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Abstract 

Hepatocellular carcinoma (HCC) is one of the deadliest cancer types with diverse etiological factors across the 
world. Although large scale genomic studies have been conducted in different countries, integrative analysis of 
HCC genomes and ethnic comparison across cohorts are lacking. 
Methods: We first integrated genomes of 1,349 HCC patients from five large cohorts across the world and 
applied multiple statistical methods in identifying driver genes. Subsequently, we systematically compared HCC 
genomes and transcriptomes between Asians and Europeans using the TCGA cohort. 
Results: We identified 29 novel candidate driver genes, many of which are infrequent tumor suppressors 
driving late-stage tumor progression. When we systematically compared ethnic differences in the genomic 
landscape between Asian and European HCCs using the TCGA cohort (n = 348), we found little differences in 
driver frequencies. Through multi-modal integrative analysis, we found higher genomic instability in Asians 
together with a collection of molecular events ranging from tumor mutation burden (TMB), copy number 
alterations as well as transcriptomic subtypes segregating distinctively between two ethnic backgrounds. 
Strikingly, we identified an Asian specific transcriptomic subtype with multiple ethnically enriched genomic 
alterations, in particular chromosome 16 deletion, leading to a clinically aggressive RNA subgroup unique to 
Asians. Integrating multi-modal information, we found that survival models predict patient prognosis much 
better in Asians than in Europeans, demonstrating a higher potential for precision medicine applications in Asia. 
Conclusion: For the first time, we have uncovered an unprecedented amount of genomic differences 
segregating distinctively across ethnicities in HCC and highlighted the importance of differential disease biology 
and management in HCC across ethnic backgrounds. 

 

Introduction 
Hepatocellular carcinoma (HCC) is the major 

subtype of liver cancer and ranks fourth in the cancer 
related deaths [1]. Major risk factors for HCC include 
viral infection, alcohol intake as well as 

 
Ivyspring  

International Publisher 



Theranostics 2022, Vol. 12, Issue 10 
 

 
https://www.thno.org 

4704 

environmental exposures (e.g. aflatoxin) which 
segregate distinctively across different geographic 
regions of the world [2,3]. Previous studies with 
medium size cohorts have characterized HCC 
genomes from a wide range of ethnic backgrounds 
including Japanese [4], Korean [5], French [6] and the 
US cohorts [7]. Common molecular events, including 
driver genes (e.g. CTNNB1), functional pathways (e.g. 
the Wnt pathway) as well as transcriptomic subtypes 
have been extensively characterized in HCC [8,9]. 

Despite rapid progress in understanding HCC 
genomes, there are still significant gaps in the field. 
First, even though major molecular changes including 
common driver genes have been discovered using 
medium size cohorts, a significant proportion of HCC 
patients do not carry any known driver mutations 
(e.g. ~20% in the TCGA cohort [7]), indicating 
insufficient power in identifying less frequent driver 
events. Secondly, given diverse etiological back-
grounds in HCC, molecular events have only been 
explored individually in each cohort and findings are 
often partially consistent [10]. Due to the shortage of 
multi-modal datasets collected using the same 
sequencing protocol across cohorts, systematic 
comparison between different ethnic backgrounds has 
not been explored in the field. Lastly, even though 
integrative survival analysis has been explored in 
each cohort separately, a systematic integration of 
multi-layer information and comparison across 
cohorts has not been explored [11,12]. 

In this study, we first performed an integrative 
genomic analysis of five large HCC cohorts (n = 1,349 
patients) and identified a significant number of novel 
candidate drivers using several statistical methods. In 
order to understand ethnic differences between 
Asians and Europeans, we conducted a systematic 
comparison across multiple genomic layers using the 
TCGA cohort and identified a suite of genomic events 
segregating differentially between ethnic 
backgrounds. 

Through integrative survival analysis, we 
combined ethnically different factors in patient 
stratification models and compared their 
performances across ethnic backgrounds. For the first 
time, we uncovered an unprecedented amount of 
ethnic differences in HCC and highlighted the 
importance of studying differential disease biology 
and management across ethnic backgrounds. 

Results 
Ethnic differences in clinical phenotypes in the 
TCGA cohort 

Even though many cohorts were collected for 
studying HCC genomes [4,5,7,10,13], they often have 

a single layer of genomic data (e.g. DNA changes) 
from a particular ethnic background. Thus, ethnic 
differences in HCC have not been systematically 
explored, partly due to lack of a suitable dataset with 
multi-modal information collected using the same 
protocol. The TCGA cohort which includes multi- 
layered genomic data from similar number of patients 
from both ethnicities (161 Asian and 187 European 
patients) is an ideal cohort for ethnic comparison. In 
order to conduct systematic comparisons, we 
reprocessed the raw sequencing data downloaded 
from the Genomic Data Commons (GDC) portal using 
our in-house pipeline (see Methods) and compared 
the two cohorts across multiple layers. 

Comparing clinical variables between two 
cohorts, the most significant difference was the viral 
status (p = 6.42e−31, Figure 1A). While around 60% of 
Asian patients are HBV positive, only 25% of 
Europeans are viral carriers. In addition, European 
patients have a relatively higher proportion of female 
patients (44% vs 21%, p = 7.79e−06, Figure 1B) and 
older age at diagnosis (median age 66 vs 55, p = 
3.66e−12, Figure 1C). In general, the two cohorts are 
similar in other clinical phenotypes including tumor 
stage, microvascular invasion (MVI) as well as tumor 
purity (Figure S1A-S1D). 

