Theranostics 2024; 14(4):1361-1370. doi:10.7150/thno.90336 This issue Cite

Research Paper

High-content stimulated Raman histology of human breast cancer

Hongli Ni1,#, Chinmayee Prabhu Dessai2,#, Haonan Lin1,#, Wei Wang3, Shaoxiong Chen4, Yuhao Yuan1, Xiaowei Ge1, Jianpeng Ao1, Nolan Vild1, Ji-Xin Cheng1,2✉

1. Department of Electrical and Computer Engineering, Boston University, 8 St. Mary's St., Boston, MA, 02215, USA.
2. Department of Biomedical Engineering, Boston University, 44 Cummington Mall, MA 02215, USA.
3. Hologic Inc., 250 campus drive, Marlborough, MA 01752, USA.
4. Indiana University School of Medicine 340 West 10th Street, Fairbanks Hall, Suite 6200, IN 46202, USA.
#These authors contributed equally.

Citation:
Ni H, Dessai CP, Lin H, Wang W, Chen S, Yuan Y, Ge X, Ao J, Vild N, Cheng JX. High-content stimulated Raman histology of human breast cancer. Theranostics 2024; 14(4):1361-1370. doi:10.7150/thno.90336. https://www.thno.org/v14p1361.htm
Other styles

File import instruction

Abstract

Graphic abstract

Histological examination is crucial for cancer diagnosis, however, the labor-intensive sample preparation involved in the histology impedes the speed of diagnosis. Recently developed two-color stimulated Raman histology could bypass the complex tissue processing to generates result close to hematoxylin and eosin staining, which is one of the golden standards in cancer histology. Yet, the underlying chemical features are not revealed in two-color stimulated Raman histology, compromising the effectiveness of prognostic stratification. Here, we present a high-content stimulated Raman histology (HC-SRH) platform that provides both morphological and chemical information for cancer diagnosis based on un-stained breast tissues.

Methods: By utilizing both hyperspectral SRS imaging in the C-H vibration window and sparsity-penalized unmixing of overlapped spectral profiles, HC-SRH enabled high-content chemical mapping of saturated lipids, unsaturated lipids, cellular protein, extracellular matrix (ECM), and water. Spectral selective sampling was further implemented to boost the speed of HC-SRH. To show the potential for clinical use, HC-SRH using a compact fiber laser-based stimulated Raman microscope was demonstrated. Harnessing the wide and rapid tuning capability of the fiber laser, both C-H and fingerprint vibration windows were accessed.

Results: HC-SRH successfully mapped unsaturated lipids, cellular protein, extracellular matrix, saturated lipid, and water in breast tissue. With these five chemical maps, HC-SRH provided distinct contrast for tissue components including duct, stroma, fat cell, necrosis, and vessel. With selective spectral sampling, the speed of HC-SRH was improved by one order of magnitude. The fiber-laser-based HC-SRH produced the same image quality in the C-H window as the state-of-the-art solid laser. In the fingerprint window, nucleic acid and solid-state ester contrast was demonstrated.

Conclusions: HC-SRH provides both morphological and chemical information of tissue in a label-free manner. The chemical information detected is beyond the reach of traditional hematoxylin and eosin staining and heralds the potential of HC-SRH for biomarker discovery.

Keywords: stimulated Raman histology, high-content chemical imaging, breast cancer, label-free histology, fiber laser


Citation styles

APA
Ni, H., Dessai, C.P., Lin, H., Wang, W., Chen, S., Yuan, Y., Ge, X., Ao, J., Vild, N., Cheng, J.X. (2024). High-content stimulated Raman histology of human breast cancer. Theranostics, 14(4), 1361-1370. https://doi.org/10.7150/thno.90336.

ACS
Ni, H.; Dessai, C.P.; Lin, H.; Wang, W.; Chen, S.; Yuan, Y.; Ge, X.; Ao, J.; Vild, N.; Cheng, J.X. High-content stimulated Raman histology of human breast cancer. Theranostics 2024, 14 (4), 1361-1370. DOI: 10.7150/thno.90336.

NLM
Ni H, Dessai CP, Lin H, Wang W, Chen S, Yuan Y, Ge X, Ao J, Vild N, Cheng JX. High-content stimulated Raman histology of human breast cancer. Theranostics 2024; 14(4):1361-1370. doi:10.7150/thno.90336. https://www.thno.org/v14p1361.htm

CSE
Ni H, Dessai CP, Lin H, Wang W, Chen S, Yuan Y, Ge X, Ao J, Vild N, Cheng JX. 2024. High-content stimulated Raman histology of human breast cancer. Theranostics. 14(4):1361-1370.

This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
Popup Image