Theranostics 2023; 13(14):5114-5129. doi:10.7150/thno.87484 This issue Cite

Research Paper

Targeted elimination of senescent cells by engineered extracellular vesicles attenuates atherosclerosis in ApoE-/- mice with minimal side effects

Liang Zhang1#, Chen Wang1#, Wei Hu1#, Te Bu1, Wenqi Sun1, Tian Zhou1, Shuo Qiu1, Mengying Wei2, Helin Xing3, Zhelong Li1✉, Guodong Yang2✉, Lijun Yuan1✉

1. Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, People's Republic of China.
2. State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, People's Republic of China.
3. Department of Prosthodontics, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Beijing, 100050, China.
# These authors contributed equally to this article.

Citation:
Zhang L, Wang C, Hu W, Bu T, Sun W, Zhou T, Qiu S, Wei M, Xing H, Li Z, Yang G, Yuan L. Targeted elimination of senescent cells by engineered extracellular vesicles attenuates atherosclerosis in ApoE-/- mice with minimal side effects. Theranostics 2023; 13(14):5114-5129. doi:10.7150/thno.87484. https://www.thno.org/v13p5114.htm
Other styles

File import instruction

Abstract

Graphic abstract

Senescent cells in plaques emerge as a detrimental factor for atherosclerosis (AS), for which targeted senolysis might be a promising therapeutic strategy. The development of safe and efficient senolytics for senescent cell eradication by targeted delivery is greatly needed.

Methods: Pro-apoptotic intelligent Bax (iBax)-overexpressing plasmid was constructed by molecular cloning, in which Bax CDS was fused to miR-122 recognition sites. Extracellular vesicle-based senolytics (EViTx) were developed to be conjugated with magnetic nanoparticles on the surface, iBax mRNA encapsulated inside, and BAX activator BTSA1 incorporated into the membrane. EViTx was characterized, and in vivo distribution was tracked via fluorescence imaging. The therapeutic effects of EViTx on AS and its systemic side effects were analyzed in ApoE-/- mice.

Results: Magnetic nanoparticles, iBax mRNA and BAX activator BTSA1 were efficiently loaded into/onto EViTx. With external magnetic field navigation, EViTx was delivered into atherosclerotic plaques and induced significant apoptosis in senescent cells regardless of origins. Repeated delivery of EViTx via tail vein injection has achieved high therapeutic efficacy in ApoE-/- mice. Notably, EViTx is inevitably accumulated in liver cells, while the iBax mRNA was translationally repressed by miR-122, an endogenous miRNA highly expressed in hepatocytes, and thus the liver cells are protected from the potential toxicity of Bax mRNA.

Conclusion: Our work demonstrated that magnetic EV-based delivery of iBax mRNA and the BAX activator BTSA1, efficiently induced apoptosis in recipient senescent cells in atherosclerotic plaques. This strategy represents a promising treatment approach for AS and other age-related diseases.

Keywords: atherosclerosis, extracellular vesicles, cellular senescence, magnetic nanoparticles, BCL-2-associated X protein


Citation styles

APA
Zhang, L., Wang, C., Hu, W., Bu, T., Sun, W., Zhou, T., Qiu, S., Wei, M., Xing, H., Li, Z., Yang, G., Yuan, L. (2023). Targeted elimination of senescent cells by engineered extracellular vesicles attenuates atherosclerosis in ApoE-/- mice with minimal side effects. Theranostics, 13(14), 5114-5129. https://doi.org/10.7150/thno.87484.

ACS
Zhang, L.; Wang, C.; Hu, W.; Bu, T.; Sun, W.; Zhou, T.; Qiu, S.; Wei, M.; Xing, H.; Li, Z.; Yang, G.; Yuan, L. Targeted elimination of senescent cells by engineered extracellular vesicles attenuates atherosclerosis in ApoE-/- mice with minimal side effects. Theranostics 2023, 13 (14), 5114-5129. DOI: 10.7150/thno.87484.

NLM
Zhang L, Wang C, Hu W, Bu T, Sun W, Zhou T, Qiu S, Wei M, Xing H, Li Z, Yang G, Yuan L. Targeted elimination of senescent cells by engineered extracellular vesicles attenuates atherosclerosis in ApoE-/- mice with minimal side effects. Theranostics 2023; 13(14):5114-5129. doi:10.7150/thno.87484. https://www.thno.org/v13p5114.htm

CSE
Zhang L, Wang C, Hu W, Bu T, Sun W, Zhou T, Qiu S, Wei M, Xing H, Li Z, Yang G, Yuan L. 2023. Targeted elimination of senescent cells by engineered extracellular vesicles attenuates atherosclerosis in ApoE-/- mice with minimal side effects. Theranostics. 13(14):5114-5129.

This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
Popup Image