI/RI with atherosclerosis. For instance, a
short-term intervention immediately post-ML
Alternatively, developing delivery systems (e.g.,
nanoparticles activated by myeloid cell-specific
enzymes) that preferentially target the infarct zone
could spare the systemic vasculature. Meanwhile,
combined adjunctive plaque-stabilizing therapy, such
as high-intensity statins or novel anti-inflammatory
drugs like colchicine and Firsekibart, could counteract
any potential pro-inflammatory effects on the
vasculature, resulting in a synergistic therapeutic
outcome.

Since the phenotypes are dependent on the
kinase activity of MAP3K3, we further explored the
phosphorylation and ubiquitination of TAL1. Based
on a combined analysis of previous research and our
GPS6.0 prediction results, we identified Ser-122,
Ser-172, and Thr-90 as potential phosphorylated sites
on TAL1l. In vitro kinase assays confirmed that
MAP3KS3 can directly phosphorylate TAL1 at Ser-122,
which is a new substrate of MAP3K3 kinase. In
addition, mutation at Ser-122 resulted in the most
pronounced change in ubiquitination.

Given that MAP3K3 showed an important
regulatory function in MI/RI through myeloid
diapedesis in a phosphorylation-dependent manner,
we administrated pazopanib to treat MI/RI for
potential future clinical transformation. As an
anti-tumor drug, the cardiotoxicity of pazopanib
(potential QT prolongation and heart failure) has been
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the focus of previous research [45, 46]. However, our
study found that strictly controlled use of pazopanib
(low-dose, 1.5 mg/kg vs. >30 mg/kg, and short-term
administration, 3 days vs. long-term) improved
MI/RI by decreasing myeloid diapedesis, and
weakening the inflammatory response. Future basic
and clinical studies may help to determine the optimal
dosage and timing of pazopanib administration more
precisely, as well as possible remedial measures [45]
(such as Bisoprolol fumarate, spironolactone,
furosemide, and ramipril, which are commonly used
treatments after PCI), to better exert pazopanib 's
anti-inflammatory effects and reduce its cardiac
toxicity. In addition, X]J-8, a natural compound
isolated from Sanguis draxonis, is reported to inhibit
MAP3K3 function in platelets [18], and whether it
could inhibit diapedesis is worth further research.
MicroRNA-145 [47] and miR-124-3p [48] are also
reported to regulate MAP3K3 function, which might
also be potential targets to treat MI/RL

Conclusion

In conclusion, we revealed the
MAP3K3/TAL1/JAM-A pathway as an important
regulator of myeloid cell diapedesis. Inhibiting this
pathway can decrease infiltrating myeloid cells in
inflammatory tissue and ameliorate injuries, such as
MI/RI and sepsis. The following in-depth mechanism
study showed that MAP3K3 could phosphorylate
TAL1 at Ser-122, which triggered the ubiquitination of
TAL1 and decreased its inhibitory transcription
function on F11r. Through JAM-A, MAP3K3
regulated integrin internalization and facilitated
de-adhesion and transmigration of myeloid cells. As a
kinase inhibitor of MAP3K3, pazopanib inhibited
JAM-A expression and myeloid cell diapedesis, thus
ameliorating MI/RI. Pazopanib could be a potential
treatment for excessive inflammation during MI/RI
or other inflammatory diseases.
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