Similar driver frequencies across ethnic 
backgrounds, but higher TMB in Asians 

To evaluate ethnic differences in the genomic 
landscape across multiple layers, we first compared 
the tumor mutation burden (TMB) between two 
ethnic backgrounds and found a significantly higher 
TMB in Asian patients (p = 9.90e−03, Figure 1D). This 
difference remains significant after controlling for 
clinical variables (e.g. viral status) and tumor purity (p 
= 4.58e-03, Figure S2). Higher TMB in Asians raised an 
interesting question whether two cohorts will also 
differ in other molecular phenotypes. Driver genes 
play a very important role in driving multi-stage 
tumorigenesis [14], but were mainly identified using 
cohorts from single ethnic background [4–7,10,15]. 
When we compiled a list of genes (n = 88) from eight 
previous studies, 76% of these drivers are discovered 
by only a single study (Figure S3, Table S1). In order 
to identify a comprehensive list of drivers, we 
collected HCC genomes from five large cohorts 
including The Cancer Genome Atlas (TCGA, n = 373), 
International Cancer Genome Consortium (ICGC) 
database [16] (n = 270 for Japanese from Riken: 
LIRI-JP, n = 244 for Japanese from National Cancer 
Center: LINC-JP and n = 242 for French: LICA-FR), as 
well as a Korean cohort (n = 231) (Table S2-S3). 
Leveraging the large sample size (n = 1349, 
Supplementary Note 1), we integrated three different 
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methods [17–19] and identified 62 candidate driver 
genes for HCC (q-value < 0.1, Supplementary Note 1, 
Figure S4-S6, Table S4-S5). 

Among 62 candidate drives, 33 genes (53%) 
overlapped with literature reported driver list. 29 
novel candidate drivers which include several 
interesting candidate genes such as DOCK2 (a gene 
frequently mutated in esophageal adenocarcinoma 
and colorectal carcinoma [20,21]) were identified 
(Figure S5-S6, Table S5). A full list of drivers and their 
functional roles are discussed in the Supplementary 
Note 1. Further analysis revealed several important 
findings about driver genes in HCC: 1) The 
association between driver genes and clinical 
phenotypes (e.g. viral status or ethnicity) is rather 
weak (Figure S6C), suggesting that driver genes may 
be independent of disease etiology; 2) Drivers from 
different pathways tend to co-occur while drivers 
from the same pathway often mutate “mutual 
exclusively” (Figure S6D, Supplementary Note 1). 3) 
The list of novel driver candidate genes was enriched 

in a number of novel and known pathways (Figure 
S6E). Even with the large sample size, the number of 
driver genes is far from saturation (Figure S7A, 
Supplementary Note 2). Moreover, less frequent novel 
drivers tend to occur late (subclonal) in the history of 
tumorigenesis and the chromatin remodeling 
pathway is enriched for late drivers (Figure S7B-E, p = 
8.23e-11), suggesting that there are many rare driver 
genes driving tumor progression that have not been 
identified yet in HCC. 4) Many new candidate drivers 
are potential tumor suppressor genes with high levels 
of truncating mutations (n = 45, Figure S7F, S7G, 
Table S6, Supplementary Note 3). 

Leveraging the large number of driver genes 
identified using public cohorts, we systematically 
compared driver frequencies between Asian and 
European patients in the TCGA cohort. Surprisingly, 
most of the drivers have similar frequencies except for 
TP53 and CDKN2A (Figure 1E-F, q-value < 0.1, Table 
S7, Supplementary Note 1). Despite disparate 
etiological backgrounds between the two cohorts (e.g. 

 

 
Figure 1. Comparison of clinical and genomic profiles between Asian and Europeans. Ethnic differences were found in clinical phenotypes including A) viral status, 
B) gender, C) age, D) TMB between Asians and Europeans. E) The driver gene landscape of Asian and European HCCs were shown. For the reported drivers, only the ones with 
frequencies greater than 5% were shown in this oncoprint plot. The plot on the right side indicates proportions of early (red) and late (blue) mutations in the driver genes across 
patients. Heatmaps on the right-hand side indicate whether the driver gene is detected by different methods or whether the gene was previously reported by other studies 
(reported) or in the cancer gene census list (CGC). Clinical phenotypes of patients were shown at the bottom of the panel. F) Driver genes with significantly different frequencies 
between Asian and European cohorts (Fisher’s Exact test p-value < 0.05). The star indicates a q-value of less than 0.1 after multiple testing correction. Mutation types were 
shown in different colors. 
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viral status), driver gene profiles are rather similar 
between Asians and Europeans. 

Ethnic differences in the mutational process 
during tumorigenesis 

The higher TMB and similar prevalence of driver 
genes raised an interesting question how different 
mutational processes could yield a different genomic 
landscape between the two cohorts. When we 
deconvolute mutations into contributions of known 
mutational signatures found in HCC (n = 10, 
Methods) [12,22,23] using deconstructSigs [24], all 
except one have appreciable proportions in the cohort 
(Supplementary Note 4, Table S8). Using the 
contributions of different mutational signatures, we 
clustered the patients into five signature groups 
(denoted as SG1-5, Figure 2A). Groups SG1 and SG2 
are dominated by SBS5 (clock like) signature and are 
enriched for European patients (Figure 2B-2D, Figure 
S9C p = 1.15e−06). SG3 with strong aristolochic acid (i.e. 
AA) signature (SBS22) and higher TMB is much more 
frequent in Asian patients (Figure 2A-B, Figure S9G, 
Figure S10A). SG4 has a dominant signature of SBS5 
together with an appreciable proportion of SBS4 
(smoking) and a mix of other signatures (Figure S9B). 
SG5 has much higher frequency of liver related 
signatures (SBS12 and SBS16) and is also enriched for 
Asian patients (Figure 2A-B, Figure S8E-F, Figure 
S9E-F, p-value = 1.15e−06). It is important to note that 
signatures groups did not correlate with viral status of 
patients (Figure 2A). Through timing and clonality 
analysis, we found that signatures related to external 
exposures such as smoking and AA are significantly 
lower in the late stage of tumorigenesis while MSI and 
liver associated signatures have higher proportions in 
the late stages of tumorigenesis, suggesting their 
active role throughout HCC initiation and 
progression (Supplementary Note 4, Figure S10C). 
Even though the prevalence of the mutational 
signatures differs between the two cohorts, the 
evolutionary timing of common signatures is quite 
similar across the two cohorts (Figure S10C-D). 

