Theranostics 2020; 10(15):6715-6727. doi:10.7150/thno.44900 This issue Cite

Research Paper

Imaging-based vascular-related biomarkers for early detection of acetaminophen-induced liver injury

Haolu Wang1,2,3,4, Leslie J. Burke1,2,3, Jatin Patel1, Brian WC. Tse5, Kim R. Bridle2,3, Victoria C. Cogger6, Xinxing Li7, Xin Liu1, Haotian Yang1, Darrell H. G. Crawford2,3, Michael S. Roberts1, Wenchao Gao7✉, Xiaowen Liang1,2,3,7✉

1. The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
2. Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, 4120, Australia
3. Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
4. Department of Biliary-pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
5. Preclinical Imaging Facility, Translational Research Institute, Brisbane, QLD, 4102, Australia
6. The University of Sydney, Concord Hospital, Concord, NSW, 2139, Australia
7. Department of General Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, 200003, China

Citation:
Wang H, Burke LJ, Patel J, Tse BWC, Bridle KR, Cogger VC, Li X, Liu X, Yang H, Crawford DHG, Roberts MS, Gao W, Liang X. Imaging-based vascular-related biomarkers for early detection of acetaminophen-induced liver injury. Theranostics 2020; 10(15):6715-6727. doi:10.7150/thno.44900. https://www.thno.org/v10p6715.htm
Other styles

File import instruction

Abstract

Graphic abstract

Acetaminophen (APAP) is the foremost cause of drug-induced liver injury in the Western world. Most studies of APAP hepatotoxicity have focused on the hepatocellular injury, but current hepatocyte-related biomarkers have delayed presentation time and a lack of sensitivity. APAP overdose can induce hepatic microvascular congestion, which importantly precedes the injury of hepatocytes. However, the underlying molecular mechanisms remain unclear. It is imperative to discover and validate sensitive and specific translational biomarkers of APAP-induced liver injury.

Methods: In this study, we assessed APAP toxicity in sinusoidal endothelial cells and hepatocytes in mice treated with overdose APAP at different time points. The underlying mechanisms of APAP overdose induced sinusoidal endothelial cell injury were investigated by RT2 Profiler PCR arrays. The impact of APAP overdose on endothelial cell function was assessed by pseudovessel formation of endothelial cells in 2D Matrigel and in vivo hepatic vascular integrity using multiphoton microscopy. Finally, the effects of APAP overdose on oxygen levels in the liver and hepatic microcirculation were evaluated by contrast enhanced ultrasonography. Potential imaging-based vascular-related markers for early detection of APAP induced liver injury were assessed.

Results: Our study confirmed that hepatic endothelial cells are an early and direct target for APAP hepatotoxicity. ICAM1-related cellular adhesion pathways played a prominent role in APAP-induced endothelial cell injury, which was further validated in primary human sinusoidal endothelial cells and human livers after APAP overdose. APAP overdose impacted pseudovessel formation of endothelial cells and in vivo hepatic vascular integrity. Use of ultrasound to detect APAP-induced liver injury demonstrated that mean transit time, an imaging-based vascular-related biomarker, was more sensitive and precise for early detection of APAP hepatotoxicity and monitoring the treatment response in comparison with a conventional blood-based biomarker.

Conclusion: Imaging-based vascular-related biomarkers can identify early and mild liver injury induced by APAP overdose. With further development, such biomarkers may improve the assessment of liver injury and the efficacy of clinical decision-making, which can be extended to other microvascular dysfunction of deep organs.

Keywords: Acetaminophen, Liver Injury, Endothelial cells, Vascular-related biomarkers, Ultrasonography


Citation styles

APA
Wang, H., Burke, L.J., Patel, J., Tse, B.WC., Bridle, K.R., Cogger, V.C., Li, X., Liu, X., Yang, H., Crawford, D.H.G., Roberts, M.S., Gao, W., Liang, X. (2020). Imaging-based vascular-related biomarkers for early detection of acetaminophen-induced liver injury. Theranostics, 10(15), 6715-6727. https://doi.org/10.7150/thno.44900.

ACS
Wang, H.; Burke, L.J.; Patel, J.; Tse, B.WC.; Bridle, K.R.; Cogger, V.C.; Li, X.; Liu, X.; Yang, H.; Crawford, D.H.G.; Roberts, M.S.; Gao, W.; Liang, X. Imaging-based vascular-related biomarkers for early detection of acetaminophen-induced liver injury. Theranostics 2020, 10 (15), 6715-6727. DOI: 10.7150/thno.44900.

NLM
Wang H, Burke LJ, Patel J, Tse BWC, Bridle KR, Cogger VC, Li X, Liu X, Yang H, Crawford DHG, Roberts MS, Gao W, Liang X. Imaging-based vascular-related biomarkers for early detection of acetaminophen-induced liver injury. Theranostics 2020; 10(15):6715-6727. doi:10.7150/thno.44900. https://www.thno.org/v10p6715.htm

CSE
Wang H, Burke LJ, Patel J, Tse BWC, Bridle KR, Cogger VC, Li X, Liu X, Yang H, Crawford DHG, Roberts MS, Gao W, Liang X. 2020. Imaging-based vascular-related biomarkers for early detection of acetaminophen-induced liver injury. Theranostics. 10(15):6715-6727.

This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
Popup Image