Theranostics 2019; 9(11):3150-3169. doi:10.7150/thno.31828 This issue

Review

Recent Developments of Supramolecular Metal-based Structures for Applications in Cancer Therapy and Imaging

Alexander Pöthig1, Angela Casini2,3✉

1. Department of Chemistry & Catalysis Research Center, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany.
2. School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom.
3. Institute for Advanced Study, Technical University of Munich, Department of Chemistry, Lichtenbergstr. 2 a, 85747 Garching, Germany.

This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
Citation:
Pöthig A, Casini A. Recent Developments of Supramolecular Metal-based Structures for Applications in Cancer Therapy and Imaging. Theranostics 2019; 9(11):3150-3169. doi:10.7150/thno.31828. Available from https://www.thno.org/v09p3150.htm

File import instruction

Abstract

Graphic abstract

The biomedical application of discrete supramolecular metal-based structures, including supramolecular coordination complexes (SCCs), is still an emergent field of study. However, pioneering studies over the last 10 years demonstrated the potential of these supramolecular compounds as novel anticancer drugs, endowed with different mechanisms of action compared to classical small-molecules, often related to their peculiar molecular recognition properties. In addition, the robustness and modular composition of supramolecular metal-based structures allows for an incorporation of different functionalities in the same system to enable imaging in cells via different modalities, but also active tumor targeting and stimuli-responsiveness. Although most of the studies reported so far exploit these systems for therapy, supramolecular metal-based structures may also constitute ideal scaffolds to develop multimodal theranostic agents. Of note, the host-guest chemistry of 3D self-assembled supramolecular structures - within the metallacages family - can also be exploited to design novel drug delivery systems for anticancer chemotherapeutics. In this review, we aim at summarizing the pivotal concepts in this fascinating research area, starting with the main design principles and illustrating representative examples while providing a critical discussion of the state-of-the-art. A section is also included on supramolecular organometallic complexes (SOCs) whereby the (organic) linker is forming the organometallic bond to the metal node, whose biological applications are still to be explored. Certainly, the myriad of possible supramolecular metal-based structures and their almost limitless modularity and tunability suggests that the biomedical applications of such complex chemical entities will continue along this already promising path.

Keywords: supramolecular metal-based complexes, metallacages, cancer, drug delivery, theranostics.