Chromosomal CNVs drive higher genome 
instability in Asians 

While point mutations and mutational 
signatures point to a higher genomic instability in 
Asians, copy number alterations (CNAs) are the other 
important mutational process driving tumorigenesis. 
Using Somatic CNA (SCNA) score, which integrates 
both the magnitude as well as the scale of CNAs, we 
found that Asians have higher arm level SCNA 
(Figure 2C, p = 0.00036). After controlling for clinical 
variables as well as other covariates, ethnic 
differences in arm level SCNA score remained 

significant (p = 0.02, Figure S11-S13). Breaking down 
the overall SCNA scores into contributions of 
individual chromosomes, 11 arms (4 amplifications 
and 7 deletions) including chromosome 16 deletions 
and 8q amplification were altered at significantly 
different frequencies between the two cohorts and 
were mostly enriched in Asians (Figure 2D, Fisher’s 
Exact test q-value < 0.1). In addition to arm level 
differences, when we compared focal CNAs using the 
GISTIC algorithm, the landscape stay qualitatively 
similar between cohorts (e.g. TERT and FGF19 
amplification and AXIN1 deletions [5,25], Figure 2E, 
Table S9, Figure S14), despite the existence of private 
peaks to each cohort. In summary, HCC in Asians 
have significantly higher genome instability 
contributed by multiple arm level CNV events. 

A clinically more aggressive transcriptomic 
subtype unique to Asia 

With higher genome instability found in Asians, 
we wondered whether higher genomic instability 
could drive phenotypic divergence, especially trans-
criptomic differences between ethnic backgrounds. A 
literature review revealed a list of transcriptomic 
subtypes (n = 7) with varying levels of consistency 
between multiple cohorts [26–35] and differences 
between Asians and Europeans have not been 
systematically explored in these studies. Using 
non-negative matrix factorization (NMF) [36], we first 
clustered the Asian and European cohorts from TCGA 
into two subtypes (Figure 3A, Figure S15) and 
compared the subtype similarity using SubMap [37] 
(Figure 3B). Interestingly, in both cohorts, we 
observed one subgroup with upregulated cell cycle 
(e.g. “G2M checkpoint”), but down-regulation of 
metabolic pathways typical to common liver function 
(e.g. “Bile acid metabolism”) (Figure 3C-D). Even 
though the basal split is functionally similar across 
cohorts, the two-group subtyping only stratifies 
overall survival in the Asian cohort. We named basal 
clusters as P (proliferation) and M (metabolism) 
according to the activated pathways in basal partition. 
When we further cluster the two cohorts into three 
subgroups, the proliferation group (P) in Asians and 
the metabolism group (M) in Europeans further 
partitioned into two groups with the number of 
matching subgroups remaining at two (Figure 3B, 3E). 
The P1 subtype in Asians shows upregulation of EMT, 
inflammatory response, as well as angiogenesis 
pathways (Figure 3C, 3E, Figure S16A), while P2 has 
higher regulation of unfolded protein response (UPR) 
as well as MYC target genes (Figure S16C). The 
phenotypic divergence between the M1 and M2 
subtype in Europeans is similar to the basal 
phenotypic divergence between P and M where M1 
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has higher cell cycle activity, but down regulated metabolic functions (Figure 3C-D and Figure S16B). 
 

 
Figure 2. Ethnic comparison of mutational signatures and copy number alterations. A) Signature groups across patients. Mutations contributed by different 
mutational process were plotted as barplots across patients. The pie charts indicate the mean proportion of each mutational signature in each group. Ethnicity and viral status of 
patients were shown as annotation for each patient. B) Proportions of Asian and European patients in the signature groups. C) Comparison of arm level somatic copy number 
alteration (SCNA) scores in two cohorts. D) Arm level events in Asians (n = 154) and Europeans (n = 176). Frequencies for each arm are shown with different colors for Asians 
and Europeans. Arms with significant difference (i.e. p-value ≤ 0.05) were indicated with green stars around chromosome labels (n = 11). Chromosome arms with black borders 
indicate putative driver CNVs (based on GISTIC output). E) Focal CNV peaks for Asian (n = 154) and European (n = 176) cohorts. Driver genes within GISTIC peaks were 
labelled. Genes in common peaks are colored in black while genes in cohort specific peaks are colored in their respective colors. 



Theranostics 2022, Vol. 12, Issue 10 
 

 
https://www.thno.org 

4708 

 
Figure 3. Transcriptomic landscape between Asian and European cohorts. A) Principal component and survival analysis when partitioning the two cohorts into two, 
three and four subtypes. Results for two subtypes are shown for both cohorts. Optimal number of subtypes (4 for Asians and 3 for Europeans) are shown for both cohorts. B) 
Pairwise similarity mapping of subtypes between Asian and European cohorts using the SubMap method. c-d) Heatmaps displaying differentially expressed pathways between 
different transcriptomic subtypes for Asian (n = 158) (C) and European (n = 184) (D) cohorts. Annotations on top of each heatmap show subtypes reported by the current work 
and previous studies. Bottom rows display subsets of differentially expressed pathways. Green tick marks indicate the significance of pathways in the Asian or European cohort. 
E) Homologous relationship between transcriptomic subtypes between the two cohorts. The color hue indicates the upregulation of the key pathways delineating the subtype 
partition (e.g. proliferation or inflammation). F) Significant differences in clinical features, driver genes as well as molecular features across subtype comparisons. (GII: genome 
instability index, GD: genome doubling). 

