Theranostics 2018; 8(13):3688-3690. doi:10.7150/thno.27236

Editorial

Punching and Electroporation for Enhanced Transdermal Drug Delivery

Guang Yang1,2, Yuqi Zhang1, Zhen Gu1,3,4✉

1. Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, and North Carolina State University, Raleigh, North Carolina 27695, USA.
2. College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Ren Min Road No. 2999, Shanghai 201620, China.
3. Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
4. Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.

Abstract

Transdermal delivery has made an indispensable impact to medical practice, but often been limited by low efficiency due to the barrier of the outer stratum corneum layer of skin. In Issue 9 of Theranostics, Huang et al. [1] proposed a new design of transdermal gene delivery strategy via the combination of a microneedle roller and a flexible interdigitated electroporation array. With the assistance of the microneedle roller, a deep and uniform electric field in the skin can be formed, accompanying an enhanced transport efficiency even at a low voltage. Furthermore, this combination strategy can promote the gene expression and siRNA transfection in mice skin in a safe and convenient process.

Keywords: transdermal drug delivery, gene delivery, electroporation, microneedle

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.
How to cite this article:
Yang G, Zhang Y, Gu Z. Punching and Electroporation for Enhanced Transdermal Drug Delivery. Theranostics 2018; 8(13):3688-3690. doi:10.7150/thno.27236. Available from http://www.thno.org/v08p3688.htm