Theranostics 2015; 5(11):1233-1248. doi:10.7150/thno.12843 This issue Cite

Research Paper

Targeted Mesoporous Iron Oxide Nanoparticles-Encapsulated Perfluorohexane and a Hydrophobic Drug for Deep Tumor Penetration and Therapy

Yu-Lin Su, Jen-Hung Fang, Chia-Ying Liao, Chein-Ting Lin, Yun-Ting Li, Shang-Hsiu Hu

Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013

Citation:
Su YL, Fang JH, Liao CY, Lin CT, Li YT, Hu SH. Targeted Mesoporous Iron Oxide Nanoparticles-Encapsulated Perfluorohexane and a Hydrophobic Drug for Deep Tumor Penetration and Therapy. Theranostics 2015; 5(11):1233-1248. doi:10.7150/thno.12843. https://www.thno.org/v05p1233.htm
Other styles

File import instruction

Abstract

Graphic abstract

A magneto-responsive energy/drug carrier that enhances deep tumor penetration with a porous nano-composite is constructed by using a tumor-targeted lactoferrin (Lf) bio-gate as a cap on mesoporous iron oxide nanoparticles (MIONs). With a large payload of a gas-generated molecule, perfluorohexane (PFH), and a hydrophobic anti-cancer drug, paclitaxel (PTX), Lf-MIONs can simultaneously perform bursting gas generation and on-demand drug release upon high-frequency magnetic field (MF) exposure. Biocompatible PFH was chosen and encapsulated in MIONs due to its favorable phase transition temperature (56 °C) and its hydrophobicity. After a short-duration MF treatment induces heat generation, the local pressure increase via the gasifying of the PFH embedded in MION can substantially rupture the three-dimensional tumor spheroids in vitro as well as enhance drug and carrier penetration. As the MF treatment duration increases, Lf-MIONs entering the tumor spheroids provide an intense heat and burst-like drug release, leading to superior drug delivery and deep tumor thermo-chemo-therapy. With their high efficiency for targeting tumors, Lf-MIONs/PTX-PFH suppressed subcutaneous tumors in 16 days after a single MF exposure. This work presents the first study of using MF-induced PFH gasification as a deep tumor-penetrating agent for drug delivery.

Keywords: Mesoporous particles, drug delivery, combinatorial therapy, magneto-responsive, 3D tumor model.


Citation styles

APA
Su, Y.L., Fang, J.H., Liao, C.Y., Lin, C.T., Li, Y.T., Hu, S.H. (2015). Targeted Mesoporous Iron Oxide Nanoparticles-Encapsulated Perfluorohexane and a Hydrophobic Drug for Deep Tumor Penetration and Therapy. Theranostics, 5(11), 1233-1248. https://doi.org/10.7150/thno.12843.

ACS
Su, Y.L.; Fang, J.H.; Liao, C.Y.; Lin, C.T.; Li, Y.T.; Hu, S.H. Targeted Mesoporous Iron Oxide Nanoparticles-Encapsulated Perfluorohexane and a Hydrophobic Drug for Deep Tumor Penetration and Therapy. Theranostics 2015, 5 (11), 1233-1248. DOI: 10.7150/thno.12843.

NLM
Su YL, Fang JH, Liao CY, Lin CT, Li YT, Hu SH. Targeted Mesoporous Iron Oxide Nanoparticles-Encapsulated Perfluorohexane and a Hydrophobic Drug for Deep Tumor Penetration and Therapy. Theranostics 2015; 5(11):1233-1248. doi:10.7150/thno.12843. https://www.thno.org/v05p1233.htm

CSE
Su YL, Fang JH, Liao CY, Lin CT, Li YT, Hu SH. 2015. Targeted Mesoporous Iron Oxide Nanoparticles-Encapsulated Perfluorohexane and a Hydrophobic Drug for Deep Tumor Penetration and Therapy. Theranostics. 5(11):1233-1248.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See http://ivyspring.com/terms for full terms and conditions.
Popup Image