 
Using several statistical procedures for selecting 

the optimal number of clusters, the best number of 
subgroups for Asians and Europeans were found to 
be 4 and 3 respectively (Figure S15A-S15B). Partition-
ing Asians into four subgroups, the metabolism group 
further split into M1/M2, with the M1/M2 difference 
similar to the P1/P2 divergence with M1 having 
higher expression of immune related pathways as 
well as EMT. When comparing the four subtypes from 
Asians and three subtypes from Europeans, the two 
subgroups within the metabolism group (M1 and M2) 
match well between the two ethnic backgrounds and 
there is an extra subgroup (P2) unique to Asians 
(Figure 3B, 3E). Across all the clustering analysis, 
RNA subgroups stratify overall survival of patients 
very well in Asians, but not in Europeans (Figure 3A). 
Correlating transcriptomic subtypes with clinical and 
molecular phenotypes, we found a few clinical 
phenotypes such as alpha-fetoprotein (AFP) levels are 
enriched in subtype P in both cohorts and CTNNB1 
driver mutations are enriched in the M2 subtype in 
both cohorts (Figure 3F). Mapping previous 

transcriptomic subtypes together with the molecular 
events onto the subtype ontology, we found both 
concordant and divergent events across the two 
cohorts (Figure S16D, Supplementary Note 5). 

Genomic changes enriched in Asians 
delineating the transcriptomic subtype P2 

The Asian-enriched transcriptomic subtype (P2) 
is one of the most aggressive subtypes with the 
highest level of AFP and the poorest survival (Figure 
4A). This raised a series of interesting questions: what 
are the molecular events specific to this novel subtype 
and more importantly, are these subtype differences 
correlated with ethnic differences which might 
explain the origin of this ethnic specific subtype? 
Comparing genomic events between P2 and other 
subgroups, we found a series of genomic changes 
unique to P2: 1) significantly higher frequency of 
AXIN1 mutations (Figure 3F, 4B), 2) strongly elevated 
SCNA as well as the highest level of CIN70 score [38] 
(Figure 4C, Figure S17B). When we break down the 
overall SCNA level into components, we found that 
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chromosome 16 deletions were also significantly 
higher in P2 (Fig 4D) and tend to co-occur with AXIN1 
mutations (Fig 4B and 4E, p-value = 5.6e-12). 3) 
significantly higher expression of MYC targets and 
unfolded protein response (UPR), indicating endo-
plasmic reticulum (ER) stress possibly responding to 
fast cell cycle [39] (Figure S16C). 4) When we 
deconvolute the transcriptomic profile into immune 
components [40], we found that P2 and M2 are 
immunologically much colder than the other subtypes 
with lowest level of immune signature and P2 has the 
highest level of myeloid derived suppressor cells 
(MDSC) (Figure 4F-G). To understand whether the P2 
subtype also exists in other Asian cohorts, we 
retrieved two Chinese cohorts [41,42] and assigned 
each patient to one of these four subtypes (Figure 
S18A-B). P2 was also found in these two cohorts and 
patients in the P2 subtype had similar phenotypes 
such as higher levels of AFP (Figure S18C-D), poor 
overall survival (Figure S18E) and higher frequency of 
chromosome 16 deletions (Figure S18F). 

Despite a suite of genomic events highly 
enriched in P2, how these changes act concertedly to 
derive a new RNA subgroup is quite puzzling. Since 
ethnic differences are quite minor in driver 
frequencies, but a lot stronger in CNAs, we correlated 
copy number events with gene expressions across the 
genome. As expected, most of the CNVs act as 
cis-regulatory events, positively influencing the 
expression of genes in the genomic neighborhood 
(Figure 4H). Strikingly, CNV at chromosome 16 tends 
to impact expression levels of genes across the 
genome in the Asian cohort (Figure 4H) even though 
the correlation structure differs slightly between 
Asians and Europeans. (Figure S19). Moreover, 
differentially expressed genes (DEGs) found in the 
patients from the P2 subtype and DEGs found in 
patients with the chromosome 16 deletions are highly 
similar in the Asian cohort (Figure 4I), suggesting that 
the transcriptomic shift driven by chromosome 16 
strongly correlates with the rise of the P2 subtype, 
which might explain the origin of this transcriptomic 
subtype. 

In addition to chromosome 16 deletions, a suite 
of other genomic events defining P2 subtype seem to 
be acting collectively to define the P2 subtype. For 
example, previous studies reported that tumors with 
higher SCNA score tend to have lower immune 
infiltration across cancer types [43] and is also true in 
this HCC cohort (Figure 4J, p = 0.0095). Higher 
genomic instability including chromosome 16 
correlates with low immune infiltration in P2 with 
high levels of MDSCs (Figure 4E, 4H, 4J) [43]. When 
we draw a correlation network between P2 specific 
events across layers spanning clinical features, 

genomic changes, transcriptomic and immune 
phenotypes, we observe a well-connected network 
spanning multiple layers that defines the P2 subtype 
(Figure 4K). Taken together, ethnic differences in 
genome instability seem to drive a collection of 
genomic differences defining an Asian specific 
transcriptomic subtype. 

Integrative survival model predicts patient 
survival much better in Asians 

With a large number of ethnic differences in 
HCC driven by genome instability, we wondered how 
ethnic differences might affect patient stratification 
and survival in two cohorts. In order to curate clinical 
and molecular features that can stratify patients, we 
collected multiple variables from different layers, 
including clinical phenotypes (e.g. stage, (n = 7), 
driver genes (n = 12) and other molecular features (n = 
22). Since intra-tumor heterogeneity (ITH) has 
increasingly been recognized as an important factor 
driving patient clinical outcomes [11,44,45] and hasn’t 
been explored in large cohorts for HCC [46–48], we 
curated three ITH metrics: 1) the percentage of late 
mutations (pLM), calculated as fraction of subclonal 
mutations, 2) Mutant-Allele Tumor Heterogeneity 
(MATH) score [49], measuring the distribution of 
variant allele frequencies, 3) Shannon’s index, 
calculated based on the subclonal proportions 

(Methods). When we compared ITH values across 
Asians and Europeans, two cohorts had similar levels 
of ITH (Figure S20). In order to select variables that 
can stratify patients, random forest model was 
applied to Asian and European cohorts as well as the 
combined cohort (Figure 5A). It is interesting to 
observe that many variables that can stratify patients 
are shared between the two cohorts (Figure 5B, Figure 
S21). 

When we calculate the correlation between 
features from multiple layers and plot the correlation 
network for the two cohorts separately, we found that 
multiple features strongly correlate with each other 
(Figure 5C-D, Table S10). While majority of selected 
features significantly stratify patients under the 
univariate Cox model (n = 17), a subset of features 
selected by random forest models were not significant 
in the univariate survival analysis (Figure 5C-D, 
Figure S22, Table S11), suggesting potentially 
non-linear relationship between these variables and 
patient’s overall survival. For example, pLM stratifies 
patients when we categorize them as low, medium 
and high levels of each feature, but is not significant in 
the univariate model (Figure S23). By ranking the 
importance of these variables using random forest 
models (Methods), we found that immune features 
(e.g. MDSC) and driver genes (e.g. DOCK2) play very 
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important roles in patient survival (Figure 5E, see 
Methods). Notably, ITH features rank rather poorly in 
the Asian cohort, but ranked first in the European 
cohort (Figure 5E, right-bottom). This high ranking of 

ITH features in the European cohort seem to reflect 
the poor prognostic ability across all variables in the 
cohort. 

 

 
Figure 4. Genomic features for an Asian specific subtype P2. A) Alpha-fetoprotein (AFP) levels across transcriptomic subtypes and Kaplan-Meier survival curve for P2 
and other transcriptomic subtypes in Asians. B) AXIN1 mutations across subtypes (left). P2 subtype has the highest frequency of AXIN1 mutations. Co-occurrence of AXIN1 
mutations with chromosome 16 deletion (right). C) Arm level SCNA score comparison across subtypes. D) Frequencies of copy number alterations across transcriptomic 
subtypes. Stars indicate significant differences. E) Proportion of patients with arm level or chromosome level deletions at chromosome 16 across subtypes. F) Comparison of gene 
signature of the immune class derived from Sia et al. [92] G) Myeloid derived suppressor cell (MDSC) score across subtypes. H) Correlation between copy number alterations 
(x axis) and mRNA expression (y axis) across the genome. Red color represents a significant positive correlation and green color indicates a significant negative correlation. I) 
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Overlap between up-regulated and down-regulated genes when comparing P2 versus other subtypes and chromosome 16 deleted versus the rest of the patients (wild type or 
WT). J) Total tumor infiltrating lymphocyte (TIL, left) and myeloid derived suppressor cell (MDSC, right) levels between tumors with high and low SCNA tumors. K) Correlation 
network between P2 specific features across clinical, genomic as well as transcriptomic levels. Across all comparison, p-values ≤ 0.0001 were labelled as “****”, p-values ≤ 0.001 
were labelled as “***”, p-values ≤ 0.01 were labelled as “**”, p-values ≤ 0.05 were labelled as “*” and p > 0.05 is “ns”. 

 
Figure 5. Integrative survival analysis and ethnic differences. A) A schematic summary of the integrative survival analysis. B) Number of significant features selected for 
Asian, European and the combined TCGA cohort. C-D) Correlation networks for the prognostic variables that can stratify patients in Asians (C) and Europeans (D). Edges of the 
network indicate significance of the correlation between features with the width of edges proportional to the re-scaled p-values (-log10(p-value)). Diamonds represent hazard 
ratios (HR) less than 1 (good prognosis) and circles represent HRs greater than 1 (poor prognosis). For features with multiple levels such as stage, HR of the most significant level 
was chosen. The black border around the nodes and size indicates its significance of the variable in the univariate Cox model. E) The ranking of importance for variables from 
clinical, molecular, driver and ITH categories. F) The predictive accuracy of the survival models when employing variables across different categories (All, Clinical, Driver, 
Molecular as well as ITH). Within each category, the Asian cohort was used as the reference group in the Wilcoxon test. G) The predictive accuracy of the survival models 
including the subset of Asian cohort without the P2 subtype. 
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In order to check whether the predictive models 
differ between Asians and Europeans, we first 
evaluated accuracies of the predictive models using a 
cross-validation design (Figure 5A, Methods) and 
observed higher predictive accuracy in Asians (Figure 
5F). Higher accuracy in the predictive model (i.e. 
c-index) observed in the Asian cohort (Figure 5F) 
raised an interesting question: whether this difference 
in predictability between cohorts is due to ethnic 
differences. When we compared predictive accuracies 
with and without the P2 subtype for the Asian cohort, 
we observed a significant decrease in the accuracy 
when excluding P2, indicating that ethnic differences 
indeed contribute to better predictability in Asians 
(Figure 5G). Taken together, ethnic differences in 
HCC not only endow us a better predictive model for 
patient survival in Asians, but also suggests higher 
potential for a more effective precision medicine 
program for HCC in Asia. 

Discussion 
With the completion of the TCGA and ICGC 

projects, the study of ethnic differences has been now 
becoming one of the central topics in cancer genomics 
[50,51]. By comparing Asian and European cohorts, 
we presented one of the first systematic comparisons 
of HCC genomes and identified a suite of genomic 
events ranging from TMB, mutational signatures as 
well as CNAs segregating distinctively across two 
cohorts. Most strikingly, we identified an Asian 
specific transcriptomic subtype with enriched driver 
genes (e.g. AXIN1), higher genomic instability (in 
particular chromosome 16 deletion) as well as a much 
colder immune profile with high levels of MDSC cells. 
Ethnic differences, especially higher genome 
instability, seem to drive the evolution of a unique 
transcriptomic subtype and better patient prognostic 
prediction in Asians. Interestingly, despite Asian 
cohort is enriched for HBV positive patients, 
Asian-enriched P2 subtype had a significant lower 
proportion of HBV carriers compared to other 
subtypes (Figure S17A). In previous studies, HBV 
positive HCC was found to have a better overall 
survival possibly driven by higher screening rates 
[52,53] and patients in the P2 subtype might represent 
those non-viral carriers with advanced diseases. For 
the first time, we uncovered an unprecedented 
amount of ethnic differences in HCC and highlighted 
an interesting example of how genome instability can 
drive a collection of ethnic differences between the 
two cohorts. 

The integrative analysis and ethnic comparison 
presented in this study suggested several new 
insights in patient treatment in HCC. First of all, novel 
drivers identified through integrative analysis, 

especially the chromatin remodelling genes (e.g. 
ARID1B), are often late-occurring tumor suppressors. 
Instead of targeted therapy or immunotherapy, genes 
in this group may be better targeted using synthetic 
lethal approaches [54]. Secondly, while immune 
checkpoint inhibitors (ICI) are becoming a popular 
therapeutic strategy, we found that the P2 subtype is 
immunologically cold and has very high levels of 
myeloid derived suppressor cells (Figure 4G). Since 
higher levels of MDSC often include the release of 
immunosuppressive cytokines or arginase [55], which 
is mechanistically different from common ICI targets 
such as PD-1, PD-L1 or CTLA4, regular ICI might not 
work so efficiently in patients from the P2 subtype. 
However, studies showed that targeting MDSCs or 
combining ICI with MDSC-targeting therapies may 
result in better response for the P2 subtype [56,57]. 
Finally, the Asian specific P2 subtype with higher 
genomic instability might be sensitive to DNA 
damage repair (DDR) response inhibitors which have 
been proven to be effective in many cancer types with 
defects in DNA repair pathways [58,59]. Thus, the 
integrative analysis and ethnic comparison might 
pinpoint new possibilities for novel therapeutic 
strategies in HCC. 

Integrating multiple features across layers, 
including the ITH metrics, yielded a combined 
survival model with much better prediction accuracy 
in Asians than Europeans. This difference seems to be 
contributed by ethnic difference as most of the 
statistical power for patient stratification in Asians 
came from the existence of the P2 subtype (Figure 5G). 
For the first time, ethnic specific genomic events can 
contribute to differences in patient prognosis and 
stratification in HCC. Despite this difference, it is still 
surprising to see that molecular events provide so 
poor predictive power in Europeans and is worth 
investigating in a future study. For the first time, the 
integrative survival analysis provided a unique 
opportunity linking ethnic differences with patient 
stratification and shed light on differential strategies 
for precision medicine between ethnic backgrounds. 

Even though pan-cancer analysis of ethnic 
differences has recently been explored, due to biased 
patient collection in different cancer types, earlier 
ethnic studies have focused on African and European 
comparison [60]. One important conclusion from 
recent studies is that ethnic differences with large 
effect sizes are often specific to individual cancer 
types [61], emphasizing the importance of targeted 
analysis focusing on specific cancer types. Through an 
integrative analysis using the TCGA cohort, we 
revealed a cascade of molecular events starting from 
genomic changes (i.e. genome instability) to molecular 
phenotypes (e.g. an ethnic specific transcriptomic 
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subtype) and subsequently to patient predictive 
differences. The study presented here not only 
provides a unique “molecular mechanism” con-
necting multi-layer ethnic differences, but also 
constructed a foundation for integrating potential 
inconsistent discoveries across ethnicities for the field 
(Supplementary Note 5). Ethnic differences in HCC 
depicted here provide one of the best examples for 
understanding ethnic differences across cancer types. 

Materials and Methods 
Patient cohorts for integrative driver 
identification 

Five largest cohorts of hepatocellular carcinoma 
(HCC) genomes were collected including the TCGA, 
the ICGC (LICA-FR, LIRI-JP, LINC-JP), as well as a 
Korean study [5] (Supplementary Table S2). For the 
ICGC and TCGA cohorts, mutation data were 
downloaded from ICGC and Firebrowse websites 
[62]. For the Korean dataset, somatic mutation data 
were collected from the original publication [5]. 
Somatic mutations were first annotated using 
Oncotator (Version 1.9.2, based on hg19) [63]. Since 
the combined dataset contains both the whole exome 
and whole genome sequencing datasets, samples 
were standardized by taking only the coding variants. 
Hypermutated samples with more than 1000 coding 
mutations were excluded (n = 11). After identifying 
driver genes with MutSigCV (version 1.41) [19], 
20/20+ [18] and TUSON Explorer [17], a final list of 
driver genes was curated by combining results from 
all three methods and genes with less than 1% 
frequency were further filtered away. In the 
saturation analysis, different number of down- 
sampled subsets (n = 100, 250, 500, 750 and 1000, each 
replicating 5 times) were sampled and MutSigCV was 
used to identify candidate drivers [64]. 

Literature reported driver genes and pathways 
We compiled literature reported driver genes 

from eight large cohort studies [4–7,10,13,15,65] (n = 
88) (Supplementary Table S1). Cancer Gene Census 
(CGC) genes were downloaded from the Catalogue of 
Somatic Mutations in Cancer (COSMIC) database 
(GRCh37/COSMIC v83) [66]. To compile significantly 
altered pathways in hepatocellular carcinoma, 
multiple significantly mutated pathways in HCC 
from seven genomic studies [5–7,10,15,67,68] were 
compiled and a consensus list of pathways was 
curated by grouping pathways with similar functions. 

Significantly altered pathways in driver genes 
Using the combined driver list (n = 62), 

ConsensusPathDB [69] and g:profiler [70] were used 
to identify significantly altered pathways. g:Profiler 

applies the Fisher’s Exact test to identify over- 
represented pathways in a given gene list. 
ConsensusPathDB employs hypergeometric tests to 
find significantly altered pathways. For both methods, 
pathways from the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) [71] and Reactome [72] databases 
were selected. In addition, pathways from BioCarta 
[73] database were also included in the 
ConsensusPathDB analysis. Given the output from 
these two methods, pathways with similar biological 
functions were first grouped together and classified 
into literature known pathways as well as novel ones. 

Mutual exclusivity and co-occurrence analysis 
of driver genes 

Using the presence and absence information 
across variables, the association between drivers as 
well as between drivers and clinical phenotypes were 
tested using the Fisher exact test (co-occurrence and 
mutual exclusiveness representing the two tails of the 
test). Multiple test correction was carried out using 
the Benjamini-Hochberg method and FDR cutoff of 
0.1 was used to select significantly perturbed gene 
pairs. 

Reprocessing the TCGA data for ethnic 
comparison 

WES data from the TCGA cohort was 
downloaded from GDC [74] and somatic mutations 
were called using Mutect [75]. Among the identified 
driver genes (n = 62), Fisher’s Exact test was applied 
to test for frequency differences in each gene and 
Benjamini-Hochberg method was used for multiple 
test correction. Drivers with q value less than 0.1 were 
selected as significantly different genes. 

Inferring cancer cell fraction and timing of 
mutations 

Cancer cell fraction (CCF) of single nucleotide 
variants was calculated similar to McGranahan et al. 
[44,76]. In particular, VAF = purity × CCF / (CNnormal × 
(1-purity) + purity × CNmutation). CNnormal is the copy 
number of the loci in the normal sample. Copy 
number 2 (diploid) was used for autosomal 
mutations. For mutations in the X chromosome, 2 was 
used for female patients and 1 was used for male 
patients. CNmutation is the mutation copy number and 
was calculated by local copy number and tumor 
purity (values estimated from the Sequenza [77]). 
Mutations with total number of reads less than 10, 
number of alternative alleles less than 3 and/or allele 
frequency of less than 0.05 were filtered out. For each 
mutation, we conducted binomial modeling of 
observed VAF. A likelihood function is defined by 
calculating the binomial probability using the depth 
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of coverage as the number of trials. Then, a deviance 
function was defined as -2*sum(log-likelihoods). 
Finally, deviance function was optimized between 
[0,1] interval using optim() function in R to find the 
CCF value which minimizes the deviance function (i.e. 
the highest binomial probability). Timing of the 
mutation was classified based on cancer cell fraction 
(CCF). Early mutations were defined as CCF ≥ 0.8 and 
late mutations were mutations with CCF < 0.8. 

Mutational signatures and subgrouping 
A list of 10 HCC related mutational signatures 

from previous studies were collected [12,22]. 
DeconstructSigs [24] was used to deconvolute 
mutations into these signatures from the COSMIC 
v3.1 [78]. Signatures with significant contribution (i.e. 
mean proportion greater than 2% or a maximum 
proportion of 20% across samples) were kept and 
deconvolution was repeated with the set of significant 
signatures. With the contribution of different 
signatures estimated for each patient, signature 
proportions were clustered using the hierarchical 
clustering algorithm with the Euclidean distance and 
‘ward.D’ method in R. Comparison of signatures 
between early and late tumorigenesis was performed 
using the paired Wilcoxson test. Timing of signatures 
was conducted by separate deconstruction of early 
and late mutations. 

Copy number inference and the GISTIC 
analysis 

Sequenza [77] was employed to infer the integer 
copy number using the raw WES data. Genomic 
instability index (GII) was calculated by comparing 
the copy number of each segment with median copy 
number across the genome of the patient. GII is 
simply the fraction of the genome with an integer 
copy number different from the median ploidy. 
Somatic CNA (SCNA) score was calculated for arm 
and broad scale CNV output from the GISTIC 
algorithm using a method similar to Yuan et al. (2018) 
[60]. GISTIC [79] was employed to identify 
significantly perturbed CNVs for the Asian and 
European patients from the TCGA cohort separately 
to compare arm level and focal CNV events using 
parameters as following:“-genegistic 1 -smallmem 1 
-broad 1 -brlen 0.5 -conf 0.95 -armpeel 1 -savegene 1 -gcm 
extreme”. Arm level frequencies were compared across 
cohorts using results from the broad_significance_ 
results.txt based on the Fisher’s exact test and p-value 
for each variable was adjusted for multiple testing 
using the Benjamini-Hochberg method with a cutoff 
value of 0.1. For focal amplifications, q values from 
the scores.gistic output were used. Common and 
private peaks were identified by overlapping peak 

limits from Asian and European cohorts using the 
“GenomicRanges” R package. Driver genes, a list of 
pan-cancer amplifications and deletions [80] and a list 
of known HCC copy number events [25] were labelled 
for the peaks. 

Transcriptomic subtypes and ethnic 
comparison 

Raw gene counts were downloaded from the 
GDC [74]. Protein coding genes were used for further 
analysis and lowly expressed genes were filtered out 
(i.e. removing genes with less than 5 counts in at least 
ten patients). Gene expression levels were normalized 
using DESeq2 [81] and subsequently log2 transformed 
after adding 1 pseudo count. 

For molecular subtypes, top 3000 most variable 
genes (based on median absolute deviation, MAD) 
were selected for both Asian and European cohorts 
separately. Non-negative matrix factorization (NMF) 
algorithm was applied in the NMF R package with the 
Brunet algorithm [82]. Number of ranks from 2 to 6 
were iteratively run for 200 times. Optimal rank 
(number of subtypes) was selected based on the 
highest cophenetic correlation and the highest 
consensus silhouette values. 

Mapping of homologous subtypes was 
conducted using the SubMap from the Genepattern 
with default parameters [37]. Differentially expressed 
genes were identified using DESeq2 [81]. Gene set 
enrichment analysis was conducted using the “fgsea” 
method [83]. Hallmark (v6) and C2_CGP (v7) gene 
sets were used for fgsea and genes were ranked 
according to a combined significance score (sign of log 
fold change times -log10 of p-value) and significant 
pathways were extracted (fdr < 0.05). 

In order to measure the enrichment of a pathway 
in a group of patients, gene set variation analysis 
(GSVA) was conducted to calculate a pathway level 
score[84] (Figure 3c, 3d). Comparisons of clinical and 
genomic differences were conducted using the 
Wilcoxon test for continuous variables and Fisher’s 
Exact test was used for categorical variables. P-values 
were adjusted using the Benjamini-Hochberg method 
(< 0.1). 

Due to limited samples size, we assigned 
patients from external Chinese cohorts to the 
transcriptomic subtypes. Top 100 up-regulated genes 
of each subtype (compared to the rest of the subtypes) 
were used as signature (template) genes. Nearest 
template algorithm was applied using “CMScaller” R 
package [85]. Predicted classes (subtypes) were 
selected based on the false discovery rate (fdr < 0.1) 
otherwise patients were assigned to the “NS” group. 
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Annotating literature known transcriptomic 
subtypes 

To understand the concordance of identified 
transcriptomic subtypes with transcriptomic subtypes 
identified by earlier studies [26–29,31,32,37], gene 
signatures of previous subtypes were downloaded 
from MSigDB [86]. Pathway activity score was 
calculated similar to a previous study [87]. Patients 
were assigned to the subtype with the highest 
pathway activity score. For previous studies without 
assigning to discrete categories (e.g. single gene 
signature such as the EpCAM signature in Yamashita 
et al. 2008), pathway activity score was plotted as a 
continuous value indicating the expression level of 
the gene. 

Statistics for measuring intra-tumor 
heterogeneity (ITH) 

Percentage of late mutations (pLM) was 
calculated as the proportion of late mutations (CCF < 
0.8). MATH score was calculated as described in the 
original study [49]. Pyclone [88] was employed to 
infer the clonal structure of the tumor. Binomial 
density and 10,000 iterations were selected for the 
MCMC inference (the first 1000 iterations were treated 
as the burning phase). Shannon index was calculated 
using the number of mutations in each subclone 
identified in pyclone as −∑𝑝 × log (𝑝), where p is the 
mean CCF of each cluster. 

Integrative survival analysis 
A total of 44 features from clinical (n = 7), 

molecular (n = 22), driver genes (n = 12) and ITH (n = 
3) categories were first compiled. Clinical features 
include gender, age, stage, HBV and HCV status, 
grade and race (only for the combined TCGA cohort). 
Molecular features included: 1) basic tumor features 
such as purity, ploidy, transcriptomic subtypes, TMB, 
SCNA; 2) proportions for common mutational 
signatures (i.e. with a mean proportion of no less than 
5% across patients which include SBS4, SBS5, SBS12, 
SBS22); 3) immune features including immune 
subtypes, MDSC score, GEP [89]; 4) frequent copy 
number events with a cohort frequency of at least 40% 
in either Asian and European cohort. Driver features 
included genes with at least 15 mutations across all 
patients. Finally, ITH variables included pLM, MATH 
score and Shannon’s index. Random forest survival 
(RFS) algorithm was implemented to calculate the 
concordance index (c-index) distributions and feature 
importance [90]. Random forest feature selection was 
applied 50 times with a random subset (75%) of 
cohorts separately (Asian, European and combined 
TCGA) and features which were selected at least 25 
times across runs were selected for each cohort. The 

union list of all selected features across cohorts was 
used as the final feature list. Hyper parameter tuning 
is done by 100 times random search for random forest 
(RF) algorithm parameters such as number of trees 
(1500), node size (10), number of selected features for 
each tree (3), and number of splits (25) and optimal 
parameters were chosen with 5-fold cross validation. 
Distribution of accuracies were obtained by splitting 
cohorts 50 times (75% training set, 25% test set) and 
running the tuned RF algorithm across different 
cohorts (e.g. Asian, European and combined TCGA) 
and different feature categories (e.g. clinical, 
molecular, driver, ITH or all features). Concordance 
index (c-index) was used to evaluate the model 
accuracy in the test set (25%). Feature importance was 
calculated using RF variable importance method 
(VIMP) [91] on the full models for each cohort (50 
times) and the average rank of each feature across 
runs was used as the importance score for each 
feature. 

Data and code availability 
Somatic mutation data for LIRI-JP, LINC-JP and 

LICA-FR cohorts were obtained from the ICGC 
database (https://dcc.icgc.org/releases/release_25/ 
Projects/). Raw data (BAM files) for Korean cohort 
was obtained from the authors. TCGA-LIHC WES 
and RNAseq data are obtained from GDC (https:// 
portal.gdc.cancer.gov/). Custom R code for the 
analyses implemented in this work can be obtained 
upon request from the authors. 

Supplementary Material  
Supplementary figures, notes, and tables. 
https://www.thno.org/v12p4703s1.pdf